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Abstract

Antibiotic regimens often include the sequential changing of drugs to limit the development

and evolution of resistance of bacterial pathogens. It remains unclear how history of adapta-

tion to one antibiotic can influence the resistance profiles when bacteria subsequently adapt

to a different antibiotic. Here, we experimentally evolved Pseudomonas aeruginosa to six 2-

drug sequences. We observed drug order–specific effects, whereby adaptation to the first

drug can limit the rate of subsequent adaptation to the second drug, adaptation to the sec-

ond drug can restore susceptibility to the first drug, or final resistance levels depend on

the order of the 2-drug sequence. These findings demonstrate how resistance not only

depends on the current drug regimen but also the history of past regimens. These order-

specific effects may allow for rational forecasting of the evolutionary dynamics of bacteria

given knowledge of past adaptations and provide support for the need to consider the history

of past drug exposure when designing strategies to mitigate resistance and combat bacterial

infections.

Author summary

Bacteria readily adapt to their environments and can develop ways to survive and grow in

the presence of antibiotics. While many studies have investigated how bacteria evolve to

become resistant to single drugs, it is unclear how adaptation to other drugs and environ-

ments in the past affect the way bacteria adapt to new drugs and environments. In this

study, we allowed bacteria in a laboratory setting to adapt to three different antibiotics.

We first exposed wild-type susceptible bacteria to high concentrations of the three antibi-

otics individually and then exposed these populations to each of the other drugs. By track-

ing the levels of resistance to all three drugs in all of the treatments, we identified cases in

which past adaptation to one treatment influenced subsequent evolutionary dynamics

with regard to both phenotypes (levels of resistance) and genotypes (genes that became

mutated). Additionally, by allowing bacterial isolates originating from human patients to

adapt to the three drugs, we recapitulated a subset of the adaptation history-dependent

evolutionary dynamics. Overall, this study sheds light on how adaptation history in
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bacteria can potentiate or constrain the rise of multidrug resistance, depending on the

particular order of drugs used in a sequential therapy.

Introduction

Antibiotic resistance is a growing healthcare concern whereby bacterial infections are increas-

ingly difficult to eradicate due to their ability to survive antibiotic treatments [1]. There have

been reported cases of resistance for nearly every antibiotic we have available [2]. Coupled

with the fact that the antibiotic discovery pipeline has slowed over the past few decades [3],

there is a dire need to find better treatment strategies using existing antibiotics that can slow

or even reverse the development of resistance.

Adaptive laboratory evolution is a technique that can be used to study and test evolutionary

principles in a highly controlled laboratory setting [4]. Microorganisms with short generation

times such as bacteria are especially amenable to adaptive laboratory evolution and can be

adapted to an environment through repeated cycles of growth in a specific media environ-

ment, dilution of the culture, and subsequent passaging into fresh media [5]. Multiple repli-

cates for each condition can be evolved in parallel to investigate the reproducibility of

evolutionary dynamics [6]. The evolutionary trajectories of the bacteria can be measured as

they adapt to different nutrients and stressors over time [7]. Whole-genome resequencing on

the evolved strains can subsequently be used to determine the mutations that occurred that

may be associated with the observed phenotypes [8,9].

Adaptive laboratory evolution can be used to study the development of antibiotic resistance

in bacterial pathogens [10]. Resistance to antibiotics is an evolutionary response of bacteria to

withstand and survive the effects of the stressor. Deliberately evolving bacteria to withstand

antibiotics through experimental evolution can yield insights into the evolutionary dynamics

and trajectories of this adaptive process [11,12]. These evolution experiments can provide a

longer-term perspective, which can yield information for the design of novel treatment strate-

gies that can reduce the rate of resistance evolution or potentially even reverse the effects of

resistance [13–15].

Recent studies have explored how adaptation to an antibiotic can cause bacteria to concur-

rently become more susceptible or more resistant to other drugs, an effect termed collateral

sensitivity or collateral resistance [14,16,17]. Collateral sensitivities between drugs have been

used to design drug cycling strategies and to explain the decreased rate of adaptation to certain

antibiotics [12,14,18–23]. Drug deployment strategies that exploit such collateral sensitivities

between pairs of antibiotics to minimize resistance evolution have been tested in vitro. A

recent study determined the collateral sensitivity drug interaction network in Escherichia coli
and demonstrated how an alternating sequential treatment of 2 reciprocal, collaterally sensitive

antibiotics can slow down the rate of resistance evolution [14]. In this drug cycling strategy,

the development of resistance to 1 drug concurrently increased the sensitivity to the second

drug, and this allowed wild-type cells to outcompete the resistant cells when exposed to the

second drug. In a different study, evolution experiments of alternating sequential therapies of

pairs of antibiotics were performed on Staphylococcus aureus, and the study showed that the

alternating treatments slowed the rate of resistance development compared to single-drug

treatments [12]. Consistent with the E. coli study, this study found that collateral sensitivities

could explain the evolutionary constraints in the cases in which alternating treatment resulted

in decreased resistance development compared to the single-drug treatment.

Drug sequence influences evolution of resistance
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Most of the prior studies that test the use of alternating antibiotic therapies to reduce the

rate of resistance development employ an adaptive laboratory evolution scheme in which the

drugs are switched at daily or subdaily intervals with the purpose of testing if rapidly changing

antibiotic environments can diminish the rate of drug-resistance adaptation [12,19,23,24]. In

this study, we expand on these prior works, but we are not focused on studying the evolution-

ary dynamics of bacteria adapted to rapidly changing drug environments. Rather, we explore

the evolutionary dynamics of sustained, longer treatments of drugs and how the development

of high levels of resistance to 1 drug influences the subsequent dynamics of sustained adapta-

tion to a second drug. In clinical settings, when antibiotic cycling strategies are employed, they

are used typically at the level of the hospital ward, and the cycling of antibiotics are often done

at monthly intervals [25,26]. The rationale here is that if resistance to 1 drug arises after fre-

quent use in a ward, switching to an antibiotic of a different class may allow resistance rates to

the withdrawn drug to stabilize or even fall, enabling the first drug to be efficiently reintro-

duced again at a later time [27]. This practice of cycling drugs of different classes over the

course of monthly intervals is done empirically, and it remains unclear how these regimens

constrain the evolutionary dynamics of antibiotic resistance development. Here, we explore

the evolutionary trajectories of bacteria as they evolve high levels of resistance to 1 antibiotic

and the subsequent trajectories as the selection pressure from the first drug is withdrawn and

replaced with the sustained pressure of a different drug. It remains unexplored how prior

adaptation to 1 drug environment affects the evolutionary dynamics of a bacterial population

during subsequent adaptation to a second drug in terms of the amount of resistance it can

potentially develop and the resistance profile of the first drug. Collateral sensitivities and collat-

eral resistances between 2 drugs have been studied in the context of adaptation to single drugs

[21], i.e., as bacterial populations evolve and become resistant to 1 drug, do the cultures con-

currently become more resistant or sensitive to other drugs? In this study, we focus not on if

bacteria become concurrently more resistant or sensitive to other drugs, but rather, if adapta-

tion to 1 drug constrains or potentiates the evolutionary dynamics to sustained adaptation to

a second drug. How does the history of adaptation to 1 drug influence the subsequent adapta-

tion to a second drug? If there are such historical dependencies, can we use this knowledge

to design sequential therapies that slow down the evolution of resistance to the drugs used?

What happens to the previously developed resistance once the drug pressure is taken away or

switched to a different drug? Do compensatory adaptations sustain the high resistance, or do

the bacteria revert and become susceptible again [28]? The answers to these questions are

important for understanding how bacteria adapt to different antibiotic environments. Bacte-

rial pathogens have complex evolutionary histories and elucidation of any historical dependen-

cies of antibiotic resistance evolution would allow for rational forecasting of future resistance

development and would aid in the design of strategies for mitigating antibiotic resistance.

Results

Adaptive evolution of P. aeruginosa to sequences of antibiotics

To test how different antibiotic-resistance backgrounds affect the subsequent adaptation

dynamics when evolved to a new antibiotic, we used a laboratory evolution approach to evolve

P. aeruginosa to all 2-drug sequences of the 3 clinically relevant drugs piperacillin (PIP), tobra-

mycin (TOB), and ciprofloxacin (CIP). In each of the experimental sequences, P. aeruginosa
was subjected to 20 days of adaptation to each drug by serially passaging parallel replicate

cultures to increasing concentrations of the drugs followed subsequently by 20 more days of

adaptation to each of the 3 drugs or to lysogeny broth (LB) media without a drug (Fig 1A).

Additional parallel replicates were adapted to LB media without a drug for 40 days as a control.

Drug sequence influences evolution of resistance
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For each drug treatment, changes in the resistance to the other 2 drugs were concurrently mea-

sured (Fig 1B). Minimum inhibitory concentration (MIC) gradients in microtiter plates were

used to simultaneously measure the drug resistance level and to propagate the bacteria daily.

To adapt the bacteria to a drug, a sample is taken from the population from the well of the

highest drug concentration that allowed for growth (i.e., MIC/2) and then used to inoculate a

new MIC gradient. This serial dilution cycle is done daily. More explicitly, 20 μl of culture is

sampled from the well of the highest concentration that allowed for growth, then diluted in 5

ml of fresh LB media, and then this diluted culture is used to inoculate a new MIC gradient.

This dilution protocol results in a daily dilution factor of the bacterial population of 1/500

(Materials and methods, Fig 1B). S1 Data provides the estimated number of generations per

day for the evolved lineages based on the daily measurements of the OD600. For each lineage,

the OD600 values are fairly consistent from day to day, and so with a dilution factor of 1/500,

the cultures undergo approximately 9 generations of growth per daily dilution cycle (S1 Data).

We observed differences in final resistance levels to the different drugs depending on the

history of past treatments (or lack of treatments), an effect we call drug-order–specific effects

of adaptation. Our results show that a history of past drug adaptation can affect the rate at

which resistance can potentially arise when subsequently adapted to a new antibiotic.

Fig 1. Adaptive evolution of P. aeruginosa to 3 antibiotics. (A) Ancestral P. aeruginosa PA14 was evolved daily for 20 days to piperacillin (PIP),

tobramycin (TOB), ciprofloxacin (CIP), and lysogeny broth (LB) media. In the following 20 days, the 1-drug–resistant lineages were passaged further to the

first drug, as well as subpassaged to the other 2 drugs, and to LB media. (B) Bacteria were taken from the highest concentration that allowed growth

(defined as OD600 > 0.1), diluted in fresh LB, and inoculated into fresh minimum inhibitory concentration (MIC) gradients, corresponding to a daily dilution

factor of 1/500. After overnight incubation, the process is then repeated.

https://doi.org/10.1371/journal.pbio.2001586.g001
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Furthermore, in some cases, adaptation to a second drug or to LB can partially or fully restore

sensitivity to the first drug. These observations suggest that in order to limit the rate of devel-

opment of antibiotic resistance, it is important to consider which drugs a bacterial population

may have been exposed to in the past when choosing which drugs to subsequently deploy.

The 3 drugs tested have different mechanisms of action and are clinically used to treat P.

aeruginosa infections [29]. Piperacillin is a beta-lactam that inhibits cell wall synthesis [30];

tobramycin is an aminoglycoside that binds to the prokaryote ribosome and inhibits protein

synthesis [31]; and ciprofloxacin is a fluoroquinolone that binds DNA gyrase and inhibits

DNA synthesis [32]. We chose to study these 3 antibiotics because of their common use in the

clinical setting to treat P. aeruginosa infections [29], their diverse mechanisms of action, and

their well-studied resistance mechanisms [33]. Adaptive evolution for 20 days to these drugs

individually resulted in 1-drug–resistant mutants denoted as PIPR, TOBR, and CIPR. The Day

20 PIPR, TOBR, and CIPR populations had averages of 32-, 64-, and 64 times higher MICs to

piperacillin, tobramycin, and ciprofloxacin, respectively, compared to their initial levels. To

determine if the population MICs that were measured during the course of the adaptive labo-

ratory evolution experiments were representative of individual colony MICs, we retrospec-

tively measured the MICs of cultures grown from multiple revived colonies from the saved

frozen stocks (S2 Data). Overall, 73% of the retrospectively measured MICs were within one

2-fold dilution step of the originally measured population MICs, which suggests that the

reported MIC values for each of the evolved lineages are well representative of the bacterial

populations (S1 Fig).

By following how the resistance to each of the 3 drugs changes for each of the drug

sequences (Fig 2; S2 and S3 Figs and S3 Data), we observed 3 types of drug-order–specific

effects in the MIC profiles (Fig 3). Note that for now, we focus on summarizing the different

drug-order–specific effects (as seen by the changes in drug MICs), and later, we discuss several

hypotheses for the underlying mechanisms of the drug-order–specific effects based on analysis

of the genomic mutations of the adapted lineages. In the first type of drug-order–specific

effects, adaptation to a second drug or to LB restores the susceptibility to the first drug (Fig

3A). In these experiments, we were first interested to see if the increases in MICs of the

1-drug–resistant lineages (Day 20 PIPR, TOBR, and CIPR) were permanent or transient. By

evolving them to LB and hence removing the selection pressure of the drug for 20 days, we

observed that the high MICPIP was maintained in Day 40 PIPRLB (Fig 3A [top], p = 0.80; Fig

2A), while MICTOB declines (leading to partial resensitization) in Day 40 TOBRLB (Fig 3A

[middle], p< 0.0001; Fig 2E), and MICCIP declines (although not significantly) in Day 40

CIPRLB (Fig 3A [bottom], p = 0.18; Fig 2I). Thus, for these 3 treatments, removal of the antibi-

otic pressure can maintain the high resistance or lead to resensitization in a drug-specific man-

ner. Similar trends were seen in a recent adaptive evolution study whereby P. aeruginosa was

evolved to tobramycin, ciprofloxacin, piperacillin/tazobactam, meropenem, and ceftazidime,

followed by subsequent adaptation in the absence of the drug (growth medium only) to deter-

mine the effects of removing the drug selection pressure [34]. Similar to the patterns seen in

our study, they observed that the tobramycin-resistant cultures partially resensitized, the cipro-

floxacin-resistant cultures had a modest resensitization, and the 3 beta-lactam–evolved cul-

tures maintained high levels of resistance.

Next, we were interested to see if evolving the 1-drug–resistant lineages to the other 2 drugs

would show the same patterns seen as when evolved to LB. Interestingly, we saw unique out-

comes for each of the 3 lineages. When Day 20 PIPR was evolved to tobramycin, the MICPIP of

Day 40 PIPRTOBR remained high (p = 0.90), similar to how the MICPIP of Day 40 PIPRLB

remained high (Fig 3A [top]). This result suggests that subsequent tobramycin adaptation has

no role in altering the high piperacillin resistance. This specific order of drug treatments can

Drug sequence influences evolution of resistance
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Fig 2. Minimum inhibitory concentration (MIC) time courses of adaptive evolution. Plots show the MICs of the treatments to the 3 drugs and

lysogeny broth (LB) over time. The top (A, B, C), middle (D, E, F), and bottom (G, H, I) rows show the MICs to piperacillin (PIP), tobramycin (TOB), and

ciprofloxacin (CIP), respectively. The first, second, and third columns show the MICs of the PIPR, TOBR, and CIPR lineages, respectively. The dotted black

lines mark the Day 20 MICs of the 3 drugs (i.e., MICPIP of Day 20 PIPR in (A), MICTOB of Day 20 TOBR in (E), and MICCIP of Day 20 CIPR in (I)). Error bars

show SEM of 4 replicates per treatment. See S3 Data for the raw data.

https://doi.org/10.1371/journal.pbio.2001586.g002
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Fig 3. Summary of the drug-order–specific effects. (A) The Day 20 PIPR, TOBR, and CIPR lineages were partially or fully resensitized to piperacillin

(PIP), tobramycin (TOB), and ciprofloxacin (CIP), respectively, during subsequent adaptation to the other 2 drugs and/or lysogeny broth (LB). For

example, in the top plot, a one-way ANOVA of the data shown yielded p < 0.01, suggesting that the mean MICPIP values of the 5 PIPR lineages being

compared are different. A post-hoc Tukey’s honest significant difference (HSD) test then shows that the MICPIP of Day 40 PIPRCIPR is significantly less

than that of Day 20 PIPR (p < 0.05), indicating that resensitization to piperacillin occurred after subsequent ciprofloxacin adaptation but not after tobramycin

(p = 0.90) or LB (p = 0.80) adaptation. Similar types of comparisons are done for the TOBR and CIPR lineages in the middle and bottom plots, and we

observed that not every type of subsequent adaptation led to resensitization. The table above the plots summarizes which subsequent adaptations

(columns) led to the resensitization of the 3 drugs in their respective lineages (rows). (B) The MICTOB of Day 40 PIPRTOBR was less than that of Day 20

TOBR (p < 0.05, Tukey’s HSD test), while the MICTOB of Day 1 TOBR and Day 20 PIPR were comparable. This suggests that the rate of tobramycin

adaptation when there is a prior history of piperacillin adaptation is less than the rate of tobramycin adaptation when starting from the ancestor. (C) When

bacteria are adapted to 2 drugs, the order of adaptation to those 2 drugs can lead to differences in the endpoint minimum inhibitory concentrations (MICs).

For example, in the first plot, adaptation to ciprofloxacin followed by piperacillin led to a higher final MICPIP than the reverse order (MICPIP of Day 40

CIPRPIPR versus Day 40 PIPRCIPR, p < 0.05) when they had initially comparable MIC values (MICPIP of Day 1 PIPR versus Day 1 CIPR). The second and

third plots show how the final levels of MICPIP and MICCIP are different when tobramycin adaptation is followed by ciprofloxacin adaptation or with the

reverse order. For all 3 panels, the asterisks denote p < 0.05 (Tukey’s HSD test), not significant (n.s.) denotes p > 0.05, and the color of the asterisks

denotes which drug MIC is being compared. In the plots, for each lineage being shown, the black bar denotes the mean of the 4 individual replicate values

(gray dots). See S3 Data for the raw data and S2 Text for the calculations of the statistical tests.

https://doi.org/10.1371/journal.pbio.2001586.g003
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then result in multidrug-resistant P. aeruginosa cultures that are resistant to both piperacillin

and tobramycin. On the other hand, when Day 20 PIPR was evolved to ciprofloxacin, the

resulting cultures became resensitized to piperacillin (Fig 3A [top], p< 0.05), and the MICPIP

declined to levels comparable to those of the initially susceptible cultures (MICPIP of Day 1

PIPR versus Day 40 PIPRCIPR, p = 0.80), indicative of a full resensitization. Since resensitiza-

tion did not occur after subsequent adaptation to tobramycin or LB, we suspect that the subse-

quent ciprofloxacin adaptation had an active role in the resensitization to piperacillin in such a

way that tobramycin and LB did not. These results show that if a piperacillin-resistant culture

(that is also sensitive to tobramycin and ciprofloxacin) is evolved to tobramycin, multidrug

resistance can occur. However, if it is evolved to ciprofloxacin, despite the fact that ciprofloxa-

cin resistance increases, the culture becomes susceptible to piperacillin again, making pipera-

cillin a potentially rational choice for further treatment.

When Day 20 TOBR was evolved to ciprofloxacin, partial resensitization occurred

(MICTOB of Day 20 TOBR versus Day 40 TOBRCIPR, p< 10−5), and the MICTOB of Day 40

TOBR-CIPR fell to a comparable level as that of Day 40 TOBRLB (p = 0.98) (Fig 3A [middle]).

This result suggests that the resensitization seen during the subsequent ciprofloxacin adapta-

tion is not caused by the selection pressure of ciprofloxacin, but rather by the absence of the

selection pressure of tobramycin. On the other hand, evolving Day 20 TOBR to piperacillin

also led to a partial resensitization (MICTOB of Day 20 TOBR versus Day 40 TOBRPIPR,

p< 0.05) but not as much as it did when Day 20 TOBR was evolved to ciprofloxacin (MICTOB

of Day 40 TOBRPIPR versus Day 40 TOBRCIPR, p< 0.01) and LB (MICTOB of Day 40

TOBRPIPR versus Day 40 TOBRLB, p< 0.05). Because of this difference, we suspect that the

maintenance of the comparably high tobramycin resistance is a consequence of the piperacil-

lin selection pressure, since we observed that adaptation in the absence of the drug pressure

in LB led to substantially greater resensitization. This case highlights how the removal of all

drug pressures may lead to the resensitization of the culture more than with the treatment of

the culture to a new drug. In conjunction with the result that subsequent tobramycin adapta-

tion of Day 20 PIPR still maintained a high MICPIP, this case then also shows how regardless

of the order, sequential adaptation to piperacillin and tobramycin leads to multidrug resis-

tance of the 2 drugs.

Lastly, when Day 20 CIPR was evolved to piperacillin and tobramycin, both treatments lead

to a partial resensitization to ciprofloxacin (Fig 3A [bottom]). During subsequent tobramycin

adaptation, the decrease in the MICCIP from Day 20 CIPR to Day 40 CIPRTOBR (p< 0.01)

was marginally more than the decrease in the MICCIP from Day 20 CIPR to Day 40 CIPRPIPR

(p< 0.05) during subsequent piperacillin adaptation. As mentioned above, subsequent adapta-

tion of Day 20 CIPR to LB led to a decrease in MICCIP that was not statistically significant;

however, we argue that the decrease is comparable to that seen when adapted to piperacillin

and tobramycin as the final MICCIP of Day 40 CIPRLB was not significantly different than that

of Day 40 CIPRPIPR (p = 0.93) and that of Day 40 CIPRTOBR (p = 0.53). Hence, in this case,

evolution of a ciprofloxacin-resistant culture to either a different drug or to a no-drug condi-

tion led to a partial resensitization of ciprofloxacin. Interestingly, we also observed that the

resensitization that occurred during subsequent piperacillin adaptation happened more

quickly than the resensitization that occurred during subsequent tobramycin and LB adapta-

tion (Fig 2I). After 5 days of subsequent piperacillin adaptation (Day 25 CIPRPIPR), the MIC-

CIP was significantly different than that of Day 20 CIPR (p< 0.001), while this was not the case

after 5 days of subsequent tobramycin (p = 1.00) or LB (p = 0.57) adaptation. These cases in

which partial or full resensitization to the first drug occurs after adaptation to a second drug or

LB highlight opportunities in which resistance to 1 drug can potentially be reversed by treating

with a second drug or by removing the drug pressure completely.
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In the second type of drug-order–specific effects, prior adaptation to a first drug reduces

the rate of subsequent adaptation to a second drug (such that the endpoint level of resistance

to that second drug is lower compared to the amount of resistance developed when the Day 0

Ancestor is directly evolved to that second drug). We observed that evolution first to piperacil-

lin reduces the rate of subsequent evolution to tobramycin (Fig 2D and 2E). That is, the

MICTOB of Day 40 PIPRTOBR was less than that of Day 20 TOBR (Fig 3B, p< 0.05). This

observation suggests that, in some cases, different bacterial populations may evolve resistance

to a given antibiotic at different rates depending on the history of prior adaptations that the

populations have experienced. Having knowledge of prior adaptations may then potentially be

used to slow down the development of resistance to a drug if that drug is selected rationally.

Interestingly, we observed no cases in which prior drug adaptation led to an enhancement in

the rate of adaptation to a second drug.

The last type of drug-order–specific effects is when the final MIC of a drug is different after

adaptation to a 2-drug sequence compared to after adaptation to the opposite order of the 2

drugs (Fig 3C). This third type of drug-order–specific effect exists as a consequence of a com-

bination of the first type of effect (resensitization of the 1-drug–resistant lineages during subse-

quent adaptations to other drugs) and specific cases of collateral sensitivities during the

adaptation of certain lineages. First, the MICPIP was higher when piperacillin was used after

ciprofloxacin (Day 40 CIPRPIPR) compared to when piperacillin was used before ciprofloxacin

(Day 40 PIPRCIPR) (Fig 3C [top], p< 0.05). In this case, adaptation to piperacillin first led to

high levels of piperacillin resistance, and subsequent adaptation to ciprofloxacin led to the

resensitization to piperacillin as discussed before (Fig 2A). On the other hand, even though

adaptation to ciprofloxacin first led to a collateral sensitivity to piperacillin (S4A Fig [right],

p< 0.01), subsequent adaptation to piperacillin resulted in a final MICPIP comparable to that

of Day 20 PIPR (Fig 2C).

Next, we observed that during the adaptation to tobramycin followed by ciprofloxacin

and vice versa, the final MIC values of piperacillin and ciprofloxacin were different depend-

ing on the order of adaptation to the 2 drugs (Fig 3C [bottom and middle]). With regards to

the difference seen in the final MICCIP (Fig 3C [bottom], p< 0.05), the partial resensitiza-

tion to ciprofloxacin starting from Day 20 CIPR during subsequent tobramycin adaptation

(Fig 2I) resulted in the MICCIP to be less than adaptation to tobramycin first, followed by

ciprofloxacin (Fig 2H). Finally, it was interesting that even though piperacillin was not

the direct selection pressure, there was a difference in the final MICPIP level whether cipro-

floxacin adaptation occurred after tobramycin adaptation or vice versa (Fig 3C [middle],

p< 0.01). In this case, initial adaptation to tobramycin first did not affect the MICPIP (Fig

2B), but subsequent adaptation to ciprofloxacin resulted in a collateral sensitivity to pipera-

cillin (S4C Fig, p< 0.01). On the other hand, as previously mentioned, adaptation to cipro-

floxacin first initially resulted in the collateral sensitivity to piperacillin (S4A Fig [right],

p< 0.01); however, the MICPIP returned to baseline values during subsequent adaptation to

tobramycin (Fig 2C). Thus, regardless if ciprofloxacin adaptation occurred before or after

tobramycin adaptation, ciprofloxacin adaptation led to piperacillin collateral sensitivity.

However, in order to take advantage of this collateral sensitivity, ciprofloxacin adaptation

should be used after tobramycin adaptation, rather than vice versa. In a contrasting exam-

ple, we also found it interesting that while ciprofloxacin adaptation also led to collateral sen-

sitivity of tobramycin, subsequent piperacillin adaptation did not cause the MICTOB to

return to baseline levels (Fig 2F) in the manner in which subsequent tobramycin adaptation

returned the MICPIP to baseline values (Fig 2C). Altogether, these cases highlight how treat-

ing an infection with a sequence of 2 drugs can result in different resistance profiles depend-

ing on the order used.
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All the cases of collateral sensitivity that were observed occurred during ciprofloxacin treat-

ment whereby ciprofloxacin adaptation resulted in a lower MIC of piperacillin or tobramycin

compared to baseline levels (S4 Fig). First, adaptation to ciprofloxacin starting from the Day 0

Ancestor resulted in collateral sensitivity to both piperacillin (Fig 2C; S4A Fig [right],

p< 0.01) and tobramycin (Fig 2F; S4A Fig [left], p< 0.0001). Next, adaptation to ciprofloxacin

starting from both the 1-drug–evolved lineages Day 20 PIPR (Fig 2D) and Day 20 TOBR (Fig

2B) resulted in collateral sensitivity to tobramycin (S4B Fig, p< 0.01) and piperacillin (S4C

Fig, p< 0.01), respectively. These results suggest that regardless of historical background, cip-

rofloxacin adaptation results in collateral sensitivity to the other 2 drugs. While we observed

that collateral sensitivity of other drugs occurs only during ciprofloxacin adaptation, a recent

study in which P. aeruginosa ATCC 27853 was evolved to different antibiotics reported that

evolution to tobramycin resulted in collateral sensitivity to piperacillin-tazobactam and cipro-

floxacin, whereas we did not observe this effect [34]. Also, this study did not observe that adap-

tation to ciprofloxacin resulted in collateral sensitivity to piperacillin and tobramycin, as we

reported here. We suspect that these inconsistences may be due to strain-specific differences

in the different P. aeruginosa strains used (strain PA14 was used in this study).

We were interested in measuring the fitnesses of the evolved lineages to see if the adapta-

tions to the different treatments altered their growth dynamics. We measured the growth

curves (OD600) of the 68 evolved replicate lineages as well as the Day 0 Ancestor in quadrupli-

cate grown in LB for 24 hours (S5 Fig). The exponential growth rates were subsequently

calculated from the growth curves (S6A Fig, S1 Text and S4 Data). While we observed many

different growth rates across the different lineages, we did not observe any correlation between

the growth rate and the change in MIC between the Day 20 1-drug–evolved lineages and the

subsequent Day 40 lineages (i.e., altered growth rates could not explain the cases in which sub-

sequent adaptation led to the maintenance of high resistance or resensitization to the first

drug) (S6B Fig and S1 Text).

Genomic mutations of adapted lineages

We hypothesized that genomic mutations acquired during adaptive evolution contributed to

the drug-order–specific effects observed in the MIC profiles. We sequenced genomes of the

Day 0 Ancestor, Day 20 PIPR, TOBR, CIPR, and LB Control lineages and the Day 40 1-drug–

and 2-drug–evolved lineages, as well as the LB Control lineages. Genome sequencing of the

Day 20 and Day 40 mutants revealed a total of 201 unique mutations across the 56 samples

consisting of 77 SNPs, 31 insertions, and 93 deletions (Fig 4; S7 Fig, S1 and S2 Tables). The 77

SNPs were found within 49 genes. Two SNPs were synonymous, and 6 were intergenic. To test

how representative the sequencing results were of the mutant populations, we used PCR and

Sanger sequencing to test for the presence of specific mutations in multiple colonies of differ-

ent lineages after reviving the lineages from the saved frozen samples. We used the primers

from S3 Table to test for the presence of 1 mutation from 1 replicate of each lineage, with 4 col-

onies of each lineage. Overall, while there may be limited heterogeneity in the populations

with respect to a few of the mutations, the large majority of the mutations were homogeneous

in the populations and fixed within the lineages (S1 Text).

While some genes were mutated during evolution to all drugs, other mutations were drug-

specific and were related to the drugs’ primary mechanisms of action as would be expected (S4

Table). Genes encoding transcriptional regulators for multidrug efflux pumps were commonly

mutated during evolution to all 3 drugs (mexC,mexR,mexS, nalC, nalD, nfxB, parS) [35]. Ribo-

somal proteins (rplJ, rplL, rpsL, rplF) [36] and NADH dehydrogenase subunits (nuoB, nuoG,

nuoL, and nuoM) [37,38] were frequently mutated during tobramycin evolution. The most
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Fig 4. Genomic mutations of the evolved lineages. Mutations for the Day 20 and Day 40 mutants are plotted according to position on the chromosome.

Each lineage is labeled and has 4 tracks for the 4 replicates per treatment. The inner set of tracks are the Day 20 1-drug–evolved lineages, the middle set of

tracks are the Day 40 1-drug–evolved lineages, and the outer set of tracks are the Day 40 2-drug-evolved lineages. The color of the track denotes the

treatment during the first 20 days. The color of the plotted mutation denotes during which treatment the mutation occurred. For example, a blue dot on a

yellow track denotes a mutation in a Day 40 CIPRTOBR replicate lineage that occurred during tobramycin adaptation (i.e., between Day 21 and Day 40). For

the Day 40 1-drug–evolved lineages, circles denote mutations that occurred during the first set of 20 days, and triangles denote mutations that occurred

during the second set of 20 days. Large rectangles denote large genomic deletions. Numbers in parentheses next to gene names indicate the number of

unique mutations that occurred in that gene.

https://doi.org/10.1371/journal.pbio.2001586.g004
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commonly mutated gene was fusA1, which encodes elongation factor G and was mutated in 11

different replicate lineages adapted to tobramycin. fusA1 has been observed to be mutated in

clinical isolates of P. aeruginosa [39–41], as well as in adaptive evolution studies to aminoglyco-

sides in P. aeruginosa [34] and E. coli [12,16,18]. Mutations in fusA1may also contribute to

altered intracellular (p)ppGpp levels, which may modulate virulence in P. aeruginosa [41].

Mutations in gyrA and gyrBwere observed during ciprofloxacin evolution, but none were

observed in parC and parE (the other genes of the quinolone resistance-determining region

[29]). Lastly, genes encoding peptidoglycan synthesis enzymes (dacC,mpl) and beta-lactamase

regulators (ampR) were mutated during piperacillin treatment. Many of these genes have also

been observed to be mutated during human host adaptation of P. aeruginosa [42], highlighting

the importance of several of these clinical resistance determinants (S1 Text).

We next analyzed the genomic mutations to see how the historical context affects which

mutations occur during adaptation to a drug. For example, how do the mutations that occur

during adaptation to piperacillin only (Day 20 PIPR and Day 40 PIPR) compare to the muta-

tions that occur during piperacillin adaptation when there is a prior history of adaptation first

to tobramycin (Day 40 TOBRPIPR) or ciprofloxacin (Day 40 CIPRPIPR)? To this end, we first

categorized the genes in which mutations occurred into 23 broad categories based on the avail-

able literature and on the PseudoCAP functional classifications from the Pseudomonas

Genome Database [43] (Table 1). Next, for each lineage, we tallied the number of times a gene

in a functional category was mutated across the 4 biological replicates for each of the lineages

(Fig 5). For a complete list of genes in each functional classification and descriptions of the

genes, see S2 Table.

We observed several general trends in the genes mutated during adaptation to the 3 drugs,

depending on their historical context. In the lineages adapted to piperacillin, we saw history-

dependent trends in the mutated genes that were related to multidrug efflux pumps (Fig 5,

dashed-black box). While all the piperacillin-adapted lineages had mutations in genes related

to the MexAB-OprM efflux pump (which is the primary efflux pump of piperacillin [44]) such

as nalD andmexR (whose products repress the expression ofmexAB-oprM [45]), the Day 40

CIPRPIPR lineage had additional mutations in the structural subunit genes of the other efflux

pumps MexCD-OprJ (mexC) and MexEF-OprN (mexF). Lastly, no mutations in genes related

to the MexXY-OprM pump were observed in any of the piperacillin-adapted lineages. With

regard to adaptation to piperacillin only, most of the mutations that occurred in genes related

to MexAB-OprM occurred within the first 20 days, with only a few additional mutations

occurring between Day 21 and 40. Regardless of historical context, metabolic and cell wall

genes tended to be frequently mutated in piperacillin-adapted lineages, whereas metabolic and

cell wall genes did not seem to be consistently mutated across the tobramycin-adapted and cip-

rofloxacin-adapted lineages. This result is perhaps due to the fact that the primary target of

piperacillin is cell wall (peptidoglycan) synthesis, which is largely a metabolic process. Interest-

ingly, we also observed that the lineages adapted only to piperacillin (Day 20 PIPR) sustained

large chromosomal deletions that were not seen in the lineages in which there was prior tobra-

mycin or ciprofloxacin adaptation (Day 40 TOBRPIPR and Day 40 CIPRPIPR). We discuss and

explore the potential implications of these large deletions below.

The tobramycin-adapted lineages consistently had mutations occur in ribosomal subunit

genes and other ribosomal machinery genes, regardless of historical context. In the lineages

adapted only to tobramycin, mutations in genes related to the ribosome, membrane, energy,

and NADH dehydrogenase tended to occur by Day 20, followed by mutations in efflux pump–

related genes by Day 40. The mutations in genes related to membrane, NADH dehydrogenase,

and energy likely reflect the unique requirement of the proton-motive force for the uptake of

aminoglycoside antibiotics [46], and the mutations occurring during tobramycin adaptation
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may contribute to the resistance by reducing the proton-motive force [16]. While we observed

mutations in the NADH dehydrogenase genes in the lineages adapted only to tobramycin, we

saw no such mutations in the lineages in which prior piperacillin or ciprofloxacin adaptation

occurred (Day 40 PIPRTOBR and Day 40 CIPRTOBR). Also, while efflux pump–related genes

were mutated in the Day 40 TOBR and Day 40 CIPRTOBR lineages, no such mutations were

seen in the Day 40 PIPRTOBR lineages in which prior adaptation to piperacillin occurred (Fig

5, dashed-purple boxes).

The mutations in the ciprofloxacin-adapted lineages were fairly consistently distributed

regardless of historical context. For all ciprofloxacin-adapted lineages, mutations were seen in

genes related to DNA/RNA synthesis as expected, as well as in genes related to membrane, fla-

gella, efflux pumps, metabolism, and transcriptional regulators. Mutations related to the Mex-

AB-OprM, MexCD-OprJ, and MexEF-OprN efflux pumps (mostly in genes encoding negative

regulators of the pumps) are seen in the ciprofloxacin-adapted lineages, reflecting the ability of

these different pumps to extrude ciprofloxacin; however, no mutations were seen in genes

Table 1. Functional classifications of the mutated genes.

Cell wall dacC, mpl

Membrane algC, aotJ, fixI, nppA1, secA, wbpM, ycjJ, [PA14_12210], PA14_25490,

PA14_30540/ssuA, PA14_34500, PA14_41710, PA14_48800, PA14_57880

Chemotaxis chpA

Flagella [flgJ]–[flgI], cheB, fleN, flgF, flgG, flgK, fliA, fliP, morA, orfH, orfJ, orfN, wspA

DNA PA14_31100/PA14_31110

Cell division minC, zipA

DNA/RNA synthesis gyrA, gyrB, rne, rpoC, rpoN, topA, tRNA-Val

Ribosome fusA1, miaA, rne/rluC, rplF, rplJ, rplL, rpsL, tRNA-Thr/tufB

MexAB-OprM mexA, mexR, mexR/mexA, nalC, nalD, nalC/PA14_16290

MexCD-OprJ [nfxB], nfxB, mexC, mexC/nfxB, mexD

MexEF-OprN parS, mexF, mexS, mexT

MexXY-OprM amrB

MuxABC muxA

Metabolism aceA, aroB, clpA, clpS, dadA, gcdH, gcvP2, gltA, lhpE, pepA, prs, sahH,

PA14_20960, PA14_21820, PA14_27360/deaD, PA14_49300, PA14_57470,

PA14_66170

Energy [ccoP]-[ccoP], atpC, atpC/atpD, cycB/pauR, pckA, sucD, PA14_57540,

PA14_57570

NADH dehydrogenase nuoB, nuoG, nuoL, nuoM

Transcriptional

regulation

iscR, mucB, mvfR, np20, pauR, rnk, PA14_09960, PA14_12140, PA14_35210,

PA14_37170/ada, PA14_38500, PA14_39360

2-component sensor envZ, cpxR, pmrB, PA14_22730, PA14_27940

Beta-lactamases ampR, dacB

Stringent response spoT

Quorum sensing ptsP

Large deletions [aldG]–[acsA], [glgX]–[nhaB], intT–PA14_49030, PA14_35720–[PA14_40040],

[PA14_37690]–[PA14_39660]

Hypothetical aprX/PA14_48150, erfK, ttg2D, PA14_41730, PA14_44990, PA14_51910,

PA14_57850, PA14_65570, PA14_69250

Brackets (e.g., [gene]) denote deletion of more than a few base pairs within a gene. Forward slashes (e.g.,

gene1/gene2) denote mutations in the intergenic region between the 2 genes. Hyphens (e.g. gene1—

gene2) denote deletions spanning multiple genes. For a complete list of genes in each functional

classification and descriptions of the genes, see S2 Table.

https://doi.org/10.1371/journal.pbio.2001586.t001
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Fig 5. The frequency of mutated genes during piperacillin (PIP), tobramycin (TOB), and ciprofloxacin (CIP) adaptation

depending on the historical background. The number of unique mutations observed in a gene in a functional class (rows) is

shown based on the intensity of the color across all 4 biological replicates for each of the lineages (columns). The lineages are
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related to MexXY-OprM, even though this pump is also known to contribute to fluoroquino-

lone resistance [44]. Further experiments in measuring the gene expression of the different

efflux pumps may help elucidate the roles that these pumps play in contributing to the differ-

ent drug-order–specific effects.

Next, we sought to determine if the patterns in mutated genes could explain the mecha-

nisms of some of the drug-order–specific effects that were observed in the MIC time courses.

We first discuss the cases of resensitization or maintenance of high resistance in which the

1-drug–evolved lineages were subsequently adapted to the other 2 drugs or to LB (Fig 3A).

While subsequent adaptation of Day 20 PIPR to LB and tobramycin maintained high piperacil-

lin resistance, subsequent adaptation to ciprofloxacin led to full resensitization to piperacillin

(Fig 3A [top]). We hypothesize that these differences stem from the different efflux pump-

related genes that were mutated in these lineages (Fig 5, dashed-purple boxes). Evolution of

the Day 0 Ancestor to piperacillin resulted in 2 different SNPs in nalD, and 1 SNP inmexR
across the 4 biological replicates of Day 20 PIPR, likely leading to the overexpression of the

MexAB-OprM efflux pump [45]. We suspect that MICPIP remained high during subsequent

adaptation to LB and tobramycin due to continued overexpression of MexAB-OprM.

However, when Day 20 PIPR was adapted to ciprofloxacin, several mutations occurred in

genes related to other efflux pumps, including 1 inmexA, 2 in nfxB, and 2 inmexS (Fig 5,

dashed-purple boxes). In particular, mexS encodes a negative regulator of the expression of

MexEF-OprN, and mutations in this gene likely lead to the overexpression of the efflux pump

[47]. Interestingly, expression of MexEF-OprN has been observed to correlate inversely with

the expression of MexAB-OprM [47,48]. Hence, we suspect that the resensitization to pipera-

cillin when Day 20 PIPR was subsequently adapted to ciprofloxacin may be have been due to a

concurrent decrease in MexAB-OprM expression (leading to reduced piperacillin efflux) as

MexEF-OprN expression increased. That is, it is possible that the mutations that occurred dur-

ing ciprofloxacin adaptation that led to the overexpression of MexEF-OprN negated the effects

of the mutations that occurred during prior piperacillin adaptation that led to overexpression

of MexAB-OprM. Furthermore, we observed no mutations in efflux pump–related genes in

Day 40 PIPRTOBR (Fig 5, dashed-purple boxes), which supports the notion that because no

mutations occurred, which would have negatively correlated with the expression of MexA-

B-OprM, expression of this efflux pump was maintained throughout the subsequent adapta-

tion to tobramycin, and hence the MICPIP remained high.

We observed that subsequent adaptation of Day 20 TOBR to LB and ciprofloxacin resulted

in a partial resensitization to tobramycin, and that while subsequent adaptation to piperacillin

also led to a significantly lower MICTOB, it was not as low as that of Day 40 TOBRLB and

grouped according to the final (or only) drug that the lineage was adapted to in order to compare how historical context affects how

often genes in the functional classes are mutated. For example, the first 4 columns (with red shading) correspond to the frequency

of genes mutated in the lineages that were adapted to piperacillin only (Day 20 PIPR and Day 40 PIPR) and piperacillin after prior

adaptation to a first drug (Day 40 TOBRPIPR and Day 40 CIPRPIPR). Note that the data in the Day 40 PIPR column correspond to

additional mutations that occurred (between Day 21 and 40) and do not double count the ones from Day 20 PIPR column. As an

example of how different genes are mutated during piperacillin adaptation under different historical contexts, the cells outlined by

the dashed-black box show that regardless of historical context, all lineages that underwent piperacillin adaptation had mutations in

genes related to the MexAB-OprM efflux pump. However, only the lineage that had prior ciprofloxacin adaptation (Day 40

CIPRPIPR) had mutations in genes related to the MexCD-OprJ and MexEF-OprN efflux pumps. Lastly, none of the piperacillin-

adapted lineages had mutations in genes involved in the MexXY-OprM efflux pump. The cells outlined by the dashed-purple boxes

show that while subsequent adaptation of Day 20 PIPR to ciprofloxacin (Day 40 PIPRCIPR) resulted in several mutations in genes

involved in efflux pumps, subsequent adaptation to tobramycin (Day 40 PIPRTOBR) resulted in no mutations in genes involved in

efflux pumps. The corresponding mutations that occurred are explicitly listed at the bottom. See the main text for more details of

how this difference may play a role in the resensitization to piperacillin during subsequent ciprofloxacin adaptation of Day 20 PIPR.

See S1 Table for the complete list of mutations and S2 Table for descriptions of the mutated genes.

https://doi.org/10.1371/journal.pbio.2001586.g005
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TOBRCIPR (Fig 3A [middle]). In this case, the partial resensitization during subsequent adap-

tation to LB may be attributable to adaptive resistance of aminoglycosides in P. aeruginosa.

Adaptive resistance is a phenomenon in which resistance to a drug is transiently induced in

the presence of the drug, and resistance recedes upon the removal of the drug [49]. In contrast

to acquired resistance, which is mediated through genetic mutations, adaptive resistance is

explained by phenotypic alterations that allow for temporary increases in resistance. P. aerugi-
nosa is known to exhibit adaptive resistance to aminoglycosides [50,51], and it is primarily

mediated through up-regulation of MexXY-OprM during drug exposure and subsequent

down-regulation after the removal of the drug [52]. We suspect that the partial resensitization

during subsequent ciprofloxacin adaptation is also a consequence of adaptive resistance once

the tobramycin selection pressure is removed. We further speculate that during the initial

adaptation to tobramycin, the increase in tobramycin resistance was a combination of adaptive

resistance and acquired resistance from accumulation of the mutations as seen in Day 20

TOBR. Thus, the resensitization during subsequent LB and ciprofloxacin adaptation was not a

full resensitization but rather a partial one, perhaps reflecting the remaining contribution of

the acquired resistance. Lastly, with regards to Day 40 TOBRPIPR, it is unclear how subsequent

piperacillin adaptation seemingly resulted in the maintenance of high MICTOB compared to

that of Day 40 TOBRLB and TOBRCIPR. We hypothesize that the subsequent piperacillin adap-

tation somehow counteracted the resensitization effects of adaptive resistance, even when the

tobramycin selection pressure was removed.

The mechanism of ciprofloxacin resensitization when Day 20 CIPR was subsequently

adapted to LB, piperacillin, and tobramycin remains unclear (Fig 3A [bottom]). While rever-

sion of aminoglycoside sensitivity has been the most characterized case of adaptive resistance

in P. aeruginosa, other studies have suggested that adaptive resistance may be prevalent in

other classes of antibiotic classes as well, and that it may be mediated by epigenetic processes

such as methylation and stochastic gene expression [53], particularly affecting the expression

of efflux pumps [54]. It could be possible that adaptive resistance partially explains the resensi-

tization to ciprofloxacin. We also note that qualitatively, there was much more variability in

the MIC time courses between the individual replicates of the CIPR lineages, as seen by the

larger error bars in Fig 2I, compared to that of the PIPR (Fig 2A) and TOBR (Fig 2E) lineages.

Taken together, further investigation of the partial ciprofloxacin resensitization is needed.

While we observed clear cases of collateral sensitivity develop to piperacillin and tobramy-

cin during the course of ciprofloxacin adaptation (S4 Fig), other adaptive evolution studies of

P. aeruginosa evolved to ciprofloxacin showed mixed results. In one study, the adaptation of P.

aeruginosa ATCC 27853 to ciprofloxacin showed no change in the MIC of 3 different beta-lac-

tams (including piperacillin-tazobactam), nor of tobramycin [34]. In another study, while no

statistical significances were assigned, adaptation of P. aeruginosa PAO1 to ciprofloxacin

appeared to result in slight collateral sensitivities to piperacillin-tazobactam and tobramycin in

some of their replicates. Nevertheless, in our study, we hypothesize that the collateral sensitiv-

ity to piperacillin and tobramycin during ciprofloxacin adaptation is attributable to the muta-

tions seen in nfxB (which encodes a transcriptional repressor that regulates MexCD-OprJ

[55]) in the Day 20 CIPR lineages. Three of the Day 20 CIPR replicates had deletions in nfxB
(15, 13, and 16 base pairs), likely resulting in the inactivation of NfxB and concomitant up-reg-

ulation of MexCD-OprJ and increased ciprofloxacin resistance [56]. In fact, nfxBmutants

have been reported to be hypersusceptible to certain beta-lactams and aminoglycosides

[57,58].

Lastly, with regards to the decreased rate of tobramycin adaptation given a history of prior

piperacillin adaptation (Fig 3B), we attribute this effect to the large chromosomal deletions

that were sustained in 3 of the 4 Day 20 PIPR replicates. The consequences of these deletions
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are discussed in more detail in the subsequent sections of the manuscript. In summary, based

on the genomic mutations, we have presented our interpretations of potential mechanisms

that contribute to the drug-order–specific effects. These include how historical context can

influence the frequency of mutations in certain genes, the varying contributions of adaptive

and acquired resistance to total resistance, and specific cases of inverse correlation of the

expression of different efflux pumps. While mutations are likely not the sole determinants of

the differences [34,59], many of the observed genomic mutations can partially explain the

drug-order–specific effects.

Drug history dependence of pyomelanin hyperproduction

One striking mutation we observed was that 3 of the 4 replicates of Day 20 PIPR (Day 20 PIPR-

1, -2, and -3) had large, approximately 400 kbp deletions (corresponding to approximately 6%

of the genome) in a conserved region of the chromosome (Fig 4 [large red rectangles]; S5

Data), suggestive of selective genome reduction [60–63], and have been associated with

directed repeats [64] and inverted repeats [65] at the boundaries of the deletions. These large

deletions were also fixed in the corresponding Day 40 PIPRTOBR, Day 40 PIPRCIPR, and Day

40 PIPRLB lineages. Interestingly, the 3 PIPR lineages with these large deletions hyperproduced

the brown pigment pyomelanin during piperacillin evolution, and this visually observable phe-

notype also persisted when evolved to tobramycin (PIPRTOBR), ciprofloxacin (PIPRCIPR), and

LB (PIPRLB). The loss of hmgA as part of the large chromosomal deletions correlates exactly

with the pyomelanin phenotype of these lineages. Indeed, hmgA mutants of P. aeruginosa
hyperproduce pyomelanin [66]. This observation shows that evolving to piperacillin results in

a high probability of sustaining large deletions spanning hmgA, which results in the pyomela-

nogenic phenotype. However, when we evolved the Day 20 TOBR and CIPR lineages to pipera-

cillin to yield the Day 40 TOBRPIPR and Day 40 CIPRPIPR lineages (4 replicates each), none of

them became pyomelanogenic, suggesting that prior history of tobramycin or ciprofloxacin

adaptation leads to a lower propensity of becoming pyomelanogenic when subsequently

evolved to piperacillin. Interestingly, 1 of the Day 20 TOBR replicates became pyomelanogenic

when subsequently evolved to ciprofloxacin (Day 40 TOBRCIPR-2). Hence in this study, pyo-

melanin hyperproduction is a consequence of piperacillin and ciprofloxacin evolution, yet the

likelihood to evolve this visually striking and observable phenotype depends on the history of

prior drug adaptation.

While the 3 PIPR lineages that produced pyomelanin were not significantly more resistant

to piperacillin than the nonpyomelanogenic PIPR lineage, pyomelanin-producing strains have

been observed clinically [60] and have been shown to be more persistent in chronic lung infec-

tion models [66]. We tested the reproducibility of this example of a phenotypic dependence on

the history of drug adaptation with a higher throughput approach. Starting with clonal popula-

tions of Day 0 Ancestor, Day 20 TOBR, and Day 20 CIPR, we seeded 92 replicate populations

of each lineage into microplates, and we used a 96-pin replicating tool to serially propagate

these populations and evolve them to increasing concentrations of piperacillin daily. The line-

ages that started from Day 0 Ancestor had the highest propensity to become pyomelanogenic

(Fig 6A) compared to lineages starting from Day 20 TOBR (Fig 6B) or Day 20 CIPR (Fig 6C).

Still, certain lineages starting from Day 20 TOBR and Day 20 CIPR did also produce pyomela-

nin, albeit with less propensity than starting from Day 0 Ancestor (Fig 6D; S8–S10 Figs).

Drug-order–specific effects in clinical isolates

To explore the relevance of our laboratory evolution results clinically, we tested for the drug-

order–specific MIC evolutionary dynamics in clinical isolates. We first tested the evolutionary
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dynamics of clinical isolates that were resistant to piperacillin but susceptible to tobramycin

and ciprofloxacin. We evolved 3 piperacillin-resistant clinical isolates of P. aeruginosa to piper-

acillin, tobramycin, and ciprofloxacin for 10 days and tracked how the piperacillin resistance

changed in these lineages. If the results from the adaptive evolution experiment applied to

these piperacillin-resistant clinical isolates, then we would expect that evolving to tobramycin

would not affect the high piperacillin resistance, but evolving to ciprofloxacin would restore

susceptibility to piperacillin. As mentioned previously, evolving Day 20 PIPR to LB did not

result in a reduction of MICPIP, which suggests that the resensitization to piperacillin when

Day 20 PIPR was evolved to ciprofloxacin was a consequence of the switch to the ciprofloxacin

drug pressure. Of the 3 isolates we tested, the evolutionary dynamics of 2 of these isolates

matched these expectations (Fig 7; S11 Fig and S3 Data). After normalizing to Day 1 MIC val-

ues, the MICPIP after 10 days of ciprofloxacin adaptation was significantly less than the MICPIP

Fig 6. Wild-type P. aeruginosa has a higher propensity to become pyomelanogenic when evolved to piperacillin compared to tobramycin-

resistant (TOBR) and ciprofloxacin-resistant (CIPR) lineages. We tested how common it was for piperacillin adaptation to lead to pyomelanin

hyperproduction under different historical backgrounds. Ninety-two replicates of (A) Day 0 Ancestor, (B) Day 20 TOBR-3, and (C) Day 20 CIPR-1 were

passaged daily to low, increasing concentrations of piperacillin for 10 days. Photographs of Day 7 of passaging show how the Ancestor had a higher

propensity of evolving the pyomelanin phenotype during piperacillin treatment compared to evolution of Day 20 TOBR-3 and Day 20 CIPR-1. The complete

set of photographs for all lineages tested is shown in S8–S10 Figs. (D) The number of visibly brown wells was tracked daily over the course of the 10 days of

piperacillin evolution. Overall, Day 0 Ancestor had the highest propensity to become pyomelanogenic during piperacillin evolution, followed by Day 20 CIPR-

3 and Day 20 TOBR-2. Interestingly, the number of brown wells for these lineages did not increase monotonically over time, suggesting heterogeneity in

these populations, and that nonpyomelanogenic subpopulations outcompeted the pyomelanogenic ones in the wells that transiently turned brown.

https://doi.org/10.1371/journal.pbio.2001586.g006
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after 10 days of LB adaptation in isolate #2 (Fig 7B, p< 0.05) and in isolate #3 (Fig 7C,

p< 0.001), indicating resensitization to piperacillin during ciprofloxacin adaptation. This

observation suggests that the MIC evolutionary dynamics we observed are not limited to labo-

ratory strains of P. aeruginosa and may be observed in diverse strains of P. aeruginosa, includ-

ing those originating from human patients. Note that these 3 clinical isolates were isolated

from different patients, and their phylogenetic relatedness between each other and to the labo-

ratory PA14 strain used in our study is untested. In isolate #1, there was no significant differ-

ence in the normalized MICPIP values after 10 days of adaptation to tobramycin, ciprofloxacin,

and LB (Fig 7A, p = 0.237, one-way ANOVA). Interestingly, this isolate evolved higher levels

of piperacillin and ciprofloxacin resistance than the other 2 isolates (S11 Fig and S3 Data),

which suggests the possibility that adaptation to ciprofloxacin in these higher piperacillin-

resistant cultures could still result in a restoration of piperacillin susceptibility.

In the next set of evolution experiments, we investigated the role that the large chromo-

somal deletions play in a drug-order–specific effect. We had observed that compared to the

Day 20 PIPR replicate that did not have a large deletion, the 3 Day 20 PIPR replicates with the

large deletions, when subsequently evolved to tobramycin, developed less tobramycin resis-

tance (S3 Data and S12 Fig). This observation suggests that the large deletions were involved in

reducing the subsequent rate of tobramycin resistance evolution given a prior history of piper-

acillin adaptation. A recent study isolated 4 pairs of clinical isolates of P. aeruginosa, in which

each pair consisted of a pyomelanogenic (PM) isolate and a “parental wild-type (WT)” non-

pyomelanogenic isolate [64]. In each of the 4 pairs, the only genomic difference between the

pyomelanogenic (denoted APM, BPM, CPM, and DPM) and its corresponding parental wild-type

isolate (denoted AWT, BWT, CWT, and DWT) was the presence of large chromosomal deletions

that overlap with parts of the deletions seen in Day 20 PIPR-1, -2, and -3 (Fig 8E; S5 Data).

Indeed, all of the large deletions encompass hmgA, whose loss accounts for the pyomelanin

Fig 7. Clinical isolates with high piperacillin resistance become resensitized to piperacillin following adaptation to ciprofloxacin. To see

if we could recapitulate the adaptation dynamics of the minimum inhibitory concentration of piperacillin (MICPIP) when Day 20 PIPR was evolved to

tobramycin and ciprofloxacin, we evolved 3 piperacillin-resistant clinical isolates of P. aeruginosa to piperacillin, tobramycin, ciprofloxacin, and

lysogeny broth (LB). (A) While the first isolate did not show restoration of piperacillin sensitivity during ciprofloxacin evolution as anticipated, (B and

C) the other 2 isolates recapitulated this effect. In clinical isolates #2 and #3, the relative changes in the MICPIP when the isolates were evolved to

ciprofloxacin were significantly different from the relative changes when evolved to LB at Day 10 (p < 0.05 and p < 0.001, respectively). For each of

the 3 isolates, a one-way ANOVA was first performed on the Day 10 MICPIP values of the lineages evolved to LB, tobramycin, and ciprofloxacin.

Error bars show SEM of 3 replicates per treatment. See S2 Text for the calculations of the statistical tests and S11 Fig for the original,

prenormalized data.

https://doi.org/10.1371/journal.pbio.2001586.g007
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phenotype. We used these 4 pairs of clinical isolates to test the hypothesis that the large dele-

tions play a role in lowering the rate of tobramycin resistance evolution. We evolved the 4

pairs of isolates to tobramycin using the same daily serial passaging technique used throughout

this study and tracked the MICs of tobramycin, piperacillin, and ciprofloxacin over the course

of 15 days (Fig 8; S3 Data and S13 Fig). At the end of the 15 days, we saw that APM, BPM, and

CPM had lower relative increases in MICTOB, compared to AWT (p< 0.01), BWT (p< 0.05),

and CWT (p< 0.05), respectively (Fig 8A–8C). These data provide support for the idea that the

large chromosomal deletions do indeed play a role in reducing the rate of tobramycin adapta-

tion, and potentially even in limiting the maximum level of tobramycin resistance that can be

developed comparatively. In the case of the fourth pair, we saw that DWT and DPM had compa-

rable increases in MICTOB over the course of the tobramycin adaptation (Fig 8D, p = 1.00). It

can be speculated that some combination of the presence or loss of specific genes in DPM led to

this evolutionary trajectory that is different from the other 3 pyomelanogenic isolates. We

would also like to point out that within each pair, the “WT” and “PM” isolates vary in initial

Day 1 MICTOB. The BPM and BWT pair was the most disparate pair, as BPM had a much lower

MICTOB than BWT (S13 Fig).

Interestingly, a recent study also observed large genomic deletions spanning hmgA when P.

aeruginosa PAO1 was evolved to meropenem, which is another beta-lactam antibiotic [65].

Fig 8. Clinical isolates with large chromosomal deletions have lower rates of tobramycin (TOB) resistance evolution. To see if large

chromosomal deletions played a role in reducing the rate of tobramycin resistance evolution, 4 pairs of clinical isolates were evolved to tobramycin. Each

pair consisted of a pyomelanogenic (PM) isolate with a large deletion, and its corresponding nonpyomelanogenic parental isolate that does not have a

large deletion (“wild-type” [WT]) [64]. As anticipated, we observed that (A) APM, (B) BPM, and (C) CPM had lower relative increases in the minimum

inhibitory concentration of tobramycin (MICTOB) compared to AWT, BWT, and CWT, respectively. However, (D) DWT and DPM had comparable relative

increases in MICTOB. Asterisks denote p < 0.05 of a two-sample t test after the raw MIC values were normalized by subtracting the average Day 1

MICTOB for each evolved lineage. See S2 Text for the calculations of the statistical tests. Error bars show SEM of 3 replicates per treatment (except BPM-

2, which had 2 replicates). (E) The large deletions of the 4 “PM” isolates are located in the same region as the deletions of Day 20 PIPR-1, -2, and -3, and

all of the deletions encompass hmgA, whose loss causes the hyperproduction of pyomelanin. See S13 Fig for the original, prenormalized data.

https://doi.org/10.1371/journal.pbio.2001586.g008
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These mutants were also pyomelanogenic. The large deletions in both our study as well as this

recent study also spanmexX andmexY, which encode portions of the efflux pump that is a sig-

nificant determinant of aminoglycoside resistance [67]. The loss of these genes in the 3 PIPR

replicates may partially explain why subsequent tobramycin adaptation is limited compared to

the replicate that did not sustain the large deletion.

Discussion

This study presents evidence of how the evolutionary history of bacterial adaptation to antibi-

otics can complicate strategies for treating infections and for limiting the further development

of multidrug resistance. Exposing bacteria to fluctuating environments has been shown to be a

potentially good strategy for slowing down the development of resistance [12,19,68]. More

broadly, mechanisms of memory and history dependence in bacterial systems are being

uncovered to better understand the dynamics of bacterial survival and adaptation in changing

environments [69–71]. For example, a recent study showed that the survival of Caulobacter
crescentus in response to a high concentration of sodium chloride stress depended on the dura-

tion and timing of an earlier treatment of a moderate concentration of sodium chloride and

that this effect was linked to delays in cell division, which led to cell-cycle synchronization

[72]. Another study described what they call response memory, which is when a gene regula-

tory network continues to persist after the removal of its external inducer. The study showed

that in E. coli, lac induction transiently continued when the environment was switched from

lactose to glucose, which may be beneficial when the environment fluctuates over short time-

scales [73]. The results of those studies as well as the results from this study challenge the

notion that bacteria respond solely to their present environment. Bacteria can encounter dif-

ferent stressors over time such as osmotic, oxidative, and acidic stress, and other studies have

looked at how adaptation to 1 stressor protects the bacteria against other stressors [7,74].

Another example of bacteria adapting to changing environments is how P. aeruginosa, which

can be found in the natural environment in the soil and water, can readily adapt to a human

host under the right conditions and consequently become pathogenic [75].

There are several factors involved in the emergence of antibiotic resistance that are clinically

important that are not considered in this study. We have not taken into account any patho-

gen/host interactions, such as the role of the immune system. We also do not take into consid-

eration the pharmacokinetics of the drug and the time-dependent fluctuation of drug

concentration as experienced by the bacteria in a human-host environment. Furthermore, the

dosages of clinical regimens are typically much higher than the wild-type MIC, and the evolu-

tionary dynamics of the bacteria under these conditions may be different from those seen in

our study, in which the drug pressure is slowly increased over time. We neglect to consider the

role of horizontal gene transfer, which is a common mechanism of antibiotic resistance trans-

fer, and focus rather on the role of de novo mutations acquired during adaptation. Because of

the nature of the serial passaging method, we may be selecting for fast growers that may not

necessarily have mutations that confer the most amount of resistance in terms of the MIC. We

used a strong selection pressure in this study by propagating from the highest concentration of

drug that showed growth, but it has been shown that weak antibiotic selection pressure can

greatly affect the adaptive landscape [76,77]. Lastly, these bacteria were evolved to 1 antibiotic

at a time, and we do not know how different mutant lineages would adapt if competed against

each other. It would be interesting in the future to conduct competition experiments to mea-

sure the fitness of the different lineages with respect to each other.

While adaptive evolution of clinical isolates suggests that the drug-order–specific effects

are clinically relevant, actual clinical studies must be performed to test the true clinical
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applicability of these effects. A major challenge that still needs to be addressed is how to trans-

late the results of in vitro adaptive evolution experiments to effective therapies that can be used

in a clinical setting [78]. For example, while we observed that piperacillin adaptation often led

to the large chromosomal deletions and concomitant pyomelanin hyperproduction, the clini-

cal isolates that had the large deletions (Fig 8) were not necessarily resistant to piperacillin. On

the other hand, the other set of clinical isolates, which did have resistance to piperacillin, did

not have the large deletions (Fig 7). Disparities between the phenotypic and genotypic adapta-

tions such as this will need to be studied further in terms of strain-specific differences, actual

history of antibiotic exposure, and other factors that are beyond the scope of this study.

Despite these caveats, there are several key factors of this study that provide confidence in

the claims made. We saw consistency in the parallel replicates for the treatment lineages. An

interesting exception is Day 40 PIPRTOBR-4, which had a higher final tobramycin resistance

compared to Day 40 PIPRTOBR-1, -2 and -3, which we believe is attributed to the large geno-

mic deletions seen in the first 3 replicates but not in the fourth replicate. We observed parallel

evolution in which several genes were mutated independently across multiple lineages, and

overall, there were less than 15 mutations per 20 days of evolution, which suggests positive

selection. Furthermore, many of the mutated genes are also observed in clinical isolates of P.

aeruginosa, further giving credence to the clinical relevance of these mutations.

As mentioned previously, studies that have looked at alternating treatments of antibiotics

have primarily looked at the effects of rapid switching, typically at daily or subdaily intervals.

One of such recent studies evaluated how E. coli responded to 136 different sequential treat-

ments of subinhibitory concentrations of doxycycline and erythromycin, with each treatment

consisting of 8 “seasons” of 12-hour-long adaptation periods to 1 of the drugs [19]. Using final

optical density as an endpoint metric, the study found that 5 of the sequential treatments could

clear the bacteria at the end of the eighth season. Interestingly, one of those 5 successful treat-

ments consisted of 4 seasons of erythromycin, followed subsequently by 4 seasons of doxycy-

cline. On the other hand, the treatment consisting of 4 seasons of doxycycline followed by 4

seasons of erythromycin did not manage to clear the bacteria at the end of 8 seasons. While the

experimental setup is much different compared to that of this present study in terms of organ-

ism, antibiotics used, duration of treatment, and endpoint metric, these 2 treatments (4 sea-

sons of erythromycin then 4 seasons of doxycycline and vice versa) are quite analogous to the

types of treatments tested in our present study. The fact that these authors found a difference

in the outcomes of this pair of opposite sequential treatments may suggest that drug-order–

specific effects similar to those presented in our study may play a role in the evolutionary

dynamics of their experiments.

Cycling between 2 drugs that exhibit collateral sensitivity to one another has been pro-

posed and tested as a strategy to slow down the rate of resistance development [14]. Studies

that have systematically tested for collateral sensitivities across a variety of antibiotics in E.

coli have consistently discovered that when E. coli is adapted to drugs of the aminoglycoside

class, it develops collateral sensitivity to several other drugs of different classes including

beta-lactams, DNA synthesis inhibitors, and protein synthesis inhibitors [14,16,77]. In our

present study, we tested 1 aminoglycoside (tobramycin), and we did not observe any collat-

eral sensitivity arise to piperacillin or ciprofloxacin during adaptation to tobramycin.

Instead, we saw collateral sensitivity to piperacillin and tobramycin arise as P. aeruginosa
was adapted to ciprofloxacin, which is a DNA synthesis inhibitor. While we only tested 1

drug in each of 3 drug classes, the dissimilarity of collateral sensitivity profiles between those

studies and this present study may highlight how collateral sensitivity profiles may be organ-

ism-specific and drug-specific. Further supporting this idea, these prior studies also showed

that while adaptation to drugs of the aminoglycoside class as a whole tended to lead to
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collateral sensitivity to other drug classes, not every aminoglycoside drug that was tested

induced the same collateral sensitivity profiles.

While we did observe cases of collateral sensitivity, the main focus of our study was not to

look at how resistance profiles to other drugs concurrently change during adaptation to 1

drug, but rather to see how adaptation to 1 drug influences the future evolutionary dynamics

as the resistant population adapts to a new drug. Additionally, we wanted to see how adapta-

tion to the second drug affected the resistance profile of the drug that the bacteria originally

developed resistance to. Our sustained drug adaptation scheme can be thought of as being

more akin to month-long antibiotic cycling at the level of the hospital ward or the environ-

ments that bacteria in persistent chronic infections are exposed to. The history-dependent evo-

lutionary dynamics presented in this study highlight the complexity of bacterial adaptation to

multidrug therapies, serve as a framework for forecasting evolutionary trajectories based on

genetic and phenotypic signatures of past adaptation, and ultimately help elucidate our funda-

mental understandings of the evolutionary forces that drive resistance adaptation.

Asymmetrical evolutionary responses in changing environments have been studied in

terms of collateral sensitivity/resistance [14,16], temperature [79], other abiotic stresses [7],

and in cancer treatments [80]. Here, we present the concept of drug-history–specific effects in

multidrug resistance adaptation, whereby the history of adaptation to 1 antibiotic environment

can influence the evolutionary dynamics during subsequent adaptation to another antibiotic

environment. These history-specific effects have direct clinical implications on optimizing

antibiotic treatment strategies to slow and prevent the emergence of dangerous multidrug-

resistant bacterial pathogens.

Materials and methods

Ethics statement

The set of P. aeruginosa clinical isolates collected from the University of Virginia Health Sys-

tem (presented in Fig 7) were deidentified, did not require Institutional Review Board

approval for their use, and were anonymized. The Hocquet P. aeruginosa clinical isolates

(which were originally collected by the authors of the Hocquet study [64]; presented in Fig 8)

also did not require Institutional Review Board approval for their use and were anonymized.

Experimental study design

We evolved, in parallel, 4 independent replicates for each lineage in the primary adaptive evo-

lution experiment and 3 independent replicates for each of the clinical isolates to balance the

statistical power of the conclusions with the technical feasibilities of the daily serial propaga-

tions. In the primary adaptive evolution experiment, we concluded the 1-drug evolution at the

end of 20 days because the resistance levels of the evolved lineages to their respective drugs

were saturated or close to saturated at that point. The clinical isolates from Fig 7 and from Fig

8 were evolved for 10 and 15 days, respectively, because the similarities and differences of the

drug-specific effects to those of the primary adaptive evolution experiment were readily appar-

ent at that point.

Media, growth conditions, and antibiotics

MIC plates were made daily using the broth microdilution method with the standard 2-fold

dilution series [81]. LB was used as the growth medium for all experiments (1% tryptone, 0.5%

yeast extract, 1% NaCl). Antibiotics tested include piperacillin sodium, tobramycin, and cipro-

floxacin HCl (Sigma). Aliquots of 1 mg/ml and 10 mg/ml antibiotic stocks were made by

Drug sequence influences evolution of resistance

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001586 August 8, 2017 23 / 34

https://doi.org/10.1371/journal.pbio.2001586


diluting the antibiotic powders in LB and were stored at −20˚C. New frozen drug aliquots

were used on a daily basis.

Adaptive laboratory evolution

A frozen stock of P. aeruginosa PA14 was streaked on an LB agar plate, and a single colony was

inoculated into 4 ml of LB, which was then grown overnight at 37˚C, shaking at 125 RPM.

This antibiotic-susceptible culture, denoted as the Day 0 Ancestor, was diluted to an OD600 of

0.001 (approximately 106 CFU/ml) and then inoculated into 3 identical MIC plates consisting

of concentration gradients of piperacillin and tobramycin. A sample of the ancestor was saved

in 25% glycerol and stored at −80˚C. The 3 MIC plates were used to serially propagate cultures

evolved to LB media, piperacillin, and tobramycin, with 4 biological replicates per condition.

Wells for growth control (media + culture) and sterility control (media) were included in each

MIC plate. For adaptation to LB media, bacteria were sampled from the growth control well.

MIC plates were placed in a plastic container (to prevent evaporation) and incubated at 37˚C

with shaking at 125 RPM (Thermo Scientific MaxQ 4000). MIC plates were incubated daily

for approximately 23 hours.

At the end of incubation, growth in the MIC plates was determined using a plate reader

(Tecan Infinite M200 Pro). Growth was defined as OD600 > 0.1 after background subtraction.

We recorded the MIC of each lineage for each drug, which was defined as the lowest antibiotic

concentration tested that did not show growth (S1 and S3 Data). To propagate, cultures were

passaged from the highest concentration that showed growth (i.e., MIC/2) from the corre-

sponding MIC drug gradient. For adaptation to LB, cultures were passaged from the growth

control well that contained only LB without any drug. For each culture to be passaged, the cul-

ture was first diluted by a factor of 1/250 in fresh LB (e.g., 20 μl of the culture was diluted in 5

ml of LB), which was then inoculated in fresh piperacillin and tobramycin drug gradients in

the new day’s MIC plate. Wells of the MIC plate thus contained 100 μl of double the final con-

centration of the antibiotic and 100 μl of the diluted culture. Hence, the cultures were diluted

by a total factor of 1/500 daily. Daily samples were saved in 25% glycerol and stored at −80˚C.

For Day 21, the piperacillin and tobramycin evolved cultures were subcultured in additional

MIC plates such that they could subsequently be evolved to tobramycin and piperacillin,

respectively.

A similar protocol was used to establish the ciprofloxacin-evolved lineages (CIPR). Starting

with a clonal population of the Day 0 Ancestor, 4 replicates were established and propagated

daily under ciprofloxacin treatment for 20 days. CIPR was then subpassaged to piperacillin and

tobramycin to establish the CIPRPIPR and CIPRTOBR lineages in addition to continued cipro-

floxacin evolution.

To establish the PIPRCIPR and TOBRCIPR lineages, bacteria from the frozen stocks of Day

20 PIPR and TOBR were revived on LB agar plates, and clonal populations were evolved to cip-

rofloxacin to establish these lineages. Similarly, to establish the PIPRLB, TOBRLB, and CIPRLB

lineages, bacteria from the frozen stocks of Day 20 PIPR, TOBR, and CIPR were revived on LB

agar plates, and clonal populations were evolved to LB.

Lastly, the MIC to ciprofloxacin was retrospectively measured for the Control, PIPR, TOBR,

PIPRTOBR, and TOBRPIPR lineages. Frozen stocks were revived and plated on LB agar plates.

The notation for the day numbering is such that Day X PIPR means X days exposure to pipera-

cillin. For consistency, stocks were revived from Days 0 (Ancestor), 5, 10, 15, 19, 20, 25, 30, 35,

and 39 for Control, PIPR, and TOBR. One day of exposure to ciprofloxacin would yield Days 1,

6, 11, 16, 20, 21, 26, 31, 36, and 40 MICs to ciprofloxacin. For PIPRTOBR and TOBRPIPR,

stocks were similarly revived from Days 20, 25, 30, 35, and 39 and exposed to ciprofloxacin to
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measure Days 21, 26, 31, 36, and 40 MICs to ciprofloxacin. S3 Data shows the MICs to pipera-

cillin, tobramycin, and ciprofloxacin, respectively, for all the lineages. Note that not all drug

MICs were measured on a daily basis for all lineages.

During analysis of the mutations, we deduced that there were some cross-contaminations

between replicates in a few lineages. Namely, we saw sets of mutations that were identical in 2

replicates. We believed that the most likely explanation was that the following 7 lines were

cross-contaminated sometime between Day 21 and Day 40: CIPRPIPR-3, CIPRPIPR-4, TOBR-1

CIPRTOBR-1, CIPRTOBR-2, CIPRTOBR-4, and CIPR-3, where the number denotes the repli-

cate. To redo these lineages, the corresponding Day 20 replicate frozen stocks were revived on

LB agar plates. Then clonal populations were used to redo the propagation as described before.

For example, CIPR-3 was evolved to piperacillin for 20 days to redo CIPRPIPR-3. We per-

formed Sanger sequencing of replicate-specific mutations (S3 Table) on the Day 40 mutants to

confirm successful propagation of the cultures.

Whole-genome sequencing

Frozen samples of Day 0 Ancestor, Day 20 Control, PIPR, TOBR, CIPR, Day 40 Control, PIPR,

TOBR, CIPR, PIPRTOBR, PIPRCIPR, TOBRPIPR, TOBRCIPR, CIPRPIPR, and CIPRTOBR were

streaked on LB agar plates and incubated at 37˚C. Agar plates were submitted to Genewiz

Incorporation for sequencing service. A single colony from each plate was chosen for DNA

extraction, library preparation, multiplexing, and sequencing using 101-bp paired-end reads

with the Illumina HiSeq 2500 platform. Reads were aligned to the reference P. aeruginosa
PA14 genome (NC_008463.1) with coverage ranging from 113X to 759X. This large range is

due to the fact that we submitted samples for sequencing in 3 batches and had different num-

bers of samples for each batch but had relatively the same number of reads per batch. Never-

theless, the coverage was more than sufficient to identify the SNPs, insertions, and deletions

in the genomes. The sequencing reads for Day 0 Ancestor and the 56 drug-evolved lineages

are available via the NCBI SRA database (www.ncbi.nlm.nih.gov/sra), accession number

SRP100674, BioProject number PRJNA376615.

Reads were aligned and mutations were called using the breseq pipeline [82] using default

settings. All reported mutations were visually inspected by viewing the read alignments in IGV

and the breseq output files, and mutations with less than 80% frequencies were not counted.

The full list of mutations is presented in S1 and S2 Tables. The circos software package [83]

was used to plot the mutations by genomic position for Fig 4 and the positions of the large

chromosomal deletions in Fig 8.

We confirmed some of the mutations using Sanger sequencing. For each of the Day 20

PIPR, TOBR, and CIPR replicates, we chose 1 mutation each to confirm (S3 Table). We also

used these to confirm that replicates were not contaminated before submitting them for

whole-genome sequencing. These mutations were also confirmed in each of the Day 40 line-

ages that were derived from the Day 20 PIPR, TOBR, and CIPR replicates.

Reproducing drug-history dependence in the pyomelanin phenotype

during piperacillin evolution

Clonal populations of Day 0 Ancestor, Day 20 TOBR-1, -2, -3 and -4, and Day 20 CIPR-1, -2, -3,

and -4 were grown in LB starting from the frozen samples. These cultures were diluted in LB to

OD600 of 0.001. On Day 1, in 96-well plates, 100 μl of the diluted cultures were inoculated with

100 μl of 4 μg/ml piperacillin (to yield a final concentration of 2 μg/ml piperacillin). Ninety-two

wells were used to establish independent replicate populations exposed to piperacillin. Cultures

were incubated at 37˚C with shaking at 125 RPM. On Day 2, replicate populations were
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passaged using a 96-pin replicator tool (V&P Scientific, VP246, 100–150 μl per pin) into 200 μl

of 4 μg/ml piperacillin. This protocol was continued until Day 10 with a final concentration of

20 μg/ml piperacillin. For each plate, 2 wells were used as sterility controls (only LB), and 2

wells were used as growth controls (LB with bacteria, without drug). Photographs were taken

daily (S8–S10 Figs), and the number of visibly brown wells was recorded.

Testing for drug-order–specific evolutionary dynamics in clinical isolates

Three clinical isolates of P. aeruginosa with high piperacillin resistance and low tobramycin

and ciprofloxacin resistance were obtained from the University of Virginia Health System and

were evolved to the 3 drugs in the same manner as the main adaptive evolution experiment

starting from frozen samples. These isolates were first confirmed to actually be P. aeruginosa
with PCR by using primers that specifically amplify the 16S rRNA region of P. aeruginosa [84].

Three replicates of each isolate were evolved to each of the 3 drugs for 10 days, and their MICs

to the 3 drugs were measured as before. In separate subsequent experiments, the 3 clinical iso-

lates were evolved to LB with 3 replicates each. The MICPIP was measured for 10 days (S3

Data). This measurement was done by inoculating into piperacillin concentration gradients to

measure the MICPIP but sampling and passaging from the “growth control” well (LB with bac-

teria, without drug) to adapt to LB.

The 4 pairs of clinical isolates of P. aeruginosa from the Hocquet study [64] were evolved to

tobramycin for 15 days with 3 parallel replicates each, with the exception of BPM, which had 2

replicates due to cross-contamination in the third replicate. The MICs for piperacillin and cip-

rofloxacin were also measured every 5 days (S3 Data). At the end of the 15 days of evolution,

primers amplifying part of the hmgA gene were used to check for the presence of the gene in

the “WT” isolates and the absence of the gene in the “PM” isolates (S3 Table).

Statistical significance of drug-order–specific effects in MIC profiles

All statistical comparisons of MIC values were performed on the log2 transformed values.

Unless noted otherwise, one-way ANOVAs were performed on the MICs of the relevant line-

ages. If the p-value from the ANOVA was less than 0.05, a post-hoc Tukey’s honest significant

difference (HSD) multiple comparisons test was then performed to determine which pairs of

treatments were significantly different from each other. The Tukey’s HSD tests report 95%

confidence intervals for the true mean difference for each pairwise comparison. If the confi-

dence interval does not contain 0, then the 2 groups being compared have significantly differ-

ent means at the p = 0.05 level. To also assess the comparisons using nonparametric statistic

tests, Kruskwal-Wallis tests followed by post-hoc Dunn’s multiple comparisons tests were also

performed. All of the Kruskal-Wallis tests yielded comparable results to the one-way ANOVA

at the alpha = 0.05 significance level, and the conclusions are the same for the key comparisons

that drive the results highlighted in the manuscript. For a complete set of calculations, see S2

Text.

For the comparisons presented in Fig 3, treatments being compared consist of those listed

on the x-axis of each graph in the figure. For the comparisons presented in Fig 7, the raw MIC

values for each lineage were first normalized by subtracting the average Day 1 MIC of each of

their respective lineages. For each of the 3 clinical isolates, a one-way ANOVA and a Kruskal-

Wallis test were performed on the Day 10 MICPIP values of the lineages evolved to LB, tobra-

mycin, and ciprofloxacin (piperacillin-adapted lineages were excluded in the comparisons).

The Tukey’s HSD test and Dunn’s test were then performed to see if the Day 10 MICPIP values

of the lineages evolved to tobramycin and ciprofloxacin were significantly different from the

lineages evolved to LB. For the comparisons presented in Fig 8, the raw MIC values for each

Drug sequence influences evolution of resistance

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001586 August 8, 2017 26 / 34

https://doi.org/10.1371/journal.pbio.2001586


lineage were first normalized by subtracting the average Day 1 MIC of each of their respective

lineages. A two-sample t test and a Wilcoxon rank sum test were performed for the Day 15

MICTOB values of the “WT” and “PM” lineages evolved to tobramycin in each of the 4 pairs of

isolates. Calculations were done in MATLAB R2016b, using the functions “anova1” for one-

way ANOVA, “multcompare” for Tukey’s HSD test, “ttest2” for two-sample t test, and “rank-

sum” for the Wilcoxon rank sum test. The Kruskal-Wallis test was done with the “kruskal.test”

command in R, and the Dunn’s test was done with the “posthoc.kruskal.dunn.test” command

with the PMCMR R package [85].

Supporting information

S1 Text. Supplementary text. This file contains supplementary text on the analysis of growth

rates, confirmation of mutations in evolved lineages, and extended analysis of mutations.

(PDF)

S2 Text. Statistical tests. This file contains the calculations for all statistical tests performed in

this study.

(PDF)

S1 Fig. Distribution of retrospective MIC measurements. Minimum inhibitory concentra-

tion (MIC) measurements were performed using 4 colonies per lineage replicate to test the

MICs of the frozen permanent stocks. S2 Data shows which MICs were measured retrospec-

tively for the different lineage replicates and the values of the original and retrospectively mea-

sured MICs. The histogram shows the distribution of the difference between the retrospective

and original MICs for the 320 retrospectively measured MICs. Overall, 234 of the 320 (73%)

retrospectively measured MICs were within one 2-fold dilution step of the originally measured

MIC on either direction (−1, 0, and 1 on the x-axis).

(TIF)

S2 Fig. Summary of the minimum inhibitory concentration (MIC) time courses. This figure

summarizes the data presented in Fig 2 of the main text. The Day 1, Day 20, and Day 40 log2

MIC values (μg/ml) of piperacillin (PIP), tobramycin (TOB), and ciprofloxacin (CIP) are

shown for all the evolved lineages of the main adaptive evolution experiment. The values are

the average of 4 replicates per lineage (S3 Data). For each lineage, the left, middle, and right

boxes denote the MICPIP, MICTOB, and MICCIP, respectively. The color intensity is normalized

by the minimum and maximum MIC of each drug across all the lineages. For example, for log2

MICPIP, the lowest value is 1.5, which is seen in Day 40 CIPR, and the highest log2 MICPIP is

9.5, which is seen in Day 40 PIPR. The color of the arrow denotes the treatment.

(TIF)

S3 Fig. Visualization of drug-order–specific effects and quantification of the changes in

minimum inhibitory concentration (MICs). All values shown are the averages of 4 replicates

(S3 Data). (A) The MICs of the 3 drugs for Days 1, 20, and 40 for all treatments are plotted in

3D MIC space to show how the MIC profiles change over the course of adaptation. Day 1

MICs are denoted by the triangles. A “nonright angle” indicates a change in resistance to 1 (or

more) of the other drug(s). The color/style of the line indicates the treatment and is labeled as

such. (B to D) 2D projections of (A). Labels for the lines carry over from (A). (E) Changes in

average MICs for all drugs for all treatments are plotted on a single axis to better facilitate

quantitative comparison. Here, red, blue, and yellow lines denote MICs to piperacillin (PIP),

tobramycin (TOB), and ciprofloxacin (CIP), respectively.

(TIF)
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S4 Fig. Collateral sensitivity of piperacillin (PIP) and tobramycin (TOB) during ciproflox-

acin (CIP) adaptation. (A) Collateral sensitivities to tobramycin (left) and piperacillin (right)

were observed during the evolution starting from Day 0 Ancestor to ciprofloxacin. While there

were no statistically significant changes in MICTOB and MICPIP after 20 days of evolution to

LB in the Control, there were significant decreases after 20 days of evolution to ciprofloxacin.

Similarly, (B) there was a significant decrease in MICTOB when Day 20 PIPR was subsequently

adapted to ciprofloxacin, (C) and in MICPIP when Day 20 TOBR was subsequently adapted to

ciprofloxacin. For all 3 panels, the asterisks denote p< 0.05 (Tukey’s HSD test), n.s. denotes

p> 0.05, and the color of the asterisks denotes which drug minimum inhibitory concentration

(MIC) is being compared. In the plots, for each lineage being shown, the black bar denotes the

mean of the 4 individual replicate values (gray dots). See S2 Text for the calculations of the sta-

tistical tests and S3 Data for the raw MIC data.

(TIF)

S5 Fig. Growth curves of evolved lineages. The OD600 was measured over the course of 24

hours for the 68 evolved replicate lineages (17 lineages of 4 biological replicates each) as well as

the Day 0 Ancestor in quadruplicates grown in lysogeny broth (LB). Note that because of the

pyomelanin hyperproduction, replicates 1, 2, and 3 of the PIPR and PIPR-derived lineages

reach higher final OD600’s than the replicate 4 lineages as is apparent in the curves above (as

discussed in the main text).

(TIF)

S6 Fig. Analysis of growth rates of the evolved lineages. (A) The growth rates were calculated

from the growth curves presented in S5 Fig. The means and standard deviations of the 4 repli-

cates for each of the replicate lineages are shown. (B) The correlation between the growth rates

of the Day 40 lineages (x-axis) and the change in minimum inhibitory concentration (MIC) of

the corresponding Day 20 lineages (y-axis) was calculated. The data suggest no correlation

between growth rate and the degree to which the MIC changes from Day 20 to Day 40. For

example, the 4 red crosses show the growth rates of Day 40 PIPRTOBR-1, -2, -3, and -4 on the

x-axis plotted against the log2 MICPIP of Day 20 PIPR-1, -2, -3, and -4 minus the log2 MICPIP

of Day 40 PIPRTOBR-1, -2, -3, and -4, respectively on the y-axis. See S4 Data for the growth

rate data.

(TIF)

S7 Fig. Distribution of mutations. Histogram of the number of mutations shows that overall,

lineages that were evolved to ciprofloxacin accumulated the most mutations and had compara-

bly more deletion mutations. See S1 Table for the complete list of mutations.

(TIF)

S8 Fig. Reproducibility of pyomelanin phenotype during piperacillin evolution starting

from Day 0 Ancestor. Ninety-two replicates of Day 0 Ancestor were serially passaged with a

replicator tool for 10 days to increasing concentrations of piperacillin.

(TIF)

S9 Fig. Reproducibility of pyomelanin phenotype during piperacillin (PIP) evolution start-

ing from Day 20 TOBR. Ninety-two replicates of Day 20 TOBR-1, -2, -3, and -4 were serially

passaged with a replicator tool for 10 days to increasing concentrations of piperacillin.

(TIF)

S10 Fig. Reproducibility of pyomelanin phenotype during piperacillin (PIP) evolution

starting from Day 20 CIPR. Ninety-two replicates of Day 20 CIPR-1, -2, -3, and -4 were
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serially passaged with a replicator tool for 10 days to increasing concentrations of piperacillin.

(TIF)

S11 Fig. Evolutionary dynamics in clinical isolates with high piperacillin (PIP) resistance.

Three clinical isolates of P. aeruginosa with high piperacillin resistance were evolved to pipera-

cillin, tobramycin, and ciprofloxacin to test if we could recapitulate the evolutionary dynamics

seen in MICPIP of PIPR, whereby evolution to ciprofloxacin would cause MICPIP to decrease,

while evolution to tobramycin would not. We were able to see this result recapitulated in iso-

late #2 and isolate #3, but not in isolate #1 (see main text). Interestingly, isolate #1 was able to

be evolved to higher levels of piperacillin resistance and ciprofloxacin resistance compared to

the other 2. Thin lines show the individual time courses of 3 replicates per treatment, and bold

lines show their averages. The dotted line in the first row shows the mean MICPIP of Day 1

Control to emphasize that the clinical isolates are resistant to piperacillin at Day 1. Error bars

show SEM for the 3 replicates for each lineage. See S3 Data for the raw numerical data.

(TIF)

S12 Fig. Drug history-dependence in MICTOB and large deletions in PIPR. The resistance

levels to tobramycin for individual replicates are plotted for Day 20 PIPR and Day 40 PIPR-

TOBR. The replicates denoted with the filled-in circles have large deletions in their genome,

while the replicate denoted by the open circle does not. We see that the replicates of Day 20

PIPR with the large chromosomal deletions develop less resistance to tobramycin than the rep-

licate that does not have the deletion. See S3 Data for the raw numerical data.

(TIF)

S13 Fig. Evolutionary dynamics in clinical isolates with large chromosomal deletions. Four

pairs of clinical isolates of P. aeruginosa were evolved to tobramycin. Each pair of isolates (col-

umns) consists of a pyomelanogenic isolate (PM) that has a large deletion, and a parental iso-

late from which the PM isolate is derived (wild-type [WT]). In each pair, the only genetic

difference is the presence of a large chromosomal deletion in the PM isolate. The top, middle,

and bottom rows show the minimum inhibitory concentrations (MICs) of the isolates to

tobramycin, piperacillin, and ciprofloxacin, respectively, as they adapt to tobramycin. Thin

lines show the individual time courses of 3 replicates per treatment (with the exception of BPM,

which has 2 replicates), and bold lines show their averages. Error bars show SEM for the 3 rep-

licates (2 for BPM) for each lineage. See S3 Data for the raw numerical data.

(TIF)

S1 Data. Number of generations of growth in evolved lineages. This file shows the OD600

measurements of the wells from which bacteria were passaged for each of the evolution experi-

ments and the calculations for the estimated number of doublings.

(XLSX)

S2 Data. Retrospective minimum inhibitory concentration (MIC) measurements. This file

contains the retrospectively measured MICs of a subset of the replicate lineages from the main

adaptive evolution experiment, and the differences between the retrospective and the original

MICs.

(XLSX)

S3 Data. Raw data of MICPIP, MICTOB, and MICCIP. This file contains the data used in Figs

2, 3, 7 and 8. Note that not all lineages were tested for resistance to each drug at a daily resolu-

tion. Also, note that the ciprofloxacin resistance was measured retrospectively for the Control,

PIPR, TOBR, PIPRTOBR, and TOBRPIPR lineages.

(XLSX)
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S4 Data. Growth curves and growth rates analysis. This file contains the growth rates of the

evolved lineages and the data for the subsequent analysis of the growth rates.

(XLSX)

S5 Data. Genes in large deletions. This file lists the genes and their relevant information of

the large chromosomal deletions of PIPR-1, PIPR-2, PIPR-3, APM, BPM, CPM, and DPM.

(XLSX)

S1 Table. Complete list of mutations. 1’s and 0’s denote the presence and absence of muta-

tions, respectively. The 2 mutations highlighted in green denote synonymous SNPs.

(DOCX)

S2 Table. Descriptions of mutated genes.

(DOCX)

S3 Table. Mutations confirmed by Sanger sequencing.

(DOCX)

S4 Table. Frequently mutated genes. Values denote the number of different lineages that had

mutations in the specified gene for the given treatment. Values are not double counted if

passed on from Day 20 to Day 40, e.g., a mutation that occurred in Day 20 PIPR that carried

over to Day 40 PIPR, PIPRTOBR, and PIPRCIPR is counted as 1 lineage.

(DOCX)
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