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Abstract

As an inherent part of epidemiologic research, practical decisions made during data collection 

and analysis have the potential to impact the measurement of disease occurrence as well as 

statistical and causal inference from the results. However, the computational skills needed to 

collect, manipulate, and evaluate data have not always been a focus of educational programs, 

and the increasing interest in “data science” suggest that data literacy has become paramount to 

ensure valid estimation. In this article, we first motivate such practical concerns for the modern 

epidemiology student, particularly as it relates to challenges in causal inference; second, we 

discuss how such concerns may be manifested in typical epidemiological analyses and identify 

the potential for bias; third, we present a case study that exemplifies the entire process; and 

finally, we draw attention to resources that can help epidemiology students connect the theoretical 

underpinning of the science to the practical considerations as described herein.
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Introduction

We are taught that epidemiologic research often proceeds under a continuum [1]. A research 

question is conceived, a study is designed and implemented, the analysis is conducted, and 

interpretation offered. Many epidemiologists receive rigorous training in the theoretical and 

methodological underpinnings to answer research questions. For example, in observational 

etiologic research, we learn of six mechanisms under which an exposure, X, may be 

related to an outcome, Y: (1) chance, (2) uncontrolled confounding, (3) selection bias, (4) 
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information bias, (5) reverse causality, and (6) true causality [2]. And we learn study designs 

and analysis strategies to limit mechanisms 1 to 5, so that mechanism 6 sends the clearest 

signal. Epidemiologists who engage in descriptive, experimental, and quasi-experimental 

work [3] have similar issues to contend with, as do applied epidemiologists. In short, our 

training emphasizes a rigorous science.

For the modern epidemiology student, regardless of sub-discipline or application, inherent 

in epidemiology is the collection and analysis of electronic data. As such, data literacy is 

crucial to the success of this field, yet the computational skills necessary to collect, clean, 

and analyse data are often taught separate from traditional training in epidemiology. A 2019 

review of graduate curricula among 20 master’s level public health programs in the U.S. 

noted that training in “data science”, which includes methods of data management and 

manipulation, was rarely required as a standalone course in contemporary epidemiology 

programs, and there was a clear delineation between coursework in epidemiology and 

biostatistics [4]. While this review was unable to evaluate whether such data literacy skills 

were integrated within existing epidemiology or biostatistics courses, the growing interest 

in and use of “big data” sources necessitate greater emphasis on pragmatic considerations 

when conducting epidemiologic studies. Even a well-conceived, elegant theoretical model 

studying a pressing public health problem could be derailed by a single poorly conceived, 

haphazardly measured variable (especially true if this variable were X or Y). We contend 

that these more practical data decisions are as important for the student to learn as 

the theoretical and methodological concerns of the practicing epidemiologist, and use 

this article to outline these more pragmatic considerations and how they interact with 

the underpinnings of modern-day epidemiology [2,5–8]. Our intention is to demonstrate 

how decisions about data impact causal inference in observational research, but our 

observations are germane to all sub-disciplines and applications of epidemiology including 

descriptive studies, experimental, quasi-experimental studies, and fieldwork. Our audience 

is trainees in epidemiology - clinical or nonclinical - or anyone who will be undertaking an 

epidemiological inquiry. To illustrate our points, we provide six prototypical examples, their 

potential impact on the interpretation of results, and possible solutions, summarized in Table 

1, and follow with a use case further demonstrating these issues in a real-world study.

We note at the outset several defining features of our commentary. First, we deliberately 

use the terms data management and analysis broadly. By data management we refer to 

the process of collecting data, including strategies on accessing, harmonizing, cleaning, 

storing, and preparing data for analysis. By analysis we refer to the process of producing 

the P(Y|X) estimation in statistical software; in other words, quantifying the exposure to 

outcome relation. We refer to an “analytic dataset” as the basis for all statistical modelling 

and the product of data management. Second, although we treat each of the strategies 

within the research continuum distinctly for didactic presentation, we recognize that they are 

not mutually exclusive. For example, misspecification of a variable’s definition during the 

study design can impact decisions about data management and analysis, inducing spurious 

associations between X and Y. Third, we do not offer new definitions, frameworks, or 

theories of epidemiology, and the generalizations made herein may not be true among all 

epidemiology training programs. Fourth and specific to the use case, it is not our intention 
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to critique the authors or findings of the cited studies, but rather to demonstrate the potential 

for invalid inference based on assumptions made during data management and analysis.

Data management

Broadly speaking, study data in an analytic dataset can fall under two categorizations. 

Data that describe the “rows” in a dataset, i.e., the observations, and data that describe the 

“columns” of a dataset, i.e., the variables. Note that the scenarios described below may occur 

without the awareness of the researcher. Practical issues may not represent fatal flaws in 

the data whereby software would flag an error drawing the researcher’s attention to them. 

Rather these seemingly innocuous issues can slip through undetected and wreak havoc in the 

final analysis.

The theoretical underpinnings of missing data and its influence on causal inference have 

been well described [9,10]. Missing data may occur for both the observations and variables, 

where the reason may (or may not) be related to the observed, apparent data [11]. Analysis 

decisions about missing data may induce selection or information bias, such as when the 

analyst conducts a complete case analysis where observations (or variables) were discarded 

from the analytic sample because data were incomplete. Such analytic procedure assumes 

non-informative missingness, a common assumption of statistics models. As a result, P(Y|X) 

in the analytic sample loses internal validity and is not reflective of the source population 

[12]. Simple descriptive statistics [13] and causal diagrams [14] may reveal the patterns of 

missingness and determine the most appropriate remediation [15,16].

As opposed to missing data that represent a lack of information, duplicate observations 

represent excessive information, and may have resulted from an incorrect data merge 

(append) operation, and thus represent invalid rows. Duplicate observations are often a 

by-product of many reporting tools integrated within electronic health records and registries, 

and as a result, deduplication algorithms are commonplace. However, for data privacy and 

security purposes, data linkage may be performed by a third party, which makes it difficult 

to determine the quality of linkage. Depending upon the proportion of invalid duplicate 

observations and the strength of P(Y|X), the causal estimand may be biased from the 

influence of the extraneous data. One way of thinking about this systematic error is through 

selection bias, in that the probability of inclusion in the analytic sample for any one person 

is conditional on the variables used to merge the two datasets together [17]. Thus, in the case 

of duplicate observations, there are unequal selection probabilities for those individuals. One 

recommended approach to evaluate the degree of duplication is to calculate the percentage 

of observed versus potential number of record linkage [18].

The use of inconsistent variable definitions, incorrect constructs, and other problems that 

arise during data management and cleaning may also impact causal inference. For instance, 

when multiple datasets are linked together, as is the case when separate instruments were 

used and the data were recorded in separate files, the operationalization of the variables may 

have differed. As a simple example, this could be a coding of 0 = male and 1 = female 

in the first file, and 0 = female and 1 = male in the second file. Failure to recognize this 

inconsistency can induce an information bias in the final analysis without the researcher ever 
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being aware [17]. This could also affect continuous variables, if, for example, one dataset 

defined weight in pounds and the other in kilograms. Exploratory data analysis should reveal 

a potential problem, but this may be subtle if the scales substantially overlap. Furthermore, 

several recommended practices have been proposed for evaluating the impact of data linkage 

error such as comparing the linked data to a training dataset or gold standard, comparing 

linked and unlinked data, and sensitivity analysis to evaluate how robust results are to 

different linkage procedures [19]. See Doidge and Harron for a summary of strengths and 

limitations of these methods [17].

Analysis

Analysis of epidemiological data can include straightforward univariable descriptive 

statistics to complex simulation or regression-based approaches. Regardless of the 

complexity of the analysis, again there are practical considerations that can influence causal 

inference. Practical analytic decisions that have the potential to induce P(Y|X), or lack 

thereof, include implications from the study design, model specification and assumptions, 

and variable selection.

Aside from the well-known challenges of estimating causal relations from epidemiologic 

studies [20], there are practical considerations in the study design that can impact inference. 

For example, a study analysing perinatal outcomes may have multiple rows of data 

representing multiple gestations. Unlike the earlier case where the duplicate observations 

were an artifact of data management decisions, here the repeated nature of the data is 

intentional and inherent to the study design. In this case, failure to correctly account for 

the correlated observations, especially if there was a relatively large proportion of multiple 

births as could be expected in a study of fertility treatments [21], may artificially inflate the 

statistical model error terms and thereby obscure an otherwise apparent association in the 

data [22–24].

The choice of which statistical model to employ brings about a host of practical 

considerations as all statistical procedures carry assumptions. One must first consider the 

functional form of their model (i.e., model specification) [25]. When given a continuous 

outcome, it is perhaps plausible to assume that the average risk of Y varies linearly as 

a function of X. However, such assumptions without any descriptive assessment of the 

functional relation between X and Y may lead to a poorly fitted model and erroneous 

inferences. It is possible that other model forms such as quadratic, exponential, or spline 

may better characterize the functional relation between X and Y, and failure to capture this 

functional relation may bias one’s estimates. In addition, common regression methods such 

as ordinary least squares regression, for example, includes assumptions for independence of 

observations, linearity, homoskedasticity, and non-informative missingness. From a practical 

lens, violation of these assumptions can result in incorrect point estimates or error terms. 

This violation may in turn lead to a biased or chance association [26]. In such instances, the 

use of model diagnostic procedures is vital to detect both systematic and isolated departures 

from the data [27]. Outliers are an obvious example, and many diagnostic techniques such 

as residual plots, Cook’s distance, DFBETAS, and goodness-of-fit tests have been developed 

to evaluate the robustness of these model assumptions [28]. Furthermore, failure to evaluate 
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whether missing data are informative will default to the model’s assumption and treatment 

of missing data, which is typically a complete cases analysis. Non-informative missingness 

often does not hold, and in such cases, methods of multiple imputation by chained equations 

[16] and weighting approaches [29] have been developed to address this concern.

Relatedly, in most observational studies in epidemiology, one must also consider the 

variables to be included in a model, especially in research seeking to estimate the P(Y|X). 

This is because with observational data, we have no expectation of exchangeability, thus, 

attempts to control for a sufficient set of confounders to produce valid estimates of P(Y|

X) are necessary. Although causal diagrams are helpful to depict the relational structure 

[30,31], this requires substantive background knowledge of the data-generating mechanism 

to appropriately identify a set of covariates, often using the backdoor path criterion [30], 

that are sufficient to control for confounding. Once these variables are identified, many 

techniques are currently available such as matching, stratification, multivariable adjustment 

[2], and propensity score methods [32] to control for confounding. However, knowledge 

of the entire causal structure is never available, which is why research needs to reflect 

this uncertainty given that residual confounding and undiagnosed measurement error can 

induce spurious associations [33]. In such instances, bias analysis techniques have been 

developed to quantify the impact of potential uncontrolled confounding and measurement 

error [34–40]. For the epidemiology student, practical approaches that are relatively simple 

to implement and impose fewer assumptions such as estimation of the E-value (the 

minimum strength of association of an unmeasured confounder to fully explain away an 

exposure-outcome relation as measured on the risk ratio scale) [41] or incorporation of 

negative controls (replication of the proposed experiment under conditions that are expected 

to produced null results) [42] will strengthen the student’s ability to assess the quality of 

evidence from observational data.

In addition, various data-driven strategies have been developed for variable selection, 

including the significance criteria, information criteria, penalized likelihood (e.g., LASSO), 

change-in-estimate criterion, and variable selection algorithms [43,44]. Overreliance of data-

driven methods for variable selection, however, can lead to the inclusion of too few or 

too many confounders, resulting in residual confounding. For example, given the rise in 

machine learning approaches to variable selection in high-dimensional datasets [4], there is 

the possibility of including inappropriate covariates in the statistical model. Except in the 

case of mediation analysis, one would not want to adjust for a mediator, yet because it is 

correlated with the exposure and outcome, a naive algorithmic approach would nevertheless 

include this variable, introducing the risk of biased estimation [45]. This further highlights 

the importance of accounting for the timing of covariates when making decisions on variable 

selection and the use of methods such as inverse probability weighting of exposure adjust 

for time-varying confounding [46]. The tension between a sound theoretical approach 

and a pragmatic data-driven approach is demonstrated in automated variable selection 

algorithms, which have largely been discouraged in epidemiological circles [26]. Thus, 

decisions to include or exclude variables in a model should be supported by background 

knowledge about the strength of evidence for their association with the exposure and 

outcome. In instances where variable selection algorithms are employed, one must consider 

Tran et al. Page 5

Glob Epidemiol. Author manuscript; available in PMC 2022 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the uncertainty resulting from the selection process and its impact on inference through 

sensitivity analysis. For a more in-depth discussion of these strategies, see Heinze et al. [43]

Case study

The following scenario is adopted from Goldstein et al. [47] in which the authors undertook 

a replication study of the association between a certain type of physical activity and all-

cause mortality using exposure and covariate data from the National Health and Nutrition 

Examination Survey (NHANES) with mortality outcome data linked from the National 

Center for Health Statistics [48]. The motivation was to test the feasibility of reproducing 

a study’s findings based solely on the methods disclosed in the manuscript. As such, many 

implicit assumptions about the data were necessary during data management and analysis, 

and although these likely would not be disclosed in a typical original research article, herein 

we detail each consideration from Table 1 and how it may have affected the results.

1. Missing data. Goldstein et al. noted how decisions about the treatment of missing 

data in NHANES could cut the analytic sample in half.49 Specifically, when 

operationalizing a single, latent variable based on the results of multiple survey 

questions, if the answers to one of the questions is missing, a data decision 

is needed: should the entire latent variable be set to missing and respondents 

without the latent variable excluded from analyses, or should the question with 

missing data simply be discarded from the construct of the latent variable? The 

authors therefore needed to balance the potential for selection bias, if the latent 

variable was omitted from a large number of respondents, versus an information 

bias, if only some aspect of the latent variable was ignored. On the other hand, a 

more prudent approach in the original work may have been to impute the missing 

data using one of the techniques discussed earlier.

2. Duplicate observations. In most cases, each row in an NHANES data file 

corresponds to a unique participant. However, this is not always true. For 

example, the repeated measure of physical activity in this study was based on 

accelerometer data that were captured on a minute-by-minute basis [48]. Thus, 

each participant who wore an accelerometer had a one-to-many relationship 

to these data and failure to correctly perform a merge operation to create the 

appropriate person-level data may result in an extreme number of duplicate 

observations. This could induce several types of bias from selection to overly 

precise errors. As such, the authors could benefit from calculating the percentage 

of observed to potential record linkage to better under the degree of false or 

missed linkage.

3. Inconsistent variable definition. Data linkage is commonplace when working 

with NHANES data. In fact, for the NHANES 2003–2004 and 2005–2006 survey 

cycles, the authors noted over 300 unique raw data files available [49]; this 

was in addition to the need to link to external mortality outcome data. As 

the practice of NHANES is to separate the various domains and instruments 

into separate raw data files, this necessitates data linkage. Not only does this 

present a problem for duplicate or missing data, but this also presents a problem 
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for inconsistent variable definitions. For example, when using NHANES data 

one may consider measures of self-reported hepatitis C diagnosis from the 

questionnaire data [50] and laboratory-based measure of hepatitis C antibody 

and viral load [51]. The treatment of these two variables as interchangeable 

would be inappropriate as the questionnaire-based data are self-reported and 

subject to greater misclassification. Therefore, combining these two measures 

may induce an information bias. It is incumbent upon the researcher to recognize 

the conceptual differences of similar data collected through different methods, 

in this case, a self-reported versus laboratory-based diagnosis of hepatitis C 

infection.

4. Study design. The original study’s research aim was to evaluate the association 

between a certain type of physical activity and all-cause mortality. Participants 

were sampled from NHANES, which employed a complex survey design 

to ensure representativeness of the U.S. civilian noninstitutionalized resident 

population [52]. Failure to consider this study design may affect estimates of 

variance, and consequently biased test statistics and confidence intervals. As 

the data used in this example were from two survey cycles, namely 2003–2004 

and 2005–2006, NHANES guidance documents stipulated several considerations 

before aggregating data [52]. Specifically, the authors needed to ensure the 

proper weighting variable was used before combining the datasets, as there are 

multiple survey weights given.

5. Model assumptions. The authors applied a Cox proportional hazard model 

to estimate how physical activity was associated with all-cause mortality in 

NHANES. This type of statistical model carries several assumptions including 

those common to all regression models, such as testing for the presence 

of influential observations, non-linearity, and non-informative missingness, as 

well as Cox-specific assumptions, namely proportional hazards [53]. While the 

authors of the original article stated that “the assumption of proportional hazards 

was tested and held true for our [physical activity] exposure,” the details are 

not provided nor are the other assumptions described, particularly procedures for 

handling missing data [48]. This is not unusual; statistical modelling assumptions 

are rarely discussed in original research articles [54]. Sharing of data and 

analytic code can facilitate reproducibility when adequate details cannot be 

provided in the methods due to word limits [55].

6. Variable selection. Goldstein et al. noted eight separate questionnaire items 

in NHANES pertaining to alcohol consumption [47]. In order to create a 

single measure of consumption one may simplistically check for a “positive” 

response to any of these eight items; however, this risks an information bias 

as these individual items may represent unique constructs and not be internally 

reliable. Relatedly, inclusion of this combined measure may result in residual 

confounding as it may be a poor variable to control for the underlying differences 

in alcohol consumption between respondents of lower physical activity levels 

to those of higher physical activity levels. The use of quantitative bias analysis, 
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estimation of the E-value, or incorporation of negative controls may help the 

investigator evaluate the extent of residual confounding and measurement error.

Discussion

In the modern era of epidemiology, much thought and consideration of complex topics 

has yielded a rich theoretical and methodological foundation for researchers [20,56]. Our 

comments underscore their connection to practical considerations as the basis for valid 

epidemiology. In short, our work depends upon sound data, and we should not necessarily 

take for granted that current epidemiology training programs impart the knowledge and 

skills needed to manipulate complex study data prior to—and in some cases—post analysis 

[4]. Thus, we emphasize the importance of data literacy for students in epidemiology 

training programs. In fact, modern epidemiology may be more reflective of a computer and 

data scientist’s skillset than a physician’s mastery of medicine, contrary to the origin of our 

field.

The six practical considerations in Table 1 are not intended to be an exhaustive list. There 

are practical issues encountered at all stages of epidemiology: from asking an addressable 

public health question, to collecting data, to disseminating findings in an appropriate 

matter. The idealized research continuum many are taught may also conflict with real-world 

epidemiology, such as emergency public health responses during an outbreak, which may 

invoke some of the practical considerations in Table 1. We have focused our comments on 

the data aspect of epidemiologic research as opposed to the other, albeit equally important, 

facets such as the description of disease frequency that may provide salient information 

for understanding health disparities and risk factors. Additionally, epidemiologic data will 

always be imperfect, but not every data issue will lead to invalid inference. For example, 

in a study of thousands of individuals, a single duplicate record will have a negligible 

impact on the standard errors. In the case where selection or information bias is expected 

to substantially diminish the validity of results, analyses should reflect this uncertainty and 

investigators need to consider methods in bias analysis to compute bias-adjusted estimates 

to address systematic errors [2,36,37,57]. Through the case study, we illustrated how the 

analyst must think about such data concerns systematically, which, as a side benefit, can 

aid in the reproducibility of study findings [47]. Transparency in data and computing codes 

is one mechanism whereby others can vet the more practical issues of analysing data, for 

example, through a peer review process specific to research materials [49].

In summary, epidemiology is built upon sound theoretical reasoning, appropriate 

methodology, and valid data. The first two are well known; the third should not be taken for 

granted.
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