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SUMMARY

Gene regulation in higher organisms involves a sophisticated interplay between genetic and epige-

netic mechanisms. Despite advances, the logic in selective usage of certain genomic regions as regu-

latory elements remains unclear. Here we show that the inherent biophysical properties of the DNA

encode epigenetic state and the underlying regulatory potential. We find that the propeller twist

(ProT) level is indicative of genomic location of the regulatory elements, their strength, the affinity

landscape of transcription factors, and distribution in the nuclear 3D space. We experimentally

show that ProT levels confer increased DNA flexibility and surface accessibility, and thus potentially

primes usage of high ProT regions as regulatory elements. ProT levels also correlate with occurrence

and phenotypic consequences of mutations. Interestingly, cell-fate switches involve a transient usage

of low ProT regulatory elements. Altogether, ourwork provides unprecedented insights into the gene

regulatory landscape encoded in the DNA biophysical features.

INTRODUCTION

The genome consists of multiple gene regulatory units comprising of proximal and distal regulatory ele-

ments. Recent studies have shown that the function and utilization of these elements during cellular differ-

entiation and in response to intracellular and extracellular cues relies on a dynamic control by epigenetic

machinery in concert with transcription factors (TFs) (Li et al., 2007; Long et al., 2016; Margueron and Rein-

berg, 2010; Moris et al., 2016). Enhancers are known to be critical for setting up transcriptome underlying

cell-type identity and function from far away distances on their target promoters (Heinz et al., 2015; Long

et al., 2016; Rickels and Shilatifard, 2018; Sakabe et al., 2012; Schoenfelder and Fraser, 2019; Shlyueva et al.,

2014; Spitz and Furlong, 2012). Importantly, mutations in these gene regulatory elements are known to

disrupt their function affecting gene expression and ultimately cell identity and hence underlie several dis-

eases (Li et al., 2019; Rickels and Shilatifard, 2018; Sakabe et al., 2012; Weinhold et al., 2014). Typically, a

range of methods are employed to identify and validate such distal regulatory elements including quanti-

fying certain histone modifications and DNase hypersensitivity assays (Ong and Corces, 2011; Pradeepa

et al., 2016; Shlyueva et al., 2014; Zentner and Henikoff, 2013). These methods have their own limitations

and a number of alternate assays and histone modifications have recently been used to discover enhancers

(Arnold et al., 2013; Pradeepa et al., 2016; Vanhille et al., 2015). Thus, our current approach to reveal reg-

ulatory elements in entirety is highly limited and vouches to search for conserved features that can explain

enhancer evolution and function.

Interestingly, sequences from regulatory loci are able to recapitulate endogenous TF binding pattern,

chromatin state, and cell-type-specific activity when placed at an exogenous genomic site or tested in

isolation (Lienert et al., 2011; Yanez-Cuna et al., 2013). In addition, computational analysis has further shown

that the occurrence of certain sequences at genomic loci is predictive of their regulatory potential (Colbran

et al., 2017; Yanez-Cuna et al., 2014; Yang et al., 2017a). These lines of evidence strongly suggest the ex-

istence of inherent gene regulatory potential of these genomic loci at the sequence level. Despite these

advances, we lack understanding of the evolutionary constrains in the selection of certain genomic DNA

elements for their gene regulatory function (Pennacchio et al., 2013). It is thus important to decode the po-

wer of sequence features in determining the gene regulatory potential and differential usage in cell-type

specification. In addition, it is important to catalog novel regulatory elements, an effort that is limited by

insufficient knowledge of existing features of these elements.

Several laboratories have attempted to employ computational approaches to predict enhancers based on

sequence information (Kleftogiannis et al., 2016; Lee et al., 2011; Rusk, 2014). Although thesemethods were
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able to predict enhancers to a certain degree, they were unable to decipher the underlying code that drives

enhancer selection and strength (Pennacchio et al., 2013). A previous study suggested that the local DNA

topography differs at functional noncoding regions of the genome including enhancers (Parker et al., 2009).

Interestingly, DNA shape features such as propeller twist (ProT), major grove width, and helical twisting

determine different local geometries, which in turn contribute to the control of transcription factor binding

and gene regulation (Greenbaum et al., 2007; Ma et al., 2017; Mathelier et al., 2016; Zhou et al., 2013). Over-

all, the existing evidences suggest a genetic feature code beyond simple sequence that may dictate

selection of enhancers and their strength of function. Here we show that DNA shape features are highly

informative of the gene regulatory potential of genomic loci. We discover that the ProT levels can reveal

the location of enhancers, their strength, the affinity landscape of transcription factors, and distribution

in the nuclear 3D space with high accuracy. Using experimental assays including single-molecule AFM im-

aging measurements, we show that indeed high ProT levels cause increased DNA flexibility and surface

accessibility and may potentially explain their usage as regulatory elements. Furthermore, ProT levels

also determine the effectivity landscape of the genome to tolerate mutations. Altogether, this work reveals

the gene regulatory landscape encoded in the basic genetic sequence features and provides a significant

advance in unfolding the mysteries of genetic code.
RESULTS

Genomic Surface Accessibility and Flexibility Are Encoded in DNA Shape Features

The ability for genomic regions to function as gene regulatory elements is thought to be significantly influ-

enced by their inherent accessibility for DNA-binding proteins such as TFs (Bell et al., 2011). To probe

accessibility, we began by investigating whether the surface accessibility of DNA is influenced by its bio-

physical features. We used hydroxyl radical cleavage maps as a proxy for solvent accessible surface area

of the DNA (Greenbaum et al., 2007) and correlated this with various DNA shape features such as ProT, ma-

jor groove width (MGW), helix turn (HelT), and roll predicted by an established tool—DNAshape (Zhou

et al., 2013). We found that ProT, defined as the angle of twisting of two neighboring nucleotides from

the axis of their geometrical center, highly correlates with the DNA surface accessibility (Pearson correla-

tion coefficient = 0.967, pval <0.001) (Figure 1A). The other features do not show as strong a correlation with

hydroxyl radical cleavage maps and with each other (Figures S1A–S1C). This analysis established ProT as a

proxy to measure inherent surface accessibility of DNA.

Next, to directly test how increased levels of ProT affect the mechanical properties of DNA segments, we

decided to carry out high-resolution AFM imaging experiments of �1 kbp long DNA sequences with

different ProT levels (Data S1). Toward this, we first used PCRs to generate different linear sequences

predicted to be either genomic ‘‘random’’ or ‘‘high’’ in terms of ProT levels. Subsequently, atomic force

microscopy (AFM) images of the DNA molecules were measured and analyzed by tracing the DNA paths

(Figure 1B). An analysis of the mean-squared separation of pairs of points located at different distances

along the contour length confirmed that the DNA molecules were equilibrated at the surface (Figure S1D)

and allowed determination of the bending persistence length. We found bending persistence length

values P z 56 nm, in good agreement with previous measurements under similar conditions (Mazur

and Maaloum, 2014; Rivetti et al., 1996; Wiggins et al., 2006). The data did not reveal significant differ-

ences in the persistence lengths from control (P = 56.1 G 0.2 nm) and high ProT sequences (P = 56.7 G

0.6 nm), suggesting that the bending stiffness at longer length scales is similar for different levels of ProT.

Therefore, to probe the local flexibility of the DNA sequences, we analyzed the distribution of bend angles

between points separated by 5 nm along the contour. Taking the negative logarithm of the histogram of

bend angles directly gives the effective bending energy (Figure 1C). For both random and high ProT

sequences, the data for angles up to q � 1 rad are well described by a simple elastic model, the so-called

worm-like chain, whereas for bending angles q > 1 rad clear deviations from the elastic model are apparent,

as have been observed previously (Wiggins et al., 2006). Interestingly, the high ProT sequences

exhibited larger deviations from the elastic model and a significantly higher fraction of medium (q > 0.8

rad; p = 7.5$10�6) and large bends (q > 1.1 rad; p = 0.0013) compared with the control sequences

(Figure 1D). In contrast, different control sequences and different high ProT sequences gave the same

fractions of medium and large bends, respectively, within experimental error. Taken together, the AFM

imaging analysis suggested that on short length scales (�5 nm), high ProT sequences exhibit enhanced

bendability compared to random sequences.
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Figure 1. DNA Surface Accessibility and Flexibility Are Encoded in Its Biophysical Features

(A) Human genome-wide correlations of predicted values of DNAshape features; helix turn (HelT), propeller twist (ProT), roll (Roll), and major groove width

(MGW) with surface accessibility of the DNA as measured by OH-radical cleavage intensity predictions.

(B) Typical AFM topographic image depicting two linear DNA molecules (left). Enlarged view of the boxed area (left) superimposed with the traced contour

(right). The red point highlights the location of a large bend (>0.8 rad).

(C) Energy landscape for bend angles reconstructed from the bend angle distribution for pooled control (Nmolecules = 801) and pooled ProT (Nmolecules = 425)

sequences. In total, we traced 87,168 bend angles from 1,226 imaged DNA molecules. The broken line depicts the energy landscape expected for a worm-

like chain with persistence length P = 55 nm.

(D) Fraction of large bends (>0.8 rad) for pooled control (Nlarge bends = 182; Nbends, total = 56,874) and high ProT (Nlarge bends = 157; Nbends, total = 30,294)

sequences. The fraction of large bends is significantly higher for the ProT versus control sequences (p = 7.5 3 10-6). The error bar is the standard deviation

from counting statistics, i.e. the square root of the counts divided by the number of total counts.

See also Figure S1.
Propeller Twist Levels Correlate with 3D Nuclear Positioning of Distinct Chromatin States

Eukaryotic genomes are compartmentalized into distinct domains marked by active (eu-) and inactive

(hetero-) chromatin. Inspired by the observation that ProT highly correlates with the inherent surface acces-

sibility and bendability of DNA, we hypothesized that these regions could potentially mark open active

chromatin regions that are also known to be more fluid in nature. A previous study employed single cell

Hi-C assays to reconstruct the 3D genome of mouse embryonic stem (mES) cells at a high resolution

(Stevens et al., 2017). We processed these data and overlaid with histone modifications indicative of
640 iScience 21, 638–649, November 22, 2019
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Figure 2. Propeller Twist Predicts 3D Nuclear Positioning Hallmark of Distinct Chromatin States

(A) Upper panel: (Left) chromosomes overlaid in different colors in reconstructed single cell genome structure with the resolution of 1MB from single cell HiC

studies in mouse ES cells (Stevens et al., 2017). (Mid and Right) Genomic subunits each of 1MB highlighted in blue and red depending of enrichment of

euchromatin (blue) and heterochromatin (red) features. Lower panel: density plot depicting surface depth in the reconstructed genome structures of

euchromatin feature and heterochromatin features.

(B) Density plot depicting enrichment of surface depth from reconstructed genome structure of mES cell into genome subunits characterized into four

quartiles in increasing amount of median Propeller Twist (ProT) values arranged from top to bottom. Lower panel: boxplots depicting surface depth values

for every quartile of ProT values in all seven different studies single cell genome structures.

(C) Line plot depicting profiles for ProT (red) and surface depth (Cell 1, black) aimed toward displaying linear correlation of these two features across

chromosome 3.

(D) Reconstructed 3D structure of chromosome 3 color-overlaid with quartiles of Surface depth (left) and ProT levels (right).

See also Figure S2.
euchromatin and heterochromatin, H3K27ac and H3K9me3, respectively. Interestingly, euchromatin was

found to have a higher surface depth (as defined in Stevens et al., 2017) as compared with heterochromatin

(Figures 2A and S2A). These findings are also in line with the local enrichment of heterochromatic lamina-

associated domains (LADs) at the nuclear periphery (van Steensel and Belmont, 2017).

We next analyzed the radial distribution of sequences with different ProT levels within the Hi-C data derived

from 3D nuclear positioning. Interestingly, ProT levels were found to correlate well with the nuclear distri-

bution, where ‘‘high ProT’’ sequences occupy an internal position, whereas ‘‘low ProT’’ sequences are local-

ized at the periphery (Figure 2B). Importantly, while the surface depths of genomic loci at the single cell

level across various ES cells is variable, the overall radial positioning of differential ProT regions in the

genome is highly consistent (Figures S2B, S2C, and 2B). Simultaneous visualization of chromosome-wide

surface depth and ProT profiles also showed a clear correlation between these two features (Figures 2C,

2D, and S2D). Collectively, these results suggested a potential contribution of ProT in influencing the nu-

clear positioning and its association with distinct epigenetic states.
Propeller Twist Encodes the Regulatory Potential of Genetic Elements

Intrigued by the above findings, we next attempted to perform a detailed characterization of high ProT re-

gions. In line with our previous findings, we find that ‘‘high ProT’’ sequences are prevalent at regions
iScience 21, 638–649, November 22, 2019 641
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Figure 3. Propeller Twist Encodes the Regulatory Potential of Genetic Elements

(A) UCSC genome browser track displaying layered H3K27ac tracks and Propeller Twist (ProT) showing higher ProT values at H3K27ac positive regions.

(B) UCSC genome browser track displaying H3K9me3 (K562) tracks and ProT showing lower ProT values at H3K27me3 positive regions.

(C) Density plot depicting ProT at H3K27ac peaks identified in K562 cells.

(D–F) Same as (C) but as expressed enhancers in Human Brain identified in CAGE experiments (D), STARRseq identified enhancers in mouse NIH3T3cells (E)

and all CAGE defined enhancers across 71 cell types from FANTOM5 atlas (F).

(G) Violin-boxplot depicting ProT levels at H3K27ac peaks clustered into three categories based on enrichment (low, mid, and high).

(H) Same as G but at four groups obtained from increasing quartile expression of Human Brain enhancers identified from CAGE experiments.

(I) Violin-boxplot depicting ProT levels at capSTARR-seq defined enhancers classified into three classes as inactive, weak, and strong enhancers.

(J) Same as H but at quartiles defined by mean expression across 71 cell types.

(K) Density plot depicting ProT profiles at genomic coordinates marked by ubiquitous enhancers (left), cell-type-specific enhancers (mid) and random

coordinates (right).

(L) Violin-boxplot depicting ProT levels at enhancers ranked into four quartile groups into the increasing order of enhancer usage (cross-cell type usage of

enhancers).

(M) Venn-diagram depicting overlap of peaks from H3K27ac and H3K122ac ChIP-seq study in Human K562 cells (left). ProT profile plotted as density plot

across H3K27ac specific peaks identified from this comparison (second from left), common peaks (second from right), and H3K122ac (right).

See also Figure S3.
enriched with H3K27ac, a marker of active promoter and enhancer regions, whereas they are depleted at

regions enriched in the repressive epigenetic mark H3K9me3 (Figures 3A and 3B). To further validate these

findings, we segmented the epigenome of human K562 myeloma cells into 15 different chromatin states

using ChromHMM (Ernst and Kellis, 2012) and determined their ProT levels. Consistent with the previous

observations, we found generally higher ProT levels at genomic regions marked by active chromatin marks

as compared with repressive ones (Figures S3A–S3C). An interesting exception was H3K27me3, a repres-

sive mark, which correlates with higher ProT levels (Figure S3C). This may be explained by the fact that

H3K27me3 marks certain genomic regions that permit enhancer activity under certain physiological condi-

tions (Taberlay et al., 2011). Furthermore, this mark is also known to be present at ‘‘poised’’ promoters that

represent a transcription ready state (Bernstein et al., 2006).

We next extracted experimentally validated regulatory regions from a variety of cell types and analyzed

their ProT profiles. Strikingly, we noticed that the regulatory elements defined by H3K27ac mark show a

highly characteristic distribution of ProT levels where ProT peaks appear symmetrically next to the center

of H3K27ac peaks (Figure 3C). Furthermore, ProT peaks overlap with the centers of regulatory elements

identified by CAGE or STARR-seq experiments, suggesting that ProT is an intrinsic property of regulatory

regions (Figures 3D and 3E). Extended analysis of CAGE-defined enhancers across 71 cell types further sup-

ports these findings (Andersson et al., 2014) (Figures 3F and S3D).

Next, we sought to monitor the correlation of ProT levels with enhancer activity in a quantitative manner.

Because H3K27ac levels at enhancers are known to correlate with gene expression levels, we used this as

a proxy for enhancer usage (Karlic et al., 2010). A comparison of H3K27ac enrichment with ProT levels

demonstrated a clear relationship (Figure 3G), which was also true with CAGE- or STARR-seq-deter-

mined enhancer strength across multiple cell types (Figures 3H–3J). Based on these observations we

also hypothesized whether ProT levels could also help discriminate enhancer usage across cell types.

Interestingly, we indeed observed that higher ProT level-containing regions tend to be ubiquitous en-

hancers, whereas those showing lower ProT level were enhancers of cell-type specific genes (Figure 3K).

This may relate to an easy activatable state of housekeeping genes versus those of cell-type

specific genes that generally require distinct machinery and program to induce their expression.

Further, we observed that the ProT levels correlate with expression levels (Figures 3L and S3E), suggest-

ing that the transcriptional competence is potentially orchestrated at the genetic level by DNA shape

features.

The current repertoire of histone modifications does not seem sufficient to define all genomic regulatory

elements, and efforts are continuously being made to uncover new chromatin features that allow map-

ping all enhancers. In line with this, H3K122ac modification was shown to mark enhancers that do not

exhibit any H3K27ac mark (Pradeepa et al., 2016). Further corroborating our previous observations,

H3K122ac positive and H3K27ac negative enhancers show a characteristic high ProT profile (Figure 3M).

Thus, high ProT levels constitute a common feature of enhancers irrespective of the chromatin mark

defining these regions. These findings argue that high ProT levels constitute a common feature of
iScience 21, 638–649, November 22, 2019 643
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Figure 4. Propeller Twist Is Deterministic of Regulatory Potential of Genetic Elements

(A) Receiver operator curve (ROC) depicting prediction accuracy of SVMmodels (n = 9) trained to classify between enhancer sequences in brain and random

genome loci using 2000BP single nucleotide ProT predictions.

(B) Same as A but SVM models (n = 5) trained at capSTARR-seq defined enhances in mouse NIH3T3cells.

(C) ProT density plots over each of the clusters (identified in Figure S4A) arranged from left to right in the increasing order of enrichment in repressive to

active chromatin landscape.

(D) ProT density plots as median over all factors across particular transcription factor family.

See also Figure S4.
enhancers, which overrides limitations of other modes of predicting enhancers including those based on

the epigenetic state.

ProT Profile Is a Deterministic Feature of Enhancers

To further establishpredictivenatureof ProT levels inpriminggenomic regions for a gene regulatory functionwe

developed SVM (Support VectorMachine)models to classify between randomgenomic loci andCAGE-defined

brain enhancers using single nucleotide ProT values across a 2000 bp window. The resulting nine models could

classify the location of enhancers at randomly chosen genomic sites with very high accuracy (mAUC= 0.78) (Fig-

ure 4A). Next, we trained five models in a similar manner to identify STARR-seq defined enhancers frommouse

NIH3T3cells. Again, our SVM models closely predicted enhancer locations (AUC = 0.96) (Figure 4B).
644 iScience 21, 638–649, November 22, 2019
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Figure 5. Switch between Distinct Cell-Fates Involves Transient Usage of Low ProT Regulatory Elements

(A) Scatter plot with enrichment of reprogramming factors on nucleosome (stage; fibroblasts) on X axis as determined by the study by Soufi et al. (Soufi et al.,

2015) and binding affinity (stage: 48 h of reprogramming) correlation with ProT on Y axis.

(B) Violin-boxplots with ProT levels at H3K27ac peaks (left) and Oct4 binding sites (right) at various stages of reprogramming on mouse fibroblasts into iPSC

cells.
Enhancers are known to contain multiple TF (Transcription Factor) binding sites, and given a strong rela-

tionship between ProT and enhancer occurrence and usage, we next had a closer look at TF motifs at

ProT profiles. Here we clustered TF-bound motifs, as derived from actual ChIP-seq assays for these TFs,

into eight different clusters based on various histone modification patterns at these sites as hallmark of

euchromatin and heterochromatin (Figures S4A–S4C). Interestingly, an analysis of ProT levels at the center

of motif at these TF bound sites for each of these clusters showed that the activator and repressor TF motifs

can be clearly delineated by ProT levels. The TFs that function primarily as activators preferably target mo-

tifs embedded in high ProT environments, whereas TFs actingmainly as repressors bindmotifs within lower

ProT environments (Figures 4C and 4D). These findings argue that ProT profile is a deterministic feature of

enhancers and can predict the active distal gene regulatory landscape with high accuracy.
Cell-Fate Switches Involve a Transient Usage of Low ProT Regulatory Elements

We next explored the ProT dependency landscape of different TFs to reveal the possible impact of DNA

structure on the function of general vs cell-fate-determining TFs. Toward this, we looked for systems that

involve dynamic reprogramming of cell-fate using defined TFs. Somatic cells can be efficiently reprog-

rammed into an embryonic stem cell state, i.e. induced pluripotent stem cells (iPSCs), using a distinct

set of TFs, namely Oct4, Sox2, Klf4, and c-Myc (Takahashi and Yamanaka, 2006). Therefore, using datasets

from a previous study we analyzed binding of these four TFs during fibroblast-to-iPSC reprogramming and

assessed its relation to ProT levels and nucleosome occupancy in pre-induced human fibroblasts, as

measured by MNase sequencing (MNase-seq) (Chronis et al., 2017). Interestingly, c-Myc showed lesser af-

finity for nucleosome bound regions, whereas Oct4, Sox2, and Klf4 preferentially targeted nucleosome-en-

riched sites (Figure 5A). These data are consistent with a previous finding that Oct4, Sox2, and Klf4, but not

c-Myc, could function as pioneer TFs during reprogramming by virtue of their ability to target ‘‘closed’’

chromatin sites (Soufi et al., 2015). Furthermore, while c-Myc, Klf4 and Sox2 ChIP-seq enrichment relied

on levels of ProT, this was less so in the case of Oct4.

Intrigued by these findings, we analyzed the rewiring of the active chromatin landscape using H3K27ac

mark and its relationship with Oct4 binding dynamics during distinct stages of reprogramming. Strikingly,

although H3K27ac sites in either fibroblasts or iPSCs show stable ProT levels, those occurring during any of

the transient states during reprogramming show a significant drop in their ProT levels (Figure 5B). This

pattern was closely mimicked by genomic regions targeted by Oct4 at distinct stages of reprogramming

(Figure 5B). These results suggest that while Oct4 binding and enhancer activation occurs at ‘‘low ProT’’
iScience 21, 638–649, November 22, 2019 645
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Figure 6. Functional Implications of Differential ProT Levels in the Genome

(A) Left: density plot depicting ProT density across eight categories of genomic loci (1000 bp) classified into increasing mutation density of non-phenotype

associated mutation class. Right: same as Left, but for mutations associated to cancer in COSMIC database (Forbes et al., 2017).

(B) Violin-boxplot for effectivity of genomic loci to be effective in terms of phenotype as determined by LINSIGHT database (Huang et al., 2017) in high and

low ProT classes.

(C) SVM models accuracy plot as ROC curve depicting efficient classification of genomic classes as effective or otherwise as determined LINSIGHT.

See also Figure S5.
regions in transient cell states occurring during reprogramming, the acquisition of a fully reprogrammed

cell-fate involves utilization of ‘‘average ProT’’ sites as enhancers (Figure 5B). Altogether, these findings

imply that although high ProT sites are hallmark of enhancers in defined cell types, relatively lower ProT

sites may play a crucial role during setting up of these cell-fates during reprogramming and potentially

in development.

ProT Levels Correlate with Occurrence and Phenotypic Consequences of Mutations

Given our findings of a deterministic role of ProT in the regulatory potential of distinct genomic sites, we

next assessed the differential sensitivity of ProT sites to tolerate mutations. Strikingly, our analysis revealed

a higher occurrence of random mutations (i.e. non-phenotype associated) at ‘‘high ProT’’ regions of the

genome (Figures 6A and S5). This implies that inherent higher DNA accessibility plays a critical role in

enhancing mutability, possibly because mutagenic agents or machinery have an easier access to such sites.

In contrast, the occurrence of cancer-associated mutations (i.e. phenotype associated) is higher in genomic

loci characterized by a lower ProT (Figures 6A and S5). It is likely that these low ProT sites offer reduced

access to DNA repair machineries and consequently more likely to result in phenotypic consequences.

We further employed LINSIGHT predictions to determine effectivity of SNPs in causing a detectable

phenotype (Huang et al., 2017). We analyzed genomic segments in 1 kb bins and found that ProT levels

are lower at phenotype-associated SNPs than at random genomic loci, in line with our previous observa-

tions (Figure 6B). We further implemented SVMmodels trained on ProT information for 2 kbp genomic seg-

ments to classify effective versus random genomic loci in terms of phenotypic association. Strikingly, the

generated models were able to predict whether mutation at a specific locus could be phenotypic with a

considerably high accuracy (Figure 6C). Taken together, we show that ProT levels are correlated with occur-

rence and phenotypic consequences of mutations.

DISCUSSION

The DNA sequence composition is known to influence local DNA shape across the genome (Parker et al.,

2009). However, at a broader scale, the DNA sequence and structures appear as independent and decon-

volved features (Abe et al., 2015). Previous studies have hinted upon a role of DNA sequence as well as

topography in determining certain epigenetic features (Arnold et al., 2017; Parker et al., 2009; Rusk,

2014; Wang and Moazed, 2017). The genetic features were also shown to be important in determining

TF access on the DNA (Yang et al., 2017b; Zhou et al., 2015). However, whether the local DNA biophysical

features play any role in a chromatin context and in gene regulation is unknown. This study provides
646 iScience 21, 638–649, November 22, 2019



unprecedented insights into the deterministic role of DNA biophysical features in governing epigenetic

and gene regulatory landscape underlying cell identity and function.

Our study has discovered ProT as a novel proxy for measuring inherent surface accessibility as determined

by OH-radical cleavage mapping and local DNA flexibility as probed by atomic force microscopy. Further

assessment of distribution of different ProT sequences within the 3D nuclear space revealed that higher

ProT regions are enriched in euchromatic domains and are more interiorly located in 3D genome structure.

In contrast, lower ProT regions are enriched in heterochromatic domains and are more exterior in their

location within the 3D genome structure. These intriguing results implied a novel role for ProT levels of

DNA sequences in guiding DNA surface accessibility and flexibility, epigenetic state, and ultimately the nu-

clear organization of distinct chromatin domains. As LADs are known to be AT-rich, future studies should

attempt to dissect any contribution of DNA sequence versus DNA shape to our observations (van Steensel

and Belmont, 2017). Importantly further, although our analysis found ProT to positively correlate with the

DNA surface accessibility, HelT showed negative correlation. Further investigation is required to uncover

the relevance of this anti-correlation, in particular towards the gene regulatory landscape.

A large scale, systematic analysis showed specific enrichment of ProT at the regulatory elements that were

previously identified by a number of independent experimental measures in multiple cell-types and across

species. Importantly, further, the regulatory potential of the genomic regions showed a strong correlation

with ProT levels. Additional analysis revealed that ProT is a deterministic feature of the enhancers irrespec-

tive of the chromatin mark used for their identification. Strikingly, the predictive power of ProT to identify

sequence-intrinsic enhancer features, as experimentally measured by STARR-seq (Arnold et al., 2013;

Muerdter et al., 2015), was very high, suggesting that ProT predictions are able to decode sequence logic

with confidence in such experiments and offers an alternative to heavy experimentation-based analysis.

Collectively, our findings argue that the local DNA biophysical features hold the potential to prime a

genomic region for particular epigenetic state and gene regulatory potential, thus revealing an underesti-

mated role of DNA structure in guiding genome function. This is further in line with previous studies that

have shown that the DNAshape algorithm works better than certain k-mer (2,3) combinations for some bio-

logical functions (Abe et al., 2015; Mathelier et al., 2016).

ProT, along with other DNA shape features, have been shown to contribute to TF access DNA (Yang et al.,

2017b; Zhou et al., 2015). Our analysis shows that the activator and repressor TFs have an inverse binding

affinity with ProT levels. Importantly, further, in contrast to general TFs, pioneer TFs have lesser depen-

dency on these DNA features for their binding. A number of efficient reprogramming TFs are known to

be pioneer TFs (Pataskar et al., 2016; Soufi et al., 2015). Interestingly, employing pioneer TF binding and

H3K27ac data during distinct stages of cellular reprogramming of a differentiated to a pluripotent state,

we find that the switch between cell-fates involves a transient usage of low ProT as regulatory elements.

In further support of this highly influential role of ProT in guiding gene regulation, DNA flexibility, and sur-

face accessibility, we found a higher occurrence of random or non-phenotype-associated mutations at

‘‘high ProT’’ regions of the genome, whereas the occurrence of phenotype-associated mutation is higher

at lower ProT genomic regions, which we identified to mark cell-identity enhancers. This implies that high

ProT-imposed increased DNA accessibility plays a critical role in enhancing mutability in the genome,

potentially because mutagenic agents or machinery have an easier access to such sites. A previous study

has suggested that the GC-rich sequences tend to have less pronounced ProT values, whereas AT-rich se-

quences tend to have more negative ProT values (Hancock et al., 2013). It is thus also likely that the

observed relationship to themutation rate is also influenced to certain extent by the sequence composition

and warrants further investigation.

Altogether, our work provides unprecedented insights into the gene regulatory landscape encoded in the

DNA biophysical features. Our findings open a new area of investigation that was previously underesti-

mated for its relevance and vouches for the necessity to include DNA shape features while studying epige-

netic gene regulatory mechanisms in various contexts. Our study hypothesizes that DNA sequences have

evolved in a highly orchestral manner, wherein genomic DNA is segmented into compartments of different

inherent biophysical states, which are then chosen to be in different nuclear chromatin compartments of

different regulatory potential. Follow-up studies should aim to investigate how epigenetic machineries

such as DNAmodifying enzymes alter the DNA structure at specific sites. Furthermore, it will also be impor-

tant to determine how combinatorial TF binding influences DNA flexibility and if this crosstalk is relevant for
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cell-fate decisions during development. In addition, it will be interesting to investigate how genomic sites

with various ProT levels are utilized in the 3D nuclear space in response to external cues during develop-

ment and in various diseases. Such investigations will ultimately decode the relationship between genetic

and epigenetic mechanisms, which is key for a comprehensive understanding of genome function in health

and disease.

Limitations of the Study

DNAshape algorithm predicts shape from DNA sequence, and hence it will show high correlation to the

sequence. Given this close dependency, it is almost impossible to fully dissect the contribution of DNA

sequence versus shape. This limitation is valid for several previous publications using DNAshape algorithm

as well as our own study.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1: Related to Figure 1.  

(A-C) Genome-wide correlations of DNA shape features; Major Groove Width (MGW) and 

Roll (A), MGW and Propeller Twist (ProT,B) and ProT and Roll (C) (D) Left: Measurements 

of Contour length distributions; schema (top) and Fitted regression line of contour length 

distributions (below) Mid: Density plot of contour length distribution in low ProT control 

(above) and high ProT construct (below). Right: Schema for measurement of contour length 

with length scales (5nm). 
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Supplementary Figure 2: Related to Figure 2.  

(A) Genome Surface maps highlighted with Euchromatin in blue (above) and 

Heterochromatin in red (below) derived from the reconstructed genome structure from the 

single cell HiC experiments in mES cells. (B) Correlation scatter matrix with correlation 

coefficients (numbers) derived genome-wide from the information of surface depths in all 

analyzed 7 cells, ProT, Euchromatin and Heterochromatin density. (C) Cross correlation 

scatter plot from the surface depths of genomic loci from seven different reconstructed single 

cell genome structures of mES cells (D) Line plot depicting linear profile of surface depths 

(black) and ProT (red) across lengths of each chromosomes in mouse ES cells. 
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Supplementary Figure 3: Related to Figure 3.  

(A)  ChromHMM based clustering of genome into segments with 15 different chromatin 

states. (B) Propeller Twist (ProT) levels depicted as box-plots in each of these 15 different 

chromatin states. Highlights: red- heterochromatin, green-euchromatin. (C) Line plot 

depicting genome-wide correlation coefficients of ProT with different chromatin marks. (D) 

Above: Example scatter plots from two cell types with enhancer strength as measured by 

CAGE experiment on X-axis and ProT on y-axis. Below: Same information depicted as 

regression line plot for ProT when enhancers are arranged in increasing order of strength. 

(E) ProT levels plotted as density plot to -50 KB to +50 KB of TSS and TES respectively of 

genes classified into four quartiles by expression value in Human myeloma K562 cells. 
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Supplementary Figure 4: Related to Figure 4.  

(A) PCA plot depicted distribution of Transcription factor binding enrichment over chromatin 

marks, thereby clustered into 8 different groups colored differently. Vectors represent the 

contributing features for the PCA distribution. PCA overall classifies transcription factors on 

PC1 with enrichment of factors on repressive chromatin landscape on X-axis and on active 

chromatin landscape on Y-axis. Data acquired from K562 cells. (B-C) Example of cluster 8 

(B) and cluster 1 (C) transcription factors where enrichment of different chromatin marks.  

  



Figure S4

PC1 (64.2%)

PC
2 

(1
2.

5%
)

A BK562

Repressive chromatin 
Landscape

Active chromatin 
Landscape

C

H2AZ H3K27ac H3K4me1 H3K4me2 H3K4me3 H3K9ac H3K9me3 FAIRE H3K27me3 H3K79me2

Cluster 8 (Example: E2F6)

H2AZ H3K27ac H3K4me1 H3K4me2 H3K4me3 H3K9ac H3K9me3 FAIRE H3K27me3 H3K79me2

Cluster 1 (Example: Znf384)



Supplementary Figure 5: Related to Figure 6.  

Violin-box plots depicting ProT levels at distinct enhancer regions arranged in the increasing 

order of occurrence of phenotypic (COSMIC) mutations. 
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TRANSPARENT METHODS 

Preparation of DNA constructs for AFM imaging 

DNA sequences (1167 bp long) were generated by polymerase chain reaction using Phusion 

master mix (2x Phusion High-Fidelity PCR Master Mix, Thermo Fisher Scientific Inc., 

Waltham, MA, USA) using plasmid pUC57 with sequences of interest introduced at HindIII 

site (biocat) as a template and using the sequences CCC AGT CAC GAC GTT GTA AAA 

CG and AGC GGA TAA CAA TTT CAC ACA GG as forward and reverse primers 

respectively. PCR products were purified using a PCR cleanupCleanup kit and stored in 

Tris-EDTA buffer (10 mM Tris- HCl, pH = 8.0; 1 mM EDTA) at 4° C. To verify successful 

amplification of the desired sequence, the product was analyzed on a 1 % (w/v) agarose gel. 

AFM imaging 

A buffer solution (12 mM MgCl2; 10 mM Tris-HCl, pH = 8.0) containing 1167 bp linear DNA 
construct at 0.5 ng/ L was deposed onto freshly cleaved mica by drop-casting for 30 

seconds, followed by gentle rinsing with milliQ water (25 mL) and drying under N2. AFM 

imaging was performed on a Multimode AFM equipped with a Nanoscope III controller 

(Digital Instruments) and a type E scanner (Bruker). Images were recorded on dried 

samples, under ambient conditions, and using silicon cantilevers (Nanosensor; SSS-NCHR; 

resonance frequency ≈ 300 kHz). Typical scans were recorded at 1–3 Hz line frequency, 

with optimized feedback parameters and 512 × 512 pixels of 1.9 nm each. 

AFM data analysis 

AFM topography images were loaded in Scanning Probe Imaging Processor software (v6.4) 

and background corrected using global fitting with a second order polynomial and in a line-

by-line fashion using the histogram alignment routine. The processed images were saved in 

ASCII format and analyzed using custom-written code implemented in Python framework. 

Image analysis involves finding (x,y) coordinates that define the DNA curvilinear length by 
tracing the molecular contour with a step-length l = 5 nm, following the routine introduced by 

Wiggins et al. (Wiggins et al., 2006). Bend angles are defined as the deviation from linearity 
between a certain set of tangent vectors separated by l. In total, we traced 87168 bend 

angles from 1226 imaged DNA molecules. The energy landscape for bending was 

reconstructed from the corresponding bend angle distribution by taking the negative 

logarithm. The energy required to introduce a bend increases with the bend angle θ. Up to θ 

~ 1 rad the increase is approximately quadratic and in agreement with the prediction of the 

worm-like chain model EWLC(θ) = 1/2·kBT·(P/l)·θ2, with P ~ 55 nm (Figure 1C, dashed line), 
where kB is the Boltzmann constant, T the absolute temperature (295 K), and l the segment 



length (5 nm in our analysis). For bending angles θ > 1 rad, the energy to bend the DNA 

grows more slowly -in other words large bends occur more frequently- than predicted by the 

WLC model, as has been reported previously (Wiggins et al., 2006). While both the control 

and high ProT sequences deviate from the WLC prediction, the energy required to introduce 

a large bend for the high ProT sequences is lower and, therefore, deviates more strongly 

from the WLC prediction compared to the control sequences. 

Further, the (x,y) coordinates are used to quantify the end-to-end distances R between any 

two traced positions as a function of their separation L along the contour. In turn, the relation 

between the mean squared end-to-end distance <R2> and L can be used to examine surface 

equilibration using the formula <R2> = 4 P L (1 – 2 P/L (1 – exp(–L / 2P))) with P the bending 

persistence length. 

DNAshape and OH-radical cleavage prediction 

DNAshapeR package (Chiu et al., 2016) was used to generate and plot DNA shape feature 

predictions, namely Propeller Twist, Major Groove Width, Helix Turn and Roll. Density plots 

of these features were plotted using DNAShapeR (Chiu et al., 2016). OH-radical cleavage 

predictions were obtained from ORCHID2 (Greenbaum et al., 2007) server. For genome-

wide predictions of DNAshape features, bigwig files (mm9 and hg19 for mouse and human 

respectively) were downloaded from GBShape (Chiu et al., 2015). Correlation within 

DNAshape (Chiu et al., 2015) features and with OH-radical cleavage intensity (ORCHID) 

were done by using Deeptools (Ramirez et al., 2014) at the resolution of 1KB. 
 
Reconstruction of 3D Genome Structures and overlay with Chromatin features and 
Propeller Twist predictions 
HDF5 Datafiles containing genome structure features reconstructed from single-cell HiC 

experiments  of seven mouse ES cells were downloaded from supplementary information 

provided in study from Stevens et al (Stevens et al., 2017). The surface depths with 

resolution of 1MB were analyzed from these HDF5 files. Euchromatin segments were 

defined as those 1 MB segments that shows more than 10 peaks of H3K27ac chromatin 

marks, while heterochromatin marks showed enrichment of more than 10 peaks of 

H3K9me3.  Propeller Twist predictions at resolution of 1MB in mouse genome (mm9) was 

analyzed from BigWig files downloaded from GBShape (Chiu et al., 2015) using Deeptools 

(Ramirez et al., 2014). For visualization of 3D genome and chromosome structures, PDB 

files were downloaded from supplementary information provided in study from Stevens et 

al.(Stevens et al., 2017). The PDB files visualization and programming was done using 

Pymol. Overlay of chromatin states, surface depth and propeller Twist quartiles was done by 



processing PDB files in R and visualization in Pymol. Scripts used for processing are 

available upon request. 
 
Analysis of CAGE and STARR-seq enhancers 
capSTARR-seq data was downloaded from the supplementary data published in the study 

from Vanhille et al(Vanhille et al., 2015). CAGE Enhancer analysis was downloaded from 

FANTOM5 Atlas (Andersson et al., 2014). Propeller Twist profiles were overlaid using mean 

across BED file, centered at mid, using DNAshapeR (Chiu et al., 2016). 

Histone modification ChIPseq analysis 
Following ChIP-seq were processed in this manner: mES H3K27ac, mES H3K9me3, K562 

H3K27ac. The ChIP-sequencing output in FASTQ format was subjected to a quality check 

using FASTQC v2.6.14 (Andrews). Bowtie v0.12.9 (Langmead, 2010) was used to align the 

reads uniquely, i.e., each read was maximally aligned to one position, to mm9 genome with 

UCSC annotations (Rosenbloom et al., 2015). The alignment output files from two biological 

replicates were merged together after checking for correlations across the replicates using 

the SAMTOOLS v0.1.19 (Li et al., 2009) merge function. SAMTOOLS v0.1.19 (Li et al., 

2009) was used for the alignment file format conversions and sorting of alignment output 

files. The WIGGLE files for the alignment files were generated using QuasR package 

(Gaidatzis et al., 2015). The peaks were computed without providing input with MACS 

v2.0.10.20120913 (Zhang et al., 2008) using the default parameters. The enrichment was 

calculated by QuasR (Gaidatzis et al., 2015) using the following formulae: 

퐸푛푟푖푐ℎ푚푒푛푡 = 푙표푔2((
푛푠
푁푠

∗ min(푛푠,푛푏) + 푝)/(
푛푏
푁푏

∗  min(푛푠,푛푏) + p) ) 

where ns is the total number of reads that align at the genome level in the ChIP-seq Sample, 

Ns is the number of reads that aligned the entire ChIP-seq sample, nb is the number of 

reads that aligned at the genomic level in the input, and Nb is the total number of reads that 

aligned in the input. P is the pseudocount, which is used to correct the enrichment values at 

the genomic features with low read counts and was set to 8.  For ChIPseq of H3K27ac 

during time-points of reprogramming, data was downloaded from supplementary information 

provided in the study by Chen et al.(Chen et al., 2016) All other ChIPseq data was 

downloaded pre-analyzed from ENCODE (de Souza, 2012).  

 
Transcription factor ChIPseq analysis 
Transcription factor ChIPseq data for K562 cells was obtained from ENCODE (de Souza, 

2012). ChIPseq data was analyzed in the same way as Histone Modification data given 

below with specifically restricting to narrow peak calling algorithm from MACS (Zhang et al., 



2008) Transcription factor motifs were obtained from TRANSFAC (Wingender et al., 2000) 

database. Only those Transcription factors were further analyzed for which motif information 

were available. Motif enrichment analysis was performed using HOMER (Heinz et al., 2010). 

Binding sites with ChIPseq peaks centered accross motifs were retained for further 

DNAshape analysis using DNAshapeR (Chiu et al., 2016). The transcription factors were 

classified according to families from AnimalTF Database (Zhang et al., 2015). For ChIPseq 

of Oct4 during time-points of reprogramming, data was downloaded from supplementary 

information provided in the study by Chen et al. (Chen et al., 2016). 

 

Histone modification ChIP-seq in K562 analysis 
Histone modification ChIP-seq data in K562 was obtained from ENCODE (de Souza, 2012) 

as BAM and peak files. Heatmap and density plot enrichment of Histone modifications was 

generated using ngs.plot.r (Loh and Shen, 2016; Shen et al., 2014). For the PCA plot of 

Transcription factor distribution on PCA dimensions as a function of enrichments across 

various chromatin states was undertaken with data of overlap of Transcription factor peaks 

with histone modification peaks. 

 
Support Vector Machine and linear and logistic regression analysis 
Support vector machine was implemented using e1071 R package 80% of data was used for 

training of SVM model, while rest 20% of rest was used for testing unless specified. Multiple 

models as independently mentioned were trained for the reducing chances of overfitting. 

ROC curves were plotted using ROCR package (Sing et al., 2005). Regression analysis was 

done using R with similar strategy. 

 
Generating of features for Support vector machine analysis 
For classification of enhancer positive and random genomic loci, the corresponding 

sequences of 2000BP centered on the peak-mid were extracted using BEDTOOLS (Quinlan, 

2014)and DNAshape analysis was undertaken using DNAshapeR (Chiu et al., 2016). 

Propeller Twist values for each base pair step was used as feature set for SVM analysis. For 

classification of cell-type-cluster specific classification, the feature set included PHASTCons 

(Felsenstein and Churchill, 1996) derived conservation scores of enhancer sequences from 

each clusters, TRANSFAC (Wingender et al., 1996) transcription factor motifs enrichments 

for each enhancer sets, PhastCons derived Conservation scores of the transcription factor 

motif gene were used.  

 
Conservation and Mutation analysis 
For mutation analysis, COSMIC database (Forbes et al., 2017) was used to download 



phenotypic and non-phenotypic mutations. The genomic classes in increasing order of 

mutation density was used by scanning number of mutations occurring in each non-

overlapping 2000 BP regions, and stratification by the quartile analysis of the counts. 

Conservation scores were obtained from PhastCons (Felsenstein and Churchill, 1996)  
 
Programming and scripting 
Scripts for data analysis is written in R and PERL and is available upon request. 
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