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Abstract: Astrocytes are abundant cells in the brain that regulate multiple aspects of neural tissue
homeostasis by providing structural and metabolic support to neurons, maintaining synaptic
environments and regulating blood flow. Recent evidence indicates that astrocytes also actively
participate in brain functions and play a key role in brain disease by responding to neuronal activities
and brain insults. Astrocytes become reactive in response to injury and inflammation, which is
typically described as hypertrophy with increased expression of glial fibrillary acidic protein (GFAP).
Reactive astrocytes are frequently found in many neurological disorders and are a hallmark of
brain disease. Furthermore, reactive astrocytes may drive the initiation and progression of disease
processes. Recent improvements in the methods to visualize the activity of reactive astrocytes in
situ and in vivo have helped elucidate their functions. Ca2+ signals in reactive astrocytes are closely
related to multiple aspects of disease and can be a good indicator of disease severity/state. In this
review, we summarize recent findings concerning reactive astrocyte Ca2+ signals. We discuss the
molecular mechanisms underlying aberrant Ca2+ signals in reactive astrocytes and the functional
significance of aberrant Ca2+ signals in neurological disorders.
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1. Introduction

Astrocytes constitute approximately 30% of the cells of the brain and occupy non-overlapping
spatial domains in the central nervous system. Astrocytes not only provide structural, metabolic and
homeostatic support for neurons but also actively participate in brain functions [1,2]. Astrocytes do
not fire action potentials but are excitable with respect to intracellular signaling. Intracellular ions
(e.g., Ca2+, Na+) and second messengers (e.g., cAMP) of astrocytes change dynamically in space and
time in response to stimuli. Recent improvements in methodologies to visualize changes in signaling
molecules have revealed novel functions of astrocytes in neuronal circuits [3,4].

Ca2+ signals have been extensively studied and well characterized since they were discovered to
be fundamental to intracellular signaling and intercellular communication [5]. Ca2+ signal in astrocytes
may reflect local consumption of energy, circuit activity, and brain states. Numerous proteins that
regulate Ca2+ transport support the dynamic features of Ca2+ signals [6]. The form of Ca2+ signals in
astrocytes changes acutely and chronically in response to brain insult, such as injury, inflammation or
hyperexcitability [7]. Reactive phenotype of astrocytes frequently found in disease shows altered Ca2+
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signals in response to damaged neuronal tissues. In this review, we focus on recent progress in the
understanding of Ca2+ signals in reactive astrocytes and we discuss mechanisms underlying aberrant
Ca2+ signals in reactive astrocytes and their functional significance in disease pathogenesis. We focus
on recent findings made in the last five years and, therefore, we do not reference many of the prior
studies that are fundamental to our understanding of Ca2+ signaling in astrocytes. There are many
excellent reviews explaining the roles of astrocytes and reactive astrocytes that should be referred to
for further understanding of these topics [1–4,7–9].

2. Measurement of Ca2+ Signals in Astrocytes

Organic Ca2+ indicator dyes have been widely used to measure Ca2+ in astrocytes. Bulk-loading
of acetoxymethyl (AM) ester forms of indicator dyes is used in many studies because they are easy to
load into cells in situ and in vivo and reliably report Ca2+ signals. Some AM dyes (e.g., Fluo-4/AM)
are preferentially loaded into astrocytes in optimal conditions. However, in theory, these dyes can also
enter other cells, therefore, these data must be analyzed with caution. To confirm whether signals are
derived from astrocytes, sulforhodamine 101, a red fluorescent dye that selectively labels astrocytes at
low concentration is used. Bulk-loading of Ca2+ indicator dyes can report Ca2+ signals in relatively
large regions such as somata and major branches. However, astrocytes are morphologically very
complex with many other cellular compartments. Thousands of astrocytic branchlets and leaflets are
closely associated with synapses. Most of an astrocyte’s surface area (90–95%) consists of branchlets and
leaflets [1]. In these fine structures, Ca2+ signals cannot be reliably measured by bulk-loading of a Ca2+

indicator. Therefore, most astrocyte territories, especially fine processes that are relevant to interactions
with synapses, cannot be observed by this method [10]. Genetically encoded Ca2+ indicators (GECIs),
such as Yellow Cameleon, GCaMP and GECO, are more suitable for the measurement of Ca2+ signals
at fine structures because GECIs can be introduced specifically into astrocytes under the control of
astrocyte specific promoters. GCaMP3 and membrane tethered GCaMP3 (Lck-GCaMP3) are able
to indicate many microdomain Ca2+ signals in situ in entire astrocyte territories and significantly
improve the detection of Ca2+ signals that are missed by bulk-loading of organic Ca2+ indicators [11].
Similar microdomain Ca2+ signals can be observed in vivo using the latest versions of GECIs [12–17].
GECIs can be introduced into astrocytes using adeno-associated viral vectors or transgenic mouse
lines. Many transgenic lines are available to drive the expression of GECIs using the Cre-lox and
Tet-systems [6,14].

GECIs are superior to organic Ca2+ indicator dyes with respect to specificity. Recently,
Smith et al. found that high concentrations of organic Ca2+ indicators (Fura-2, Fluo-4, and Rhod-2),
but not GCaMP3, inhibit Na,K-ATPase. Loading organic Ca2+ indicator dyes (or BAPTA) into mice
increases intracellular K+, probably through reduction of K+ uptake. Dye loading also increases
extracellular ATP, possibly through dying cells [18]. These findings indicate that data obtained using
organic Ca2+ indicators should be interpreted with caution.

GECIs can be stably expressed in certain cell types allowing the chronic monitoring of Ca2+

activities using two-photon microscopy. However, high expression levels of GECIs can cause cellular
damage [19]. Because of their brightness and photostability, GECIs are suitable for wide-field
imaging, revealing global Ca2+ elevation in astrocytes, which occurs synchronously in many astrocytes
throughout the cortex [20]. Noradrenaline, derived from locus coeruleus neurons in response to
arousal or startle, causes global Ca2+ signals [20–22].

3. Reactive Astrocytes in Disease

Astrocytes become reactive in response to injury and inflammation. There are at least two distinct
categories of reactive astrocytes: hypertrophic reactive astrocytes and scar-forming astrocytes [1].
In this review, we focus on hypertrophic reactive astrocytes, which we term, hereafter, reactive
astrocytes. Reactive astrocytes are found in many neurological diseases, such as Alzheimer’s disease
(AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), epilepsy, stroke and traumatic
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brain injury (TBI) [9,23]. Upregulation of glial fibrillary acidic protein (GFAP) is widely used as a
marker of reactive astrocytes. Reactive astrocytes show hypertrophy with thicker processes. Roles of
reactive astrocytes can be neuroprotective or neurotoxic, depending on the context. In brain or spinal
cord injuries (SCIs), astrocytes become reactive astrocytes with morphological changes. At the site of
injury, scar-forming astrocytes form glial scars. Preventing glial scar formation leads to infiltration of
circulating immune cells and subsequent neuronal cell damage. Therefore, glial scars provide a barrier
around injury sites to protect intact tissues from damage. However, conversely, glial scars are thought
to prevent axonal regeneration and functional recovery of neural circuits [24]. Anderson et al. showed
that prevention of scar-forming astrocytes do not promote axonal regrowth but reduce stimulated
axon regrowth, indicating that scar formation aids rather than prevents recovery of neural circuits
from SCI [25]. Thus, glial scars play both beneficial and detrimental roles in axonal regeneration and
functional recovery of neural circuits [26].

Zamanian et al. performed transcriptome analysis of reactive astrocytes isolated from inflamed
brain after intraperitoneal injection of lipopolysaccharide (LPS), a main component of the outer
membrane of gram negative bacteria, or damaged brain following middle cerebral artery occlusion
(MCAO) [27]. Differentially expressed genes in LPS-induced reactive astrocytes included genes with
potentially detrimental effects, such as C1r, C1s, C3 and C4, which can cause synapse loss and neuronal
damage. Meanwhile, in MCAO-induced reactive astrocytes, differentially expressed genes included
neuroprotective genes, such as genes encoding neurotrophic factors, thrombospondins, and cytokines
including IL-6. Neurotoxic reactive astrocytes and neuroprotective reactive astrocytes were termed A1
and A2, respectively [28]. These data show the heterogeneity of reactive astrocytes induced by distinct
brain insults.

A follow-up study showed that microglia-derived signals (IL-1α, TNF-α and C1q) induce
neurotoxic A1 astrocytes. A1 astrocytes release unidentified toxic molecules onto neurons and
oligodendrocytes, lose ability to promote neuronal survival, outgrowth and synaptogenesis and
impair phagocytosis [28]. Recent evidence shows that astrocytes are heterogeneous with respect to
transcriptome, proteome and function; region- and circuit-specific functions have been described [29–31].
Therefore, response to injury or inflammation is likely to be distinct depending on the circuits involved
and the phenotypes of reactive astrocytes may be more heterogeneous than currently recognized.

Many studies over the past few decades have indicated that reactive astrocytes lose homeostatic
functions, including excitatory neurotransmitter uptake, potassium ion uptake, and ion buffering and
thus passively contribute to disease pathogenesis [32]. However, recent evidence indicates that reactive
astrocytes actively contribute to disease processes even in the presymptomatic phase (see below).
A key process in this active role is Ca2+ signaling.

4. Ca2+ Signals in Reactive Astrocytes

In parallel with morphological changes, reactive astrocytes demonstrate dynamic, aberrant Ca2+

signals. In most cases, Ca2+ signals increase in terms of amplitude, duration and frequency. There is
huge variation in the Ca2+ dynamics of reactive astrocytes in distinct pathological models, phases
(acute or chronic) and regions, indicating diverse underlying mechanisms for aberrant Ca2+ signals
that are dependent on the conditions.

Astrocytes respond rapidly to injury and hyperexcitability to generate Ca2+ signals [33–38].
For example, astrocytes rapidly increase their Ca2+ in response to hyperexcitability in drug (kainate and
pilocarpine)-induced seizure model. In adult mice, simultaneous Ca2+ imaging from both neurons
and astrocytes using two different colored GECIs revealed that astrocytes are activated earlier than
neurons following seizure induced by intraperitoneal administration of kainate. Although the detailed
mechanism underlying this astrocyte response is not clear, suppression of Ca2+ responses by deletion
of inositol-1,4,5 trisphosphate receptor type 2 (IP3R2, see below), in which astrocytes lack a major
intracellular Ca2+ release pathway, resulted in less kainate-induced epileptic activity recorded by
electroencephalogram telemetry [38]. This indicates that astrocyte Ca2+ signals are proconvulsive,



Int. J. Mol. Sci. 2019, 20, 996 4 of 18

which is consistent with previous reports [36]. In adult mice, 2–3 days after pilocarpine-induced status
epilepticus (SE), astrocytes started to show larger Ca2+ signals, which may contribute to the delayed
loss of neurons because suppression of enhanced Ca2+ signals by BAPTA-AM, a membrane permeable
Ca2+ chelator, which presumably was preferentially loaded into astrocytes in the condition, reduced
neuronal damage [39]. Astrocyte Ca2+ signals recovered to control levels five days after SE. Interestingly,
four weeks after pilocarpine-induced SE, reactive astrocytes showed large Ca2+ signals, which may
regulate seizure susceptibility in adult mice (Sano et al., University of Yamanashi; unpublished
observation). It appears that reactive astrocytes regain aberrant Ca2+ activities during the recovery
from the damage caused by the initial SE. Thus, the role of Ca2+ signals in reactive astrocytes may be
distinct during various phases after initial SE (e.g., neuron loss, seizure threshold). Enhanced Ca2+

signals in reactive astrocytes are frequently described; however, astrocytes in seizure models do not
always show enhanced Ca2+ signals. Plata et al. reported that 2-4 weeks after pilocarpine-induced SE in
young rats (3–6 weeks old), hippocampal astrocytes showed fewer Ca2+ signals [40]. These astrocytes
also showed atrophy, but not hypertrophy. Sholl analysis showed reduced complexity of structures in
atrophic reactive astrocytes, which may decrease support for synapses from astrocyte processes [41].
Astrocytes can, therefore, be hypertrophic and atrophic in response to hyperexcitable neurons. It is
unclear what determines astrocyte phenotypes after SE. The mechanism underlying functional and
structural changes in astrocytes in response to hyperexcitability may provide useful information for
the etiology of epilepsy.

Aberrant Ca2+ signals are preferentially observed in the area where the tissue is strongly affected
and where hypertrophic astrocytes are located. For example, in an in vivo adult mouse model of
familial AD, reactive astrocytes displayed frequent Ca2+ signals near amyloid plaques and Ca2+ waves
that originated from plaques [42,43]. In an acute stroke model, reactive astrocytes in the ischemic
core displayed much larger Ca2+ signals in terms of ∆F/F compared with those in the penumbra
region [44]. Suppression of such large Ca2+ signals reduced the extent of the damaged areas and the
number of injured cells. Therefore, these Ca2+ signals in reactive astrocytes have a harmful effect in
neuronal tissues.

Differences in brain regions and experimental models dramatically affect the Ca2+ signals
observed. Even in the same ischemia model, the age of animals significantly affects Ca2+ signals in
reactive astrocytes in the penumbra, where neurons lose the ability to generate spontaneous or evoked
electrical activity and astrocytes become reactive. In an MCAO model using adult (3–4-month-old)
and aged (18–24-month-old) mice, Fordsmann et al. observed Ca2+ activities in both neurons and
astrocytes. In adult mice, Ca2+ signals in both neurons and astrocytes were suppressed 2–4 h after
MCAO, while, in aged mice, Ca2+ signals in astrocytes were enhanced and Ca2+ in neurons was
unchanged. Enhanced Ca2+ signals in aged mouse astrocytes were action potential-dependent and
occurred through P2 receptor activation, which may be harmful to neurons [45]. These observations
clearly show that astrocyte Ca2+ dynamics and their roles are distinct at different ages.

Severity of a disease relates to augmentation of aberrant Ca2+ signals in reactive astrocytes. In a
model of Alexander disease (AxD), a rare neurodegenerative disease caused by autosomal dominant
gain of function mutations in GFAP, we recently found extraordinarily large Ca2+ signals in astrocytes,
whose areas were over 300 µm2. In contrast, local Ca2+ signals (<300 µm2) were mainly observed
in control mice [46]. We called the large Ca2+ signals seen in AxD model mice, aberrant extra-large
Ca2+ signals (AxCa). Reactive astrocytes in homozygotes showed a higher frequency of AxCa and
higher GFAP expression compared with those in hemizygotes. Astrocytes derived from older mice
showed higher AxCa frequency and higher GFAP expression in the same genotype. Interestingly,
there was a strong positive correlation between AxCa frequency and GFAP expression, a hallmark
of disease severity of AxD. Genetic deletion of IP3R2 abolished AxCa and reduced GFAP expression
in AxD astrocytes, indicating a causal relationship between AxCa frequency and GFAP expression.
These data indicate that aberrant Ca2+ signals are not just epiphenomena of the disease, but actually
partly determine the severity of the disease [46].
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Overall, the spatiotemporal dynamics of Ca2+ in reactive astrocytes are highly diverse.
The frequency and size of Ca2+ signals may be good indicators of the phenotype of reactive astrocytes
and of disease severity. Ca2+ signals should not be interpreted in a binary manner for the downstream
signaling of astrocytes [47,48]. Ca2+ dynamics, including amplitude, duration, and frequency, may
encode information of astrocytes. For example, in situ imaging data indicate that Ca2+ oscillations are
associated with hypertrophy of astrocytes [49]. Therefore, exploring Ca2+ signals in reactive astrocytes
provides insight into functional changes.

5. Mechanisms of Aberrant Ca2+ Signals

In normal physiology, astrocytes display Ca2+ signals spontaneously and in response to receptor
activation. The most well-defined Ca2+ mechanism is Ca2+ release from the endoplasmic reticulum
(ER) through IP3R. There are three isoforms of mammalian IP3R. Among them, IP3R type2 (IP3R2)
is well characterized and thought to be a major isoform in astrocytes. Petravicz et al. found that
astrocytes in IP3R2 knockout mice (IP3R2KO) have almost no spontaneous or evoked Ca2+ signals [50].
IP3R2KO mice have, therefore, been frequently used to remove Ca2+ signals from astrocytes. However,
IP3R2 is not the sole IP3R in astrocytes. Recently, IP3R1 and IP3R3 have also been revealed to contribute
to Ca2+ signals in astrocytes [51]. Their contribution to Ca2+ signals seems to be much smaller than
that of IP3R2. IP3R1 and IP3R3 are likely to contribute to locally confined Ca2+ signals, but not to
spreading Ca2+ signals. In contrast, IP3R2 contributes to spatially spreading Ca2+ signals in astrocytes.
The IP3R2KO mouse is a useful tool to analyze global Ca2+ signals in astrocytes in vivo. However,
data obtained from IP3R2KO mice should be carefully interpreted. Firstly, a substantial amount of
Ca2+ signal remains in astrocytic processes in IP3R2KO mice [14,52]. Secondly, Ca2+ release from
the ER is retained in the KO [53], probably through other IP3Rs or rynanodine receptors. Thirdly,
the conventional IP3R2KO, which is widely used in the field, may show increased innate immunity [54],
which may complicate data interpretation especially in disease models.

5.1. Receptor-Mediated Ca2+ Signals

Astrocytes express a plethora of Gq-protein coupled receptors (GqPCRs), activation of which
leads to Ca2+ release from the ER via IP3Rs. Among GqPCRs in astrocytes, metabotropic glutamate
receptor 5 (mGluR5) has attracted much attention because it is a receptor for the major excitatory
synaptic neurotransmitter, glutamate, and is thought to be central to gliotransmitter release. mGluR5
expression is mainly observed in developmental stages and its expression is dramatically decreased in
the adult. Expression of mGluR5 in astrocytes is negligible in the adult brain [55]. Instead of mGluR5,
adult astrocytes express mGluR2/3 to receive neuronal information [56]. Interestingly, mGluR5
expression reemerges in reactive astrocytes in pathophysiological conditions such as AD [57,58],
epilepsy [59] and neuropathic pain [60].

A few days after pilocarpine-induced SE, cortical astrocytes displayed massive Ca2+ signals
in vivo, which were inhibited by MPEP, a mGluR5-specific antagonist, indicating that astrocytes express
functional mGluR5 after SE [39]. Consistent with this, mGluR5 immunoreactivity was upregulated
in reactive astrocytes in a temporal lobe epilepsy rat model [59]. Umpierre et al. confirmed the
reemergence of mGluR5 expression in reactive astrocytes in an SE model using conditional mGluR5KO
mice [61]. The authors selectively deleted mGluR5 expression from astrocytes using the Cre-lox system
with Aldh1l1-CreERT2 or GFAP-CreERT2. In these animals, only a small proportion of astrocytes
responded to DHPG, a mGluR5 agonist, after SE, while in control mice, most astrocytes responded to
the mGluR5 agonist. The authors demonstrated slow clearance of glutamate released from synapses
in conditional mGluR5 KO mice after SE, indicating that mGluR5 upregulation in astrocytes after
SE may be beneficial for glutamate uptake. In neuropathic pain model, astrocytes in the primary
somatosensory (S1) cortex became reactive and showed robust mGluR5-mediated Ca2+ signals in vivo,
3–6 days after peripheral nerve injury [60]. Interestingly, the reemergence of mGluR5 in astrocytes
requires a few days later after initial insults [39,60,61]. The mechanism of its upregulation in vivo



Int. J. Mol. Sci. 2019, 20, 996 6 of 18

is currently unknown. Signaling molecules, such as Aβ and neurotrophic factors, induce mGluR5
expression in cultured astrocytes [58,62].

mGluR5 signaling in astrocytes is altered by not only mGluR5 gene expression but also the protein
interaction with a scaffold protein, Homer1. Homer1a, a splice variant of Homer1, was upregulated
in reactive astrocytes, causing a reduction of mGluR5-mediated Ca2+ signals and its downstream
mechanisms [63].

The purinergic receptor, P2Y1, is another important GqPCR in reactive astrocytes. In contrast to
the mGluR5 receptor, the P2Y1 receptor is expressed in astrocytes throughout life. Endogenous ligands
for the P2Y1 receptor are ATP and ADP. ATP can be released from various brain cell in the brain through
various mechanisms, such as channels, transporters and exocytosis [64]. P2Y1 receptor-mediated Ca2+

signals occur in response to increased neuronal excitability or even spontaneously. Overexpression
of the P2Y1 receptor specifically in astrocytes preferentially increased Ca2+ wave-like signals rather
than microdomain Ca2+ signals [65]. This is consistent with reports showing that P2Y1 receptors
mediate Ca2+ waves [35,64]. The P2Y1 receptor is upregulated in pathophysiology, including in AD,
stroke and epilepsy [42,66,67]. In familial AD model mice, ~38% of in vivo cortical astrocytes were
defined to be hyperactive displaying a high frequency of Ca2+ signals. Hyperactive astrocytes were
found near amyloid plaques. Ca2+ signals in hyperactive astrocytes were independent from action
potential and inhibited by MRS 2179, a P2Y1 receptor antagonist, indicating that ATP or ADP release
near plaques contributed to the signals [42]. Carbenoxolone reduced the number of hyperactive
astrocytes, indicating that ATP may be released via hemichannels. MPEP did not affect Ca2+ signals
in either astrocytes or neurons, indicating that mGluR5 does not contribute to the hyperactivity [42],
in contrast to immunohistochemical data showing upregulation of mGluR5 in reactive astrocytes near
plaques [57,58]. A follow-up report by the same group showed that pharmacological blockade of P2Y1
receptors chronically ameliorated synaptic deficits and restored spatial learning and memory in the
mice. Deletion of IP3R2, a downstream molecule in the P2Y1 receptor pathway, from the AD model
also improved spatial memory [68]. This series of studies indicates that the P2Y1 receptor mediates
Ca2+ signals and may be a therapeutic target to treat some symptoms of AD.

In kindled rats, reactive astrocytes in the hippocampus showed longer duration Ca2+ signals,
termed slow transients, which were not observed in control rats [66]. Similar to Ca2+ signals in
the AD model, slow transients were independent of action potentials and mediated by the P2Y1
receptor because slow transients were reduced by MRS 2179 but not by MPEP. The ligands to activate
P2Y1 receptors may be released through pannnexin-1 channels [69]. Overall, the P2Y1 receptor is
upregulated in reactive astrocytes. ATP or ADP seem to be released via hemichannels/pannexins.
What triggers the release of ATP? Nikolic et al. found that a puff of TNF-α, a cytokine that regulates
synapse functions and cell death, caused Ca2+ elevation in the astrocyte molecular layer of the dentate
gyrus [70]. This elevation was reduced by MRS 2179, indicating that autocrine or paracrine release
of ATP activated P2Y1 receptors to cause TNF-α-induced Ca2+ elevation. This indicates that TNF-α
can trigger ATP release from astrocytes via unknown mechanism. TNFα-activated P2Y1 receptors
contribute to enhancement of excitatory synaptic transmission onto granule neurons in seizure [70].
It would be interesting to determine if enhanced Ca2+ signals in reactive astrocytes in a seizure model
are actually mediated by TNF-α-P2Y1 receptor signaling.

GABA released from neurons activates astrocytic GABAB receptors resulting in Ca2+ signals [71,72].
Optogenetic activation of interneurons caused interneuron subtype-specific Ca2+ elevation in astrocytes [72].
In pathological conditions, GABAB receptors in astrocytes contribute to Ca2+ oscillations after cortical
spreading depression (CSD) [73] or stroke [44], resulting in increased neuronal excitability and damage.
In a CSD model, neither mGluR5 nor P2 receptors contributed to the Ca2+ oscillation, but a GABAB

antagonist reduced the oscillation. This indicates that GABA may be preferentially released in the phase
when astrocytes display Ca2+ oscillations in the CSD model [73].

The adenosine A2A receptor is a Gs-protein coupled receptor. There is no clear evidence
to show that activation of the A2A receptor can lead to Ca2+ signals in astrocytes in vivo.
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Chemogenetic activation in astrocytes via Gs-DREADD causes Ca2+ signals [29]. The A2A receptor is
upregulated in human AD tissues and upregulation of A2A in AD model mice contributes to reduce
memory performance [74].

5.2. Transmembrane Ca2+ Pathways

Ca2+ influx through the plasma membrane is also relevant to Ca2+ signals in astrocytes.
Srinivasan et al. showed that processes but not soma of cortical astrocytes in behaving mice display
Ca2+ signals that are independent of IP3R2 and GqPCR activation [14]. The authors also found that
Ca2+ influx contributed to Ca2+ signals in astrocytes because nominally Ca2+-free conditions strongly
reduced Ca2+ signals at processes. Rungta et al. also found that Ca2+ signals at fine astrocyte processes
occur through Ca2+ influx pathways in the hippocampus [52]. Many types of Ca2+-permeable channels
are thought to be expressed in astrocytes, such as AMPA receptors, NMDA receptors, α7 nicotinic
receptor, P2X1 receptor, P2X7 receptor, TRPA1, TRPCs and TRPV4 [6,8]. The TPRA1 channel partly
contributes to microdomain Ca2+ signals in astrocytes, which can be detected by Lck-GCaMP, a
membrane-targeted GECI [15,52,75].

In contrast to aged mice, young (one-month-old) familial AD mice do not show reactive astrocytes,
which was assessed by GFAP expression. This early phase should be considered a presymptomatic
phase. However, approximately 20% of astrocytes display Ca2+ frequency hyperactivity in situ.
This hyperactivity is reduced by HC030031, a TRPA1 channel blocker, indicating that TRPA1 contributes
to aberrant Ca2+ signals in an early phase of the disease [76]. The Aβ oligomer triggers Ca2+ signals
in naïve mice. Therefore, production/accumulation of Aβ oligomer may be a key process for such
astrocyte hyperactivity in the AD model. The TRPA1-mediatd Ca2+ signal of astrocytes in the AD model
contributes to increased excitatory synaptic transmission [76]. TRPA1 in astrocytes also contributes to
the expression of proinflammatory cytokine genes in the AD model [77]. Furthermore, Aβ1-42 caused
Ca2+ elevation in astrocytes through α7 nicotinic receptor causing gliotransmission [78]. Thus, multiple
Ca2+ flux pathway may contribute to AD disease process.

TRPC4 channels in astrocytes were upregulated in MeCP2-deficient astrocytes, also termed
Rett syndrome (RTT) astrocytes. Ca2+ content in the ER of RTT astrocytes was highly elevated (i.e.,
Ca2+ overload), resulting in highly frequent Ca2+ signals that occur spontaneously [79]. Knockdown
of TRPC4 in RTT astrocytes ameliorated the Ca2+ overload in the ER and resulted in fewer abnormal
Ca2+ signals in RTT astrocytes. TRPC4-mediated abnormal Ca2+ signals in RTT astrocytes trigger
astrocytic glutamate release to activate extrasynaptic NMDA receptors in neurons leading to network
hyperexcitability in RTT mice [79].

Ischemic stroke causes irreversible damage to neuronal tissues. However, mild ischemia that
does not cause severe symptoms in animals makes these tissues/animals more tolerant to subsequent,
more severe ischemia. This phenomenon is called ischemic tolerance. Hirayama et al. found that
short-term MCAO, which triggers ischemic tolerance, induced reactive astrocytes, while impairment of
reactive astrocytes abolished the ischemic tolerance. The purinergic P2X7 receptor, an ATP-gated Ca2+

permeable channel, is selectively upregulated in these astrocytes and is essential for astrocyte-mediated
ischemic tolerance [80]. P2X7 receptor upregulation in reactive astrocytes leads to HIF1α induction for
long-lasting neuroprotection [81]. This phenotypic change following mild ischemia is consistent with
the idea that A2 astrocytes induced by MCAO upregulate neuroprotective genes [27].

5.3. Ca2+ Release from Mitochondria

Agarwal et al. found that a substantial portion (~55%) of microdomain Ca2+ signals occurred via
Ca2+ efflux from mitochondria via mitochondrial permeability transition pores (mPTPs). Mitochondrial
Ca2+ efflux was increased by reactive oxygen species production. In an ALS model, mutations in
the mitochondrial enzyme gene, superoxide dismutase 1, caused more microdomain Ca2+ signals,
indicating that mitochondrial stress causes mPTP opening [15]. Ca2+ signals through mPTP openings
are suggested to relate to the metabolic demands of neurons. Removal of external Ca2+ reduced
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microdomain Ca2+ signals by 52–90% [14,52]. This indicates that mitochondrial Ca2+ may be
immediately replenished by Ca2+ from the extracellular space.

5.4. Other Mechanisms

As mentioned above, we found aberrant Ca2+ signals in astrocytes termed AxCa in an AxD model.
Pharmacological profiles of Ca2+ suggest that AxCa is independent of action potentials, P2 receptors,
mGluR5, mGluR2/3, adrenergic α1 receptors and A2A receptors. The mechanisms underlying AxCa
action are still not clear, but our data indicate that Ca2+ handling at the ER may be important [46].
Consistently, Jones et al. recently found that disrupted ER distribution and abnormal Ca2+ transport
by GFAP mutation in AxD patients [82]. Accordingly, Ca2+ release through IP3R2 is a major pathway
for the generation of AxCa [46].

Similarly, cultured Down syndrome (DS) astrocytes, generated from human DS stem cells, show
aberrant Ca2+ signals. These Ca2+ signals are also independent of GPCRs, such as mGluR5, P2 receptors
and adenosine A1 receptors, but dependent on IP3R2. The S100β gene, which encodes a Ca2+ binding
protein that is preferentially expressed in astrocytes, is located on human chromosome 21, and is,
therefore, overexpressed in DS. S100β causes the aberrant Ca2+ signals by acting on intracellular rather
than extracellular targets, resulting in suppression of neuronal activities via A1 receptors [83].

6. What Is the Function of the Aberrant Ca2+ Signal in Reactive Astrocytes?

Ca2+ is a ubiquitous second messenger regulating multiple aspects of cellular signaling. There are
many mechanisms proposed for the functions of aberrant Ca2+ signals in reactive astrocytes that are
summarized in Figure 1. Ca2+-dependent gliotransmission has attracted much interest because it is a
well-known and well-characterized feature of astrocytes, although its relevance and mechanism are
still under debate [84,85].
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dependent manner. Glutamate derived from astrocytes activates NMDA receptor on neurons in 
epilepsy [36,39,66,70,86], ischemia [34,87], CSD [73], Alzheimer’s disease [68] and Rett syndrome [79]. 
Activation of presynaptic NMDA receptors or mGluR5 by glutamate from astrocytes enhances 
excitatory synaptic transmission [66,70,88,89], while postsynaptic activation of NMDA receptors may 
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Figure 1. Functional significance of astrocyte Ca2+ signals in disease. The cartoon indicates how
alteration of astrocyte Ca2+ in disease affects excitatory/inhibitory synapses and excitability of neurons.

6.1. Gliotransmission

Astrocytes can release gliotransmitters, such as glutamate, ATP, D-serine and GABA in a
Ca2+-dependent manner. Glutamate derived from astrocytes activates NMDA receptor on neurons in
epilepsy [36,39,66,70,86], ischemia [34,87], CSD [73], Alzheimer’s disease [68] and Rett syndrome [79].
Activation of presynaptic NMDA receptors or mGluR5 by glutamate from astrocytes enhances
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excitatory synaptic transmission [66,70,88,89], while postsynaptic activation of NMDA receptors
may lead to hyperexcitablity [34,36,39,73]. Glial-dependent presynaptic NMDA receptor activation
is enhanced by TNF-α [90], which contributes to cognitive impairment in experimental autoimmune
encephalitis (EAE), an animal model of MS [88]. Thus, NMDA receptor activation presumably triggers
increased excitation of networks and neuronal death. One of the important issues in the field is whether
or not astrocytes release glutamate in a Ca2+-dependent manner [29,84,85,91,92]. The machinery
for glutamate release is undefined because astrocytes lack the molecules for vesicular glutamate
release [29,93], although exocytosis of glutamate from astrocytes has been proposed. Another important
issue is the functional significance of glutamate release from astrocytes. In many cases, slow inward
currents (SIC) are recorded as an indicator of glial-derived glutamate release. SICs are thought to be
caused by activation of extrasynaptic NMDA receptors in postsynaptic sites via glutamate released
from astrocytes. SICs are blocked by antagonists against NMDA receptor containing NR2B subunit
such as D-AP5 and Ro 25-6981. Recently, Gomez-Gonzalo et al. found that spontaneous SICs were
mediated by a channel sensitive to 4,4’-Diisothiocyano-2,2’-stilbenedisulfonic acid (DIDS), quinine and
fluoxetine but not by Ca2+-dependent vesicular glutamate release from astrocytes [94]. It has been
suggested that glutamate derived from astrocytes, which cause SICs, contributes to many neurological
diseases, such as epilepsy [36,39,66], stroke [34,87] and neurodevelopmental disorders [79]. Currently,
there is no specific way to inhibit glutamate release mechanism underlying SICs without affecting
other cell types/mechanisms. Therefore, the pathophysiological significance of SICs has not been
tested directly. These two issues need to be solved to understand the role of Ca2+-dependent glutamate
release from reactive astrocytes. In addition to a Ca2+-dependent mechanism, astrocytes can release
glutamate in an intracellular pH-dependent manner. Oxygen glucose deprivation (OGD) reduces
intracellular pH to cause glutamate release, which underlies ischemic brain damage [95].

In an APP/PS1 familial AD mouse model, reactive astrocytes in the dentate gyrus upregulate
monoamine oxidase B, which contributes to GABA synthesis in reactive astrocytes. This astrocytic
GABA is released through BEST1 channels in a Ca2+-dependent manner, causing intense tonic GABA
currents. A strong inhibitory effect of astrocyte-derived GABA impaired neurotransmitter release,
action-potential firing, synaptic plasticity and memory, which may underlie cognitive impairment
in AD [96]. In other AD mouse model, tonic GABA inhibition was also enhanced and impaired
synaptic plasticity, although GABA was released by the reverse mode of GABA transporters [97].
Increased GABA expression is also found in hypertrophic astrocytes induced by a stab wound brain
injury model. Then, increased GABA is considered as a maker for reactive astrocytes [98].

ATP is also released from reactive astrocytes. ATP activates purinergic receptors in reactive
astrocytes in an autocrine/paracrine fashion to contribute to Ca2+ waves [42,64]. These Ca2+

waves propagate to areas remote from the initiation site to transmit the information to synapses
and microglia [99], which may cause hyperexcitability/damage and microglial chemotaxis to the
injury site [35,64,100]. Many studies suggest that ATP acts on P2Y1 receptors on astrocytes to
induce glutamate release in a Ca2+-dependent manner [64,66,70,89,90]. P2Y1 receptor-mediated
glutamate release could be relevant to pathological conditions because TNF-α, an inflammatory
cytokine induced by injury and seizure, is able to enhance P2Y1 receptor-mediated Ca2+ signals and
gliotransmission [70,90]. In EAE, TNF-α levels are increased. Pathological levels of TNF-α altered
synaptic transmission in the dentate gyrus, contributing to memory deficits in EAE [88]. It is not
clear whether P2Y1 receptor-mediated Ca2+ signals are involved in this TNF-α effect. However, it is
intriguing to see whether P2Y1 receptor-mediated Ca2+ signals contribute to the memory deficits in
EAE. ATP is degraded into adenosine via ecto-nucleotidase, which in turn activates adenosine A1

receptors to inhibit neuronal excitability and excitatory synaptic transmission [83]. Thus, ATP derived
from astrocytes either excites or inhibits neuronal networks, which depends on the context.
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6.2. Synapse Remodeling

Developmental stage astrocytes express synaptogenic molecules, such as thrombospondin
1 (TSP1) [101]. TSP1 expression is low in adult mice but upregulated in pathophysiology. In a
neuropathic pain model following peripheral nerve injury, TSP1 was upregulated in astrocytes of
the S1 cortex through mGluR5-mediated Ca2+ signals in astrocytes [60], blockade of which reduced
chronic pain. Also, pharmacological inhibition of the TSP1 receptor or TSP1 knockdown reduced
chronic pain. Furthermore, TSP1 contributes to synapse remodeling in S1 cortex in neuropathic pain
models. Thus, TSP1 upregulation through mGluR5-mediated Ca2+ signals in astrocytes cause synaptic
rewiring in the S1 circuits by forming novel connections between neurons that underlie neuropathic
pain [60,102].

6.3. GFAP Upregulation

GFAP is the most established maker for astrocytes and its upregulation is generally considered
as a maker for reactive astrocytes. GFAP accumulation/upregulation is found in many neurological
diseases, including AD [103]. Aberrant Ca2+ signal is essential for GFAP upregulation in AxD [46],
TBI [37] and photothrombosis [104], since deletion of aberrant Ca2+ signals strongly suppressed the
GFAP accumulation/upregulation. Thus, Ca2+ signals in astrocytes seem to be common events to
induce GFAP upregulation. Because chronic treatment with a P2Y1 receptor antagonist reduced
astrocyte Ca2+ signals in AD model mice but not GFAP upregulation, astrocyte Ca2+ signals may be
relevant to induction of GFAP expression rather than maintenance of the expression.

In addition to GFAP upregulation, IP3R2-mediated Ca2+ signals regulate gene expression of other
genes. AxCa regulate Lcn2, a pan reactive astrocyte maker, and C3, an A1 (neurotoxic) astrocyte
marker [46]. Kanemaru et al. show that TBI-induced Ca2+ signals via IP3R2 inhibit the translational
repressor, Pum2, to upregulate N-cadherin expression, which prevents infiltration of leukocytes and
is neuroprotective [37]. Thus, IP3R2-mediated Ca2+ signals are essential for GFAP upregulation in
pathological conditions.

6.4. Neuronal Damage

Infarct volume following MCAO or photothrombosis is significantly smaller in IP3R2KO mice
compared with controls [34,87,104]. IP3R2 is upregulated in the penumbra by photothrombosis [54],
which may contribute to aberrant Ca2+ signals in astrocytes of this region. Rakers et al. found that
IP3R2 contributes to peri-infarct depolarization (PID), which is thought to enhance neurodegeneration
and expand infarct size. The authors imaged Ca2+ in neurons and astrocytes in vivo after permanent
MCAO and found PID-related Ca2+ elevations in both cell types. Ca2+ elevations in astrocytes were
significantly reduced in IP3R2KO. Interestingly, PID-related Ca2+ elevations in neurons were also
reduced in IP3R2KO, suggesting that astrocytic Ca2+ waves enhance neuronal Ca2+ elevations in PID.
Astrocyte Ca2+ elevation is positively correlated with extracellular glutamate increase [87]. Lack of
IP3R2 shortened both the duration of astrocyte Ca2+ elevation and duration of glutamate increase.
Thus, glutamate levels are further increased by glutamate derived from Ca2+-elevated astrocytes,
which contributes to excitotoxicity following ischemia. Similarly, Dong et al. found that in OGD, an
in vitro model of ischemia, Ca2+ waves were induced in astrocytes in an IP3R2-dependent manner.
SICs induced by OGD were also reduced in IP3R2KO mice, indicating that glutamate release from
astrocytes may be augmented [34]. Thus, ischemia causes extracellular glutamate levels to rise by
Ca2+ signals via IP3R2 in astrocytes, which contribute to glutamate toxicity through the activation
of extrasynaptic NMDA receptors. These findings indicate that augmented IP3R2-mediated Ca2+

signals exacerbate damage by ischemia probably through elevation of extracellular glutamate [34,87].
These lines of evidence indicate that IP3R2-mediated Ca2+ signals can be a therapeutic target to
protect neurons from ischemic damage. A transmembrane pathway through TRPV4 also contributes
to astrocyte Ca2+ elevation following permanent MCAO. Although its contribution is smaller than
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that of IP3R2-mediated Ca2+ signals [105], recent evidence indicates that TRPV4 activation is a key
determinant in brain edema induced by ischemia [106].

7. Role of Reduced Astrocyte Ca2+ Signals in Disease

Generally, reactive astrocytes display augmented Ca2+ signals; however, Ca2+ signals in astrocytes
can also be reduced in pathophysiology [40,107]. There are several ways to reduce Ca2+ signals
experimentally. Firstly, IP3R2KO mice have strongly reduced spontaneous and evoked Ca2+ signals
in the cytosol, as described above [50]. Secondary, the “IP3 sponge”, an IP3 absorber, is another
way to reduce IP3-mediated Ca2+ signals. Selective introduction of an IP3 sponge into astrocytes
leads to reduced coverage of synapses by astrocytes and facilitated spillover of glutamate from
synapses [41]. Thirdly, IP3 5-phosphatase, an IP3 hydrolyzing enzyme, is a useful tool to suppress
IP3-mediated Ca2+ signals in astrocytes [108]. Fourthly, Yu et al. showed that overexpression of human
PMCA2w/b (hPMCA2w/b), which constitutively excludes Ca2+ from the cytoplasm in astrocytes,
strongly reduces spontaneous and evoked Ca2+ signals [109]. Overexpression of hPMCA2w/b in
striatal astrocytes caused an increase in self-grooming behavior. Detailed molecular and functional
analysis of astrocytes and medium spiny neurons (MSNs) in the striatum revealed altered MSN
activity resulting from increased expression of GABA transporter 3 (GAT-3) in the plasma membrane
through downregulation of Rab11a. Huntington’s disease model astrocytes also showed reduced
Ca2+ signaling and excessive self-grooming behaviors in a GAT-3 dependent manner, indicating that
attenuation of Ca2+ signals by enhancing Ca2+ efflux through the plasma membrane affects the function
of astrocytes, circuits and behaviors [109]. The effect of hPMCA2w/b on reducing astrocytic cytosolic
Ca2+ was strong but smaller than that in IP3R2KO mice. However, IP3R2KO mice are not reported
to display abnormal grooming behavior. Why is the grooming behavior of IP3R2KO mice normal?
In conventional IP3R2KO mice, IP3R2 is deleted from astrocytes throughout the brain and at all
times; therefore, compensatory mechanisms might maintain biological functions of astrocytes. A more
intriguing possibility is that subcellular differences in Ca2+ dynamics are relevant to the functions
of astrocyte Ca2+ signals. hPMCA2w/b mice have highly reduced Ca2+ near the plasma membrane,
while IP3R2KO mice lack the major Ca2+ release pathway from the ER. Therefore, subcellular Ca2+

dynamics may differ between hPMCA2w/b astrocytes and IP3R2KO astrocytes, which may explain
the difference in behavioral phenotypes and indicate functional diversity of Ca2+ signals in astrocytes.
In theory, the methods described above can be applied to astrocytes in specific circuits rather than
the entire brain. Such approaches may help to more specifically elucidate the role of Ca2+ signals
in reactive astrocytes and may reveal the detailed mechanisms underlying aberrant Ca2+ signals in
reactive astrocytes.

8. Conclusions

Reactive astrocytes display spatiotemporally dynamic Ca2+ signals. Advanced methods such as
the use of GECIs, two-photon microscopy and novel transgenic approaches have revealed the molecular
mechanisms of the dynamic features of Ca2+ signals. Although it is difficult to generalize on the role of
aberrant Ca2+ signals in astrocytes considering the heterogeneity of reactive astrocytes, Ca2+ signals
in reactive astrocytes clearly indicate certain disease states and disease severity. Reactive astrocytes
showing enhanced Ca2+ signals probably acquire “gain of toxicity”, which plays deleterious roles
in disease progression, even in the presymptomatic phase of disease. There are many mechanisms
underlying aberrant Ca2+ signals in reactive astrocytes. Different disease models may share a similar
mechanism, while other models of similar diseases may use distinct mechanisms. Some of these
mechanisms are potentially targets to treat the disease. Why are so many different mechanisms
involved in aberrant Ca2+ signals in astrocytes? We don’t have a clear answer for this right now.
However, it may be a consequence of astrocyte heterogeneity in different circumstances (e.g., young vs.
old, early phase vs. late phase, hippocampus vs. striatum); reactive astrocytes may show a broad and
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graded spectrum of molecular, cellular and functional changes [9] that produce distinct phenotypes
depending on the stimuli [28].

To understand the functional implications of aberrant Ca2+ signals, experiments need to be
stringently designed to take into account astrocyte heterogeneity in different circuits, and during
development and aging. Even in the same experimental settings, astrocytes react immediately to
brain insults to change their properties. To understand how Ca2+ signals are regulated in reactive
astrocytes, it is therefore important to analyze astrocyte properties by non-biased methods for
each experimental setting. This approach will allow us to understand not only the mechanisms
underlying aberrant Ca2+ signals but also downstream signaling. In addition, it is important to
develop a method to precisely manipulate Ca2+ signals in (patho-)physiological states without affecting
unwanted targets [91]. A combination of the approaches described above may elucidate the role of
reactive astrocytes in neurological diseases and help to find novel therapeutic targets to treat such
diseases. Since astrocytes change their morphology and gene expression immediately in response to
environmental changes [27,110], both in vitro and in vivo experiments are needed to understand the
cellular functions of reactive astrocytes.

Ca2+ signal is one type of cellular activities. Other signals, such as cAMP and Na+, are also
dynamically regulated in astrocytes. Improvement of Ca2+ imaging techniques has advanced our
understanding of Ca2+ signals in astrocytes. Similarly, refinement of sensors for other signals will
reveal novel insights into astrocyte activities enabling investigation of how distinct activities interact
and cooperate in physiology and pathophysiology.
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Abbreviations

AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
AM Acetoxymethyl
AxCa Aberrant extra-large Ca2+ signal
AxD Alexander disease
CSD Cortical spreading depression
DS Down syndrome
EAE Experimental autoimmune encephalitis
ER Endoplasmic reticulum
GAT-3 GABA transporter 3
GECI Genetically encoded Ca2+ indicator
GFAP Glial fibrillary acidic protein
GqPCR Gq-protein coupled receptor
hPMCA2w/b Human PMCA2w/b
IP3R2 Inositol-1,4,5 trisphosphate receptor type2
IP3R2KO IP3R type2 knockout
MCAO Middle cerebral artery occlusion
mGluR5 Metabotropic glutamate receptor 5
MSN Medium spiny neuron
mPTP Mitochondrial permeability transition pore
MS Multiple sclerosis
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OGD Oxygen glucose deprivation
PID Peri-infarct depolarization
RTT Rett syndrome
SCI Spinal cord injury
SE Status epilepticus
SIC Slow inward current
TBI Traumatic brain injury
TSP1 Thrombospondin 1
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