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Abstract: The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted
interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-
1 mRNA and protein expression are associated with progression in several cancers, while expression
by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can
be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant
cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis,
tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the
tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation
of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles
released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates
the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and
chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem
cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic
stress are mediated by several cell surface receptors and by regulating the functions of several
secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in
cancer and the challenges that remain in harnessing its therapeutic potential.

Keywords: angiogenesis; cytotoxic T cells; natural killer cells; CD36; CD47; integrins; tumor-initiating
cells; autophagy; nitric oxide; transforming growth factor-β1

1. Introduction

Cancer has been described as a wound that does not heal [1]. Despite many simi-
larities between the wound and tumor microenvironments, exploitable differences in the
recruited cell types and their secreted extracellular matrix products have been identified
as contributors to cancer progression and potential therapeutic targets. Our interest in
studying the role of the secreted protein thrombospondin-1 (TSP1, encoded by THBS1) in
the tumor microenvironment arose from our observation that TSP1 expression decreased
during malignant progression in melanoma and breast carcinoma cell lines. The expres-
sion of oncogenic forms of K-Ras, H-Ras, and N-Ras in bronchial epithelial cells also
suppressed TSP1 mRNA and protein expression [2]. Conversely, re-expression of TSP1
impaired tumor growth and metastasis in several types of cancer, including melanoma,
glioblastoma, prostate carcinoma, squamous cell carcinoma, and cervical carcinoma [3–
7]. Other oncogenes were subsequently found to negatively regulate TSP1 expression,
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including MYC [8,9]. Conversely, inactivation of tumor suppressor genes such as TP53
and RB1 suppressed TSP1 expression [10–15]. Deletion of THBS1 is a rare event in most
human cancers, and the observed loss of expression largely results from epigenetic effects
of the altered oncogenes and tumor suppressor genes [16]. Despite the general loss of
TSP1 expression in malignant cells, elevated circulating levels of TSP1 in blood have been
reported in several human and murine cancers [10]. TSP1 expression is also induced in the
wound microenvironment [17]. The relevance of TSP1 in the wound/cancer dichotomy
was further suggested by a report that showed TSP1 mRNA is upregulated in renal tissue
regeneration but downregulated in renal cell carcinoma [18].

In addition to an intrinsic role for TSP1 expressed by tumor cells, increased growth
of B16 melanomas and F9 testicular teratocarcinomas was observed when implanted in
syngeneic mouse strains lacking Thbs1 [19]. As TSP1 is a secreted protein, its abundance in
the tumor microenvironment depends on both tumor and stromal cell expression. TSP1 in
the tumor microenvironment can influence the behavior of multiple cell types that regulate
tumor growth and metastasis. In addition to being regulated by oncogenes and tumor
suppressor genes, TSP1 in the microenvironment can mediate feedback regulation of their
expression, as demonstrated for p53 and Myc [20]

Consistent with the complexity of function for other matricellular proteins, both
protective and tumor-promoting functions of TSP1 have also been reported. Divergent roles
of TSP1 can be mediated by engaging different TSP1 receptors (Figure 1). In cases where
cells express multiple TSP1 receptors, responses to TSP1 can be biphasic. For example, by
engaging several integrins, TSP1 can promote endothelial cell motility and proliferative
responses, whereas engaging CD47 on the same cells inhibits the same responses [10,21,22].
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Figure 1. TSP1 subunit domains and their cell surface receptors or extracellular ligands. TSP1 is
a ~450 kDa homotrimer of subunits linked by disulfide bonds near the N-terminal pentraxin-like
domain. Type 1 TSP1 repeats (TSR), EGF-like, and calcium-binding repeats form the central stalk
region of TSP1, connecting the N- and C-terminal globular domains.

This review focuses on the direct effects of TSP1 on tumor cells, the vascular cells that
enable the delivery of oxygen and nutrients required for tumor growth, and host immune
cells that can mediate effective antitumor immunity but also produce factors that protect
some tumors from immune clearance and facilitate metastatic spread.
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2. Functions of TSP1 Receptors and Secreted Interaction Partners

Understanding the divergent functions of TSP1 in cancer requires an appreciation of
the multiple TSP1 receptors that are expressed on each cell type in the tumor microenvi-
ronment as well as the secreted factors that interact with TSP1 and mediate some of its
functions (Figure 1). Domains of TSP1 and specific peptide sequences have been identified
that are recognized by some of its receptors. As TSP1 is a substrate for several proteases in
the tumor microenvironment, fragments of TSP1 that engage specific subsets of receptors
may have biologic activities that differ from those of intact TSP1 [23,24].

2.1. Cell Surface Receptors
2.1.1. Integrins

Several integrins have been identified that recognize TSP1 (Table 1), and binding sites
in TSP1 recognized by several of these have been identified (Figure 1). These mediate
the promotion of adhesion and migration of tumor cells, vascular cells, and T cells by
TSP1 [25–27]. Several β1 integrins mediate the pro-angiogenic activities of N-terminal
fragments of TSP1 [23,24,28,29]. The RGD sequence in the calcium-binding repeats of TSP1
is recognized by αvβ3, but its accessibility is regulated by disulfide bond isomerization in
this domain [30].

Table 1. Cell surface TSP1 receptors expressed on cancer and stromal cells.

Integrin Function Reference

α3β1 Pro-angiogenic, cancer cell adhesion/motility [26–28,31]
α4β1 Pro-angiogenic, T cell chemotaxis and MMP expression [23,25]
α6β1 Pro-angiogenic, macrophage ROS [24,32]
α9β1 Pro-angiogenic [29]
αvβ1 Vascular remodeling [33]
αvβ3 Tumor cell adhesion [34]
CD36 Anti-angiogenic; phagocytosis of apoptotic cells [35,36]
CD47 Anti-angiogenic, immune checkpoint, stress responses [10,37]

CD148 Anti-angiogenic, EGFR regulation [38,39]
Calreticulin/LRP1 Adaptive immunity, cancer-associated fibroblasts, EVs,

metastasis
[40,41]

STIM1 Calcium entry [42]

2.1.2. CD36

Binding sites for CD36 were identified in the central type 1 repeats of TSP1 [35]. CD36
is abundant on macrophages and selectively expressed on microvascular endothelial cells,
where it mediates an anti-angiogenic activity of TSP1 [35]. Peptide mimetics based on
one of these sites demonstrated anti-angiogenic and anti-tumor activities in preclinical
studies [43,44], but not in human efficacy trials [45–47].

2.1.3. CD47

Two CD47-binding sequences were identified in the C-terminal domain of TSP1 [48].
However, a recombinant region of TSP1 containing these sequences did not bind to a
nonglycosylated extracellular domain of CD47 based on surface plasmon resonance [49].
Subsequent studies confirmed that high-affinity binding of the C-terminal domain of
TSP1 to cells requires CD47 and demonstrated that glycosaminoglycan modification of
CD47 is necessary for TSP1 signaling [50,51]. A recent super-resolution microscopy study
indicated that high-affinity binding of TSP1 is mediated by clustering of CD47 on aged red
blood cells [52]. Expression of CD47 is broadly elevated in cancers, and in some cancers,
higher CD47 expression is associated with poor survival [53]. Expression of CD47 in the
tumor microenvironment is regulated by oncogenes, including MYC [15]. CD47-blocking
antibodies have shown efficacy in preclinical cancer models and early clinical trials, but
these act primarily by blocking CD47 interactions with SIRPα rather than TSP1 [54].
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2.1.4. Calreticulin/LRP1

The scavenger receptor low density lipoprotein receptor-related protein-1 (LRP1)
mediates uptake of TSP1 by several cell types that result in its degradation [55]. The
interaction between TSP1 and LRP1 is mediated by calreticulin, which signals disassembly
of focal adhesions in some cell types [56]. Several functions of LRP1 as a TSP1 receptor
have been identified relevant to the tumor microenvironment. Interaction of a TSP1
fragment produced by T cells with calreticulin/LRP1 regulated their motility, integrin-
dependent adhesion, and interaction with antigen-presenting cells [40,57]. A complex
containing LRP1, TSP1, and annexin A6 was recently identified as being produced by
cancer-associated fibroblasts in pancreatic ductal adenocarcinoma [41]. This complex was
associated with extracellular vesicles (EVs) released by the fibroblasts taken up by the tumor
cells. Circulating EVs bearing annexin A6 were identified as a biomarker for pancreatic
carcinoma, and inhibition of their function in a mouse model decreased metastasis.

2.2. Functional Interactions of TSP1 with Other Secreted Proteins
2.2.1. TGFβ

TSP1 is one of several factors that can mediate the activation of latent-TGFβ1 by
dissociating the latency-associated peptide [58]. In the context of cancer, TGFβ stimulates
the growth of some cancers and suppresses antitumor immunity [59,60]. Inhibition of TSP1-
mediated activation of latent TGFβ was effective in a preclinical model to treat multiple
myeloma [61].

2.2.2. Proteases

In addition to being a substrate for several extracellular proteases, including thrombin,
TSP1 was identified as a direct inhibitor of several proteases, including plasmin, neutrophil
elastase, tissue factor pathway inhibitor, and cathepsin G [62,63]. TSP1 is also a competitive
inhibitor of von Willebrand factor’s cleavage by ADAMTS13 [64]. Conversely, TSP1 can
increase the activity of matrix metalloproteinases by limiting the production of tissue
inhibitors of metalloproteinases-1 (TIMP1) [65] and by β1 integrin-dependent induction of
MMP2, MMP7, and MMP9 expression in T cells [25].

2.2.3. Angiogenic Growth Factors

Direct binding of TSP1 to fibroblast growth factor-2 and vascular endothelial growth
factor-A (VEGF) contributes to its anti-angiogenic activities under certain conditions [66,67].
Interaction with platelet-derived growth factor (PDGF) modulates vascular smooth muscle
recruitment during angiogenesis [68,69]. Interaction with PDGF also enhances mesenchy-
mal stromal cell formation [70].

2.2.4. sFRP1

In addition to containing heparin and integrin binding sites, the N-terminal pentraxin-
like module of TSP1 interacts specifically with several members of the hyaladherin family that
contain link modules and with secreted frizzled-related protein (sFRP)-1 [71,72] (Figure 1).
sFRP1 inhibited breast carcinoma cell adhesion on immobilized TSP1 mediated by α3β1
integrin and inhibited migration of the same cells induced by TSP1 [72].

3. TSP1 Regulation of Angiogenesis and Tumor Perfusion
3.1. Inhibition and Stimulation of Angiogenesis

Early efforts to define the underlying mechanism by which the loss of TSP1 in the
tumor microenvironment contributes to cancer progression resulted in three independent
reports in 1990 identifying TSP1 as an angiogenesis inhibitor [21,73,74]. TSP1 is a potent
inhibitor of endothelial cell migration and proliferation and an inducer of endothelial apop-
tosis [21,75]. Consistent with these results, TSP1 inhibited angiogenesis in rat cornea [74],
chicken chorioallantoic membrane [76], and muscle explants in 3D culture [77]. Evidence
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from mouse models demonstrated that elevating TSP1 expression inhibits tumor growth
with a corresponding decrease in vascular density [3,11,78].

CD36 was the first TSP1 receptor identified to mediate its anti-angiogenic activity [35],
and peptide mimetic drugs derived from a sequence in the second TSR repeat of TSP1
that binds to CD36 (Figure 1) have been developed to inhibit tumor angiogenesis [43].
However, some observations were not consistent with the hypothesis that TSP1 functions
solely as an angiogenesis inhibitor. If true, one would expect TSP1 to be downregulated
during wound repair as well as in cancer. One would also predict that the loss of this
inhibitor would accelerate wound repair in a Thbs1−/− mouse. Instead, TSP1 was rapidly
up-regulated following excisional skin wounding [79], and the Thbs1−/− mouse exhibited
delayed wound closure in this model [80]. Furthermore, TSP1 antisense oligonucleotides
delayed repair of excisional skin wounds in wild-type (WT) mice [79]. This activity of
TSP1 contrasts with TSP2, a closely related protein that also inhibits angiogenesis and
engages CD36 [81–83]. TSP2 is expressed only late in wound closure, and Thbs2−/− mice
showed the predicted accelerated excisional wound repair [80]. Agah et al. rationalized
the unexpected wound repair phenotype of the Thbs1−/− mouse by invoking another TSP1
responsive cell type. They found that macrophage infiltration was impaired in the absence
of TSP1, and chemokines’ levels essential for wound repair such as MCP1 were lower.
Therefore, they proposed that the dominant activity of TSP1 induced early in excisional
wound repair is not to limit angiogenesis but instead to recruit monocytes into the wound.

The excisional skin wound model lacked ischemic stress, which reveals a more critical
function of TSP1 in limiting the angiogenic response required for wound repair. Nitric
oxide (NO)/cGMP signaling is a central regulator of angiogenesis and tissue perfusion
under ischemia, and TSP1 signaling through its receptor CD47 potently inhibits NO biosyn-
thesis and signaling in vascular cells [37] (Figure 2). Thbs1−/− and cd47−/− mice exhibit
enhanced vascular responses to NO and improved recovery from ischemic injuries [84].
Blocking CD47 expression or function in WT mice, rats, and miniature pigs improved
recovery from ischemic injuries [85–90]. TSP1 inhibition of the angiogenic response to NO
donors was lost in muscle explants from cd47−/− mice but preserved in cd36−/− mice [91].
We established physiological and pathophysiological roles for CD47 in mediating TSP1
signaling in endothelial cells, vascular smooth muscle cells, and platelets [77,84,92,93].
Therefore, the elevated TSP1 in wounds has two acute activities in addition to its long-term
regulation of angiogenesis and vascular remodeling: (1) TSP1 is a potent vasoconstrictor
that acutely limits bleeding but can be counterproductive for tissue survival under ischemic
stress, and (2) TSP1 is an autocrine factor released by platelets that promotes hemostasis.

These studies provide additional insights into why TSP1 is downregulated in cancers.
As TSP1 limits angiogenesis and perfusion, its local expression is clearly a disadvantage to a
growing tumor [10]. Loss of TSP1 expression may also decrease the thrombogenic potential
of the tumor vasculature by maximizing the anti-thrombotic activity of NO produced by
the tumor and its stroma.

3.2. Vascular Perfusion of Tumors and the Steal Effect

CD47-dependent antagonism of NO signaling by TSP1 limits the perfusion of healthy
tissues, but this signaling is impaired in the tumor vasculature [94]. In the closed system of
vascular physiology, vasodilation in one vascular bed can “steal” blood flow from another
vascular bed fed by the same perfusing artery [95]. Conversely, TSP1-mediated constriction
of healthy tissue vasculature can result in increased perfusion of tumors, providing selective
pressure for the elevated circulating TSP1 levels observed in some cancers [10].
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Figure 2. Redundant regulation of NO signaling by TSP1–CD47 interaction. Endogenous NO
synthesis is stimulated via Akt-mediated phosphorylation of endothelial nitric oxide synthase (eNOS)
downstream of the VEGF receptor VEGFR2. Ligation of CD47 by TSP1 also inhibits activation
of soluble guanylyl cyclase (sGC) mediated by endogenous or exogenous NO. TSP1 also inhibits
calcium-dependent activation of eNOS and NO signaling downstream of cGMP by inhibiting cGMP-
dependent protein kinase (cGK-1).

3.3. Endothelial Cell Apoptosis

TSP1 and its type 1 repeats induce apoptosis of endothelial cells [75]. CD36 and
CD47 have been implicated in mediating TSP1 apoptotic signaling [96,97]. The induction
of TNFα expression by TSP1 in endothelial cells may mediate cell death based on a
requirement for tumor necrosis factor receptor-1 [98]. In the tumor microenvironment,
TSP1-induced endothelial cell apoptosis contributes to the antitumor activity of low-dose
cyclophosphamide treatment [99].

4. TSP1 and Antitumor Immunity
4.1. Regulation of T Cell Immunity

Our interest in the regulation of anti-tumor immunity by TSP1 began with the ob-
servation that TSP1 globally suppresses changes in gene expression that are induced by
T cell antigen receptor (TCR) signaling [100], which we subsequently found to require
CD47 [25,51,101]. Others reported that engaging CD47 limits T cell-dependent inflam-
mation in vivo [102], induces T cell apoptosis in the context of TCR signaling [103], and
induces CD4+ T cell differentiation into regulatory T cells [104]. The latter study implied
that TSP1 has the same activity, but the only evidence presented involved a TSP1 peptide
analog with limited specificity [37,105].

Immune cell responses to TSP1 are defined by integrating signals from several cell
surface receptors [25,106–108]. Jurkat T cells have been a valuable model for defining such
cross-talk because somatic mutants are available that lack the TSP1 receptors α4β1 integrin,
CD47, and several signaling molecules downstream of these receptors [25,107]. These tools
and T cells isolated from transgenic mice lacking TSP1 or CD47 enabled us to confirm or
exclude the contribution of each receptor to specific T cell responses in vitro and immune
responses in vivo [25,51,101,107,109,110].

TSP1-mediated CD47 signaling limits antigen-dependent T cell activation by several
mechanisms. By inhibiting signal transduction downstream of the T cell receptor, TSP1
inhibits the expression of genes encoding IL-2 and TNFα that can stimulate proliferation
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and activation of other immune cells and the α-subunit of the IL-2 receptor (CD25), which
limits the ability of T cells exposed to TSP1 to respond to exogenous IL-2. TSP1 also limits
the expression of cystathionine β-synthase, which is induced during T cell activation and
produces the diffusible mediator H2S that acts on the T cell cytoskeleton to regulate T cell
polarization required for immunological synapse formation [101,111].

Sensitivity of B16 melanomas in immune-competent mice to ablation by tumor irra-
diation was enhanced when either Thbs1 or Cd47 were disrupted in the tumor microenvi-
ronment [112,113]. Subsequent studies revealed that this increased sensitivity to ionizing
radiation requires CD8+ T cells. Furthermore, therapeutic blockade of TSP1/CD47 signal-
ing using antibodies or antisense CD47 knockdown enhances antigen-dependent killing of
irradiated tumor cells by mouse and human CD8+ T cells in vitro and tumors in athymic
mice following adoptive transfer of tumor-specific CD8+ T cells [113,114]. Therefore, CD47
on CD8+ T cells functions as an adaptive immune checkpoint that mediates TSP1-dependent
inhibition of tumor cell killing.

4.2. TSP1 Regulation of Innate Immune Cells

TSP1 also regulates innate immune cells relevant to the tumor microenvironment. Early
studies examined TSP1 effects on neutrophil oxidative burst and found that TSP1 synergizes
with a formylated bacterial peptide to stimulate an oxidative burst response [115,116]. Others
identified inhibitory TSP1 functions in NK cells [117,118], dendritic cells [119–123], and
monocytes [108,117,124–127]. Functions of TSP1 in other aspects of immune responses
include modulation of TLR3-mediated inflammatory signaling in VSMC [71].

Several studies have reported the regulation of myeloid cell functions by TSP1 in
the tumor microenvironment. Secretion of TSP1 by tumor cells increased macrophage
recruitment and increased M1 polarization in a melanoma xenograft model [32]. TSP1
increased oxidative killing of tumor cells by macrophages in vitro. Tumors with low
metastatic potential were reported to induce TSP1 expression by bone marrow-derived
Gr1+ myeloid cells, and targeted deletion of Thbs1 in myeloid cells abolished their anti-
metastatic activity [128]. Myeloid-derived suppressor cells released EVs that contained
TSP1, and a TSP1 antibody specifically inhibited migration of myeloid-derived suppressor
cells induced by these EVs [129]. Finally, a protective role of TSP1 to limit UVB-induced skin
carcinogenesis was attributed to an anti-inflammatory function that limited the expansion
of myeloid progenitor cells in the neutrophil lineage [130].

Interest in CD47 as a regulator of anti-tumor innate immunity was heightened by
reports that a CD47 blocking antibody enhances NK- and macrophage-mediated killing
of tumor cells [131,132]. CD47 was originally discovered as a tumor-associated antigen
for ovarian cancer [133], but its pathophysiological significance was unclear. Elevated
CD47 expression on tumor cells is now recognized as a general mechanism to evade host
innate immunity for various solid tumors and hematologic malignancies [131,132,134–141].
The prevailing model proposes that high CD47 expression on tumor cells engages the
inhibitory counter-receptor SIRPα on phagocytes to prevent tumor cell killing (Figure 3a).
CD47-induced SIRPα signaling in macrophages and dendritic cells indirectly enhances anti-
tumor adaptive T cell immune responses [142]. However, CD47 blockade can also enhance
antibody-dependent cellular cytotoxicity independent of SIRPα signaling [143]. Enhanced
macrophage clearance of tumor cells damaged by irradiation was a plausible mechanism
to account for the synergism we observed between radiation and CD47 knockdown in
syngeneic tumor models [144]. However, further studies revealed that CD47 signaling in
murine and human CD8+ T cells directly inhibits their antigen-dependent killing of tumor
cells (Figure 3b) [113,114].
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Figure 3. Innate and adaptive immune checkpoint functions of CD47 and TSP1. In the “don’t eat
me” model (a), CD47 on tumor cells interacts with SIRPα on macrophages to induce inhibitory
signaling, preventing the phagocytic killing of tumor cells. CD47 is also expressed by immune cells
and mediates TSP1 signaling in immune cells. TSP1 interaction with CD47 on NK cells and cytotoxic
T cells inhibits their activation and limits granzyme B production that mediates antigen-dependent
lysis of tumor cells (b). Inhibitory TSP1 signaling mediated by CD47 on macrophages and dendritic
cells limits their presentation of antigens to T cells and limits macrophage production of IL-1β.

Conversely, in the absence of CD8+ T cells, blocking CD47 does not inhibit tumor
growth in syngeneic models [113,145,146], and genetic disruption of SIRPα signaling in
macrophages did not impair syngeneic tumor growth [143]. Thus, complete loss of the
“don’t eat me” signal is insufficient to prevent tumor growth in the absence of cytotoxic
T cell activity or secondary stimuli to induce innate immune clearance [147]. The tumor
cell response to damage induced by ionizing radiation provides such a signal to enhance
CD47-induced tumor clearance in immune-competent mice. This clearance also requires
cytotoxic T cell activity [113].

Several humanized CD47 antibodies and SIRPα decoys have entered clinical trials as
cancer therapeutics [54,148–151]. All clinical CD47 antibodies block SIRPα binding to CD47
and are intended to enhance innate immune-mediated clearance of tumors [138,140,152–154].
Likewise, anti-SIRPα antibodies have shown preclinical activity as a single agent or in
combination with a tumor-targeted agent [54]. However, with respect to CD47-directed
agents, several findings raise doubts about an exclusive role of SIRPα and macrophages in
the antitumor activity of CD47 blockade. We and others have reported that CD47 antibodies
exhibit anti-tumor activities independent of SIRPα signaling [113,143,147,155–158].

4.3. CD47 and TSP1 Signaling in Macrophages

Recent studies have emphasized the role of the inhibitory receptor SIRPα in reg-
ulating macrophage phagocytosis of tumor cells that highly express CD47 [141]. Still,
macrophages also express CD47, and physiological concentrations of TSP1 limit the induc-
tion by lipopolysaccharide (LPS) of IL-1β mRNA and total IL-1β protein production by hu-
man macrophages [159]. This inhibition could be explained by the ability of TSP1 binding to
disrupt the interaction between CD47 and CD14, thereby limiting activation of NFκB/AP-1
by LPS. Only the CD47-binding domain of TSP1 exhibited this activity. In contrast, CD47,
CD36, and integrin-binding domains of TSP1 independently enhanced the inflammasome-
dependent maturation of IL-1β in human THP-1 monocyte-derived macrophages. Cor-
respondingly, mouse bone marrow-derived macrophages lacking either TSP1 or CD47
exhibited diminished induction of mature IL-1β in response to LPS. Loss of CD47 also
limited LPS induction of IL-1β, NLRP3, and caspase-1 mRNAs. These data demonstrate
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that TSP1 exerts CD47-dependent and -independent pro-and anti-inflammatory effects on
the IL-1β pathway in macrophages.

4.4. Intrinsic Functions of CD47 in NK Cells

TSP1 and CD47 also have cell-intrinsic roles in regulating NK cells. TSP1 inhibited
early NK cell proliferation and enhanced late expansion, but a role for CD47 was not exam-
ined [117]. CD47 as a SIRPα counter-receptor enabled the engraftment of NK precursors in
mice reconstituted with a human immune system [160]. Treatment with an inhibitory CD47
antibody increased NK cell killing of human head-and-neck squamous carcinoma cells
in vitro [131]. However, NK cells were not known to express SIRPα, and the mechanism
was unclear at the time. SIRPα expression was recently shown to be induced in activated
NK cells, and ligation by CD47 alters NK cell function [161]. Depletion of NK cells similarly
attenuated the anti-tumor activity of a SIRPα blocking antibody in a syngeneic murine
renal carcinoma model, but the same antibody did not inhibit NK killing of the tumor cells
in vitro, further supporting a SIRPα-independent function of CD47 in NK cells [162]. We
found an increased abundance of lineage-negative cells within the spleen of Cd47−/− mice
and discovered these to be immature NK cells [163]. This led us to further investigate the
role of CD47 in NK cell homeostasis.

Cd47−/− mice exhibited depletion of NK precursors in bone marrow, consistent with
the antiphagocytic function of CD47. In contrast, antisense CD47 knockdown or gene
disruption resulted in a dose-dependent accumulation of immature and mature NK cells
in spleen. Mature cd47−/− NK cells exhibited increased expression of NK effector and
interferon gene signatures and an increased proliferative response to interleukin-15 in vitro.
Cd47−/− mice showed no defect in their early response to acute Armstrong lymphocytic
choriomeningitis virus (LCMV) infection but were moderately impaired in controlling
chronic Clone-13 LCMV infection. This was associated with depletion of splenic NK cells
and loss of effector cytokine and interferon response gene expression in cd47−/− NK cells.
Broad CD47-dependent differences in NK activation, survival, and exhaustion pathways
were observed in NK cell transcriptional signatures in LCMV infected mice. These data
identify CD47 as a cell-intrinsic and systemic regulator of NK cell homeostasis and NK cell
function in responding to a viral infection. Consistent with our data, a recent study found
increased NK cell activation following induction of atherosclerosis in cd47−/− mice [118].

Extending these findings to the role of CD47 in cancer, we examined the NK cells
in syngeneic B16 melanomas growing in WT versus cd47−/− mice [164]. Elevated CD47
expression in some cancers is associated with decreased survival and limited clearance by
phagocytes expressing the CD47 counterreceptor SIRPα [140,141]. In contrast, we found
that elevated CD47 mRNA expression in human melanomas is associated with improved
survival [164]. Gene-expression data identified a potential mechanism for this apparent
protective function and suggested that high CD47 expression increases NK cell recruitment
into the tumor microenvironment. The CD47 ligand TSP1 inhibited NK cell proliferation
in vitro and the induction of CD69 expression [164]. Cd47−/− NK cells correspondingly
displayed augmented effector phenotypes, indicating an inhibitory function of CD47 on NK
cells. Treating human NK cells with a CD47 antibody that blocks TSP1 binding abrogated
its inhibitory effect on NK cell proliferation [164]. Similarly, treating wild-type mice with
a CD47 antibody that blocks TSP1 binding delayed B16 melanoma growth, associating
with increased NK cell recruitment and increased granzyme B and interferon-γ levels in
intratumoral NK but not CD8+ T cells [164].

However, B16 melanomas grew faster in cd47−/− than in WT mice [164]. Melanoma-
bearing cd47−/− mice exhibited decreased splenic NK cell numbers, with impaired effector
protein expression and elevated exhaustion markers. Proapoptotic gene expression in
cd47−/− NK cells was associated with stress-mediated increases in mitochondrial proton
leak, reactive oxygen species, and apoptosis [164]. Global gene-expression profiling in NK
cells from tumor-bearing mice identified CD47-dependent transcriptional responses that
regulate systemic NK activation and exhaustion. Therefore, CD47 positively and negatively
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regulates NK cell function, and therapeutic antibodies that block inhibitory TSP1-CD47
signaling can enhance NK immune surveillance of melanomas.

4.5. TSP1 in Supramolecular Attack Particles

A novel role for TSP1 was recently identified in the supramolecular attack particles
released by cytotoxic T cells and NK cells that kill target tumor cells [165,166]. A fragment
of TSP1 was identified as a component of the outer shell of these particles that deliver
perforin and granzyme-B from their core to kill target cells. Notably, CRISPR-mediated
deletion of TSP1 impaired the cytotoxic activity of CD8+ T cells, indicating that TSP1 plays
an intrinsic role in the cytotoxic function of supramolecular attack particles.

5. Direct Effects of TSP1 on Tumor Cells
5.1. Cell Adhesion and Migration

The integrin α3β1 mediates positive effects of TSP1 on the adhesion and migration
of breast carcinoma cells [167]. TSP1 also stimulates chemotaxis of melanoma, squamous
carcinoma, and promyelocytic leukemia cells [168–171].

CD47 mediates positive effects of TSP1 on proliferation, survival, and migration of
cutaneous T-cell lymphoma cells [172]. These effects involved increased phosphorylation
of ERK1/2 and AKT and expression of survivin. Similarly, TSP1 increased the invasive
behavior of follicular thyroid carcinoma cells by increasing urokinase-dependent prote-
olytic activity [173]. In papillary thyroid carcinoma, the prevalent B-Raf(V600E) mutation
promoted the invasive behavior in part by inducing expression of TSP1 [174].

Loss of the von Hippel-Lindau tumor suppressor gene (VHL) is a significant driver
of renal cell carcinoma, in part by stabilizing hypoxia-inducible factors (HIF). However,
loss or mutation of VHL was recently shown to decrease TSP1 expression independent
of HIF [175]. The VHL-dependent loss of TSP1 expression in renal clear cell carcinoma
increased the migratory behavior of these cells. Thus, TSP1 in the tumor microenvironment
may regulate tumor invasion through direct and indirect pathways.

5.2. Tumor Cell Death/Senescence

Treatment with TSP1 induces death of several types of cancer cells. The C-terminal
domain of TSP1 induced caspase-independent death of promyelocytic leukemia cells [176].
TSP1 induced CD47-dependent death of T lymphoma and breast carcinoma cells [103,156].
Peptide mimetics of TSP1 and CD47 antibodies that directly induce tumor cell death are
being explored as potential cancer therapeutics [177,178].

TSP1 was also identified as a secreted protein that prevented the escape of cancer
cells from the senescence induced by chemotherapy [179]. This activity of TSP1 was also
CD47-dependent.

5.3. Tumor Initiating/Stem Cells

We found that decreasing CD47 expression or TSP1-dependent CD47 signaling in-
creases the stem cell character of non-transformed cells in vitro and in vivo [180] (Figure 4a).
Thus, we were initially puzzled by reports that some cancer stem cells have elevated CD47
expression. Such high CD47 expression was proposed to protect cancer stem cells from
SIRPα-dependent macrophage clearance [181], but a cell-autonomous signaling function
of CD47 in cancer stem cells was not considered [147]. This prompted Lee et al. to examine
CD47 in hepatocellular carcinoma, and they reported that decreasing CD47 expression
using siRNA suppressed the stem cell characteristics of hepatocellular tumor-initiating
cells [182].
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Figure 4. Differential effects of CD47 signaling in normal versus cancer stem/tumor-initiating
cells [183]. TSP1 signaling via CD47 limits the maintenance of stem cells in nonmalignant tissues (a).
Blocking CD47 signaling has opposing effects on asymmetric cell division in normal versus cancer
cells (b). A function-blocking CD47 antibody forces the differentiation of breast cancer stem cells, in
part by decreasing expression of the stem cell transcription factor KLF4 and decreasing epidermal
growth factor receptor (EGFR) signaling (c).

We examined CD47 signaling in breast cancer stem cells and reached a similar conclu-
sion [184]. Treating CD44hi/CD24low cancer stem cells with the CD47 blocking antibody
B6H12 suppressed asymmetric division (Figure 4b), stem cell transcription factors including
Klf4 (Figure 4c) cell growth, and induced executioner caspase-7 activity. We used a CRISPR
strategy to knock out CD47 in these cancer stem cells and, remarkably, found no viable
CD47-null colonies could be obtained. This contrasts with using the same CRISPR/guide in
non-transformed human cells, where abundant colonies of CD47-null cells were routinely
obtained with the expected induction of stem cell markers. Thus, CD47 signaling limits
stem cell character in non-transformed cells but is necessary to maintain stem cell char-
acteristics in breast cancer stem cells [183]. These observations suggest that breast cancer
stem cells are sustained by CD47 signaling, which could provide additional therapeutic
opportunities to limit tumor growth by targeting CD47 independent of its passive “don’t
eat me” function.

B6H12 treatment also acutely inhibited EGF-induced EGFR tyrosine phosphorylation
in breast cancer stem cells but not in differentiated breast cancer cells [184]. Coimmunopre-
cipitation suggested that this is mediated by a lateral interaction between CD47 and EGFR.

Consistent with these studies, in vivo immune selection of Lewis lung carcinoma
(LLC) for resistance to vaccination using tumor-primed dendritic cells resulted in increased
expression of CD47 and the stem cell transcription factors Myc, Klf4, Sox2, and Oct4 [185].
Treatment of the P3 selected LLC cells with 2.2 nM TSP1 suppressed expression of the same
stem cell factors, decreased their spheroid formation, and increased their sensitivity to
killing by tumor-specific CTL. Pre-treatment with TSP1 similarly suppressed proliferation
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and spheroid formation of A549 lung carcinoma, HCT116 colorectal carcinoma, and HeLa
cervical carcinoma cells. This suggests that TSP1 signaling mediated by CD47 may generally
suppress cancer stem cells (CSC) and restore sensitivity to adaptive immune clearance.

6. Regulation of the Redox Environment, Autophagy, Metabolism
6.1. Role in Hypoxia Responses

Hypoxia and oxidative stress in the tumor microenvironment drive molecular signal-
ing that supports carcinogenesis through multiple mechanisms. The molecular signaling
influenced by hypoxia is mediated in part by hypoxia-inducible transcription factors (HIFs)
that become elevated because oxygen tension is low in tissues or tumors [186]. The activa-
tion of HIFs controls TSP1 expression during low oxygen tension. TSP1 mRNA and protein
expression are elevated in the first six hours after induction of hypoxia and can remain
elevated under hypoxia for 72 h in human umbilical vein endothelial cells (HUVEC) and
bovine aortic endothelial cells [187]. Increased TSP1 was reported in a murine pulmonary
arterial hypertension model following exposure of the animals to chronic hypoxia [188].
Expression of the TSP1 receptor CD47 was also increased during these conditions and
mediated superoxide production in an eNOS-dependent manner. Two hypoxia response
elements were localized between positions −1120 and −1196 and −249 and −225 rel-
ative to the transcription starting site of THBS1, suggesting that HIFs directly increase
transcription of THBS1 during hypoxia. Further studies using luciferase reporter vectors
of HIF1α and HIF2α found that hypoxia-mediated pulmonary TSP1 was mediated by
HIF2α [188]. The implication of the increased TSP1 expression under hypoxia observed in
this study was an augmented migration of fibroblasts and pulmonary artery smooth muscle
cells, which disrupted the endothelial cell voltage-gated channels, leading to endothelial
cell dysfunction.

The regulation of TSP1 by hypoxia seems to differ in the tumor microenvironment.
Expression of TSP1 was increased in colorectal cancer cell lines and tumors lacking HIF1α
and HIF2α, which was associated with reducing pro-angiogenic factors and reducing
tumor angiogenesis [189]. Conversely, TSP1 was not detectable in hypoxic areas of tumors
formed by mouse embryo fibroblasts transformed using E1A and H-Ras, whereas vascular
endothelial growth factor expression increased in the hypoxic areas [190].

TSP1 is also upregulated during tumor invasion, which is inconsistent with the inverse
relationship observed with the expression of pro-angiogenic factors in hypoxic areas. These
paradoxical effects may be due to receptor expression or levels of upregulation of TSP1.
These changes can also be attributed to different binding affinities of TSP1 for its receptors.
At concentrations of 2 nM, TSP1 binds selectively to CD47 and stimulates superoxide
production in vascular smooth muscle cells mediated by NADPH oxidase 1 [191]. Knockout
studies indicated that activation of NOX1 and superoxide production are mediated by
TSP1 binding to CD47 [192]. At 10-20 nM concentrations, TSP1 induced cell death of mouse
cortical neurons [193]. At similar concentrations, TSP1 caused an increase in NOX and
superoxide production in macrophages that were not mediated by CD47 [32]. Furthermore,
nanomolar levels of TSP1 modulate NO signaling by inhibiting the fatty translocase activity
of CD36, which implicates TSP1 interactions in the modulation of fatty acid metabolism
and cellular energetics [194].

6.2. TSP1 Regulation of Metabolism

In addition to its roles in hypoxia and oxidative stress, TSP1 broadly regulates
metabolism in the tumor microenvironment. In a mouse model examining the effect
of diet on colorectal tumor formation in wild type and Thbs1−/− mice, we observed broad
systemic changes that can modify carcinogenesis [195]. We observed changes in tricar-
boxylic acid (TCA) cycle metabolites citrate and isocitrate in livers of Thbs1−/−:ApcMin/+

mice fed a high-fat diet compared to ApcMin/+ mice fed the same diet. A comparison of
WT and Thbs1−/− mice also showed increases in α-ketoglutarate, succinate, fumarate, and
malate, implicating TSP1 as a negative regulator of TCA metabolites. In this study, feeding
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with a high-fat diet caused the expected increases in free fatty acids among groups, but
specific changes in the Thbs1−/−:ApcMin/+ group included increases in several medium-
chain free fatty acids and lack of growth in some long-chain fatty acids such as oleate.
Thbs1−/−:ApcMin/+ mice fed a low-fat diet exhibited an ~2-fold increase in the ketone body
3-hydroxybutyrate relative to the low fat diet-fed ApcMin/+ mice. 3-hydroxybutyrate is a
serum biomarker of colorectal carcinoma and other cancers and may explain the increase
in tumor multiplicity observed in this model driven by the loss of TSP1 [195].

Several studies showed that the expression of TSP1 is regulated by changes in metabolism,
including upregulation mediated in part by high levels of glucose in diabetic models
and correlated with hyperglycemia in human patients [196–198]. Consistent with this, a
reduction in lactate levels in glioma cells was associated with decreased TSP1 levels and
subsequent reduction in the migration of these cells [199]. Conversely, the addition of
lactate increased TSP1 levels and promoted glioma cell migration by the TSP1-mediated
regulation of TGF-β2. The metabolic regulation of TSP1, as explained above, is context-
dependent. Whether TSP1 alters metabolism to promote or inhibit carcinogenesis will
depend on the cancer type and which TSP1 receptors are expressed and activated.

Effects of TSP1 on cell metabolism in the tumor microenvironment can be extrapolated
from studies examining the role of CD47 on cellular bioenergetics. CD47 deficiency has
radioprotective effects on T cells by modulating metabolism [200]. Radiation-induced
metabolic changes associated with CD47 blockade include increased glucose uptake and
glycolysis, increased nucleotide biosynthesis levels, and preserved TCA cycle metabolites.
Loss of CD47 enhanced mitochondrial function, increased methyl group donors (creati-
nine, 5-methyl tetrahydrofolate, and choline) and modulated antioxidant responses to
glutathione levels compared to WT cells. Similar effects were seen in irradiated mouse
lungs of WT and Cd47−/− animals, with increased glutathione levels, regulation of lipid
metabolism with a decrease in fatty acid metabolites, increased phospholipid production,
and preservation of nucleotide biosynthesis [201].

These effects suggested that TSP1 or CD47 blockade could cause resistance to cancer
treatment using cytotoxic agents. Lack of expression of TSP1 is associated with resistance
to taxane-based chemotherapy in lung adenocarcinoma, whereas siRNA depletion of CD47
resulted in cells’ sensitization to taxanes [202]. In a murine model of breast cancer resistance
to tamoxifen, targeting the unfolded protein response by ablation of the chaperone GRP78
restored tamoxifen sensitivity [203]. This sensitivity was associated with the regulation
of fatty acid oxidation and a reduction in CD47 expression. The addition of linoleic
acid restored sensitivity to tamoxifen and reduced CD47 levels associated with increased
macrophage clearance of tumors. In subsequent studies, evaluation of tumors by TSP1
immunostaining indicated that its expression was increased in the tumors re-sensitized
to tamoxifen [204], thus indicating an interplay of TSP1, CD47 expression, and metabolic
regulation on cancer therapy sensitivity. The sensitivity to death by cancer therapy seems
paradoxical given the protective roles of TSP1 or CD47 deletion on tissue survival of injuries
caused by ischemia or ionizing radiation [37].

6.3. Regulation of Cell Stress Responses and Autophagy

CD47 plays a role in cell fate during times of cellular stress, including promoting the
survival of cells exposed to ionizing radiation. Cell viability and proliferative capacity
of a CD47-deficient Jurkat T cell mutant were preserved following irradiation compared
to wild-type cells [205]. Improved cell survival was associated with increased autophagy.
Autophagy is a highly conserved catabolic process that maintains cellular homeostasis
by facilitating lysosomal degradation of intracellular protein and organelles. Increased
autophagosome formation was observed by electron microscopy and by high LC3 fluores-
cence. Furthermore, protein expression of LC3-B was increased, with a decrease in p62,
indicating that blockade of CD47 increased autophagic flux. Thus, increased survivability
is associated with activation of autophagy. Expression of autophagy-related proteins ATG5,
ATG7, and Beclin-1 was also increased in CD47-deficient Jurkat cells and in vivo in lungs
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from irradiated mice treated with a CD47 antisense morpholino. The protective effects of
reducing or eliminating CD47 expression were reversed by treatment in combination with
3-methyladenine and hydroxychloroquine or following knockdown of ATG5/7 expression.

Further studies showed that the blockade of CD47 protected cardiac tissue and cells
from the death and loss of function associated with anthracycline treatment [206]. The
protective mechanism was mediated by activation of autophagy. Remarkably, systemic
blockade of CD47 in mice resulted in the sensitization of tumors to anthracycline ther-
apy, which was associated with increases in calreticulin and high molecular group box 1
(HMGB1). This indicates the activation of immunogenic cell death as a potential mech-
anism of sensitization to chemotherapy. Presumably, TSP1 treatment would reverse the
regulation of autophagic flux through CD47; however, whether TSP1 would enhance or
inhibit autophagy is not entirely understood. TSP1 activated autophagy in H-Ras express-
ing cancer cells [207]. The regulation by TSP1 was deduced by using the CD47-binding
TSP1-derived peptide 4N1K at high concentrations, which may not reflect the physiological
activities of TSP1. Still, increased LC3 protein expression was associated with a reduction
in tumor growth. Correspondingly, other studies showed that TSP1 treatment increases
age-related blood-brain barrier leakiness by activating the p62/sequestosome-1 binding
of tight junction proteins, mediating their autophagosomal degradation [208]. Although
these studies implicate TSP1 in the regulation of autophagy, defining which of its receptors
mediate autophagy requires further study in the context of carcinogenesis.

6.4. Regulation of Metabolism and Mitochondrial Stress in T and NK Cells

The ability of TSP1 signaling via CD47 to inhibit Myc levels in T cells [180] may contribute
to metabolic reprogramming that limits cytotoxic T cell function in the tumor microenviron-
ment. Activated T cell proliferation and cytokine production depend on enhanced glucose
metabolism [209,210]. The transient glucose restriction in activated CD8+ T effector cells
metabolically primes effector functions and enhances tumor clearance in mice [210]. The
transcriptional activity of Myc and HIF-1 are both upregulated in response to T cell activation
and lead to upregulation of genes encoding enzymes that promote glycolysis, such as pyru-
vate kinase (PKM1), hexokinase 2 (HK2), and GLUT1 [209,211–214]. These changes promote
metabolic reprogramming in tumor-infiltrating immune cells [215,216].

We found that CD47 expression in the tumor microenvironment also regulates NK
cell recruitment and transcriptional responses to activating stimuli, and its absence results
in a defect in mitochondrial metabolism [164]. Global gene-expression analysis revealed
that metabolism and ion transport were upregulated in association with a higher basal
glycolytic flux assessed by extracellular acidification rate values but not the basal mito-
chondrial flux assessed by the oxygen consumption rate in Cd47−/− NK cells. Thus, higher
metabolic activity and mitochondrial stress responses of CD47-deficient NK cells result in
more intracellular ROS, which could account for the observed NK cell exhaustion profile
identified by gene expression profiling [164]. This mechanism may account for the deple-
tion of NK cells in lymphocytic choriomeningitis virus (LCMV)-infected Cd47−/− mice and
in tumor-bearing Cd47−/− mice [163,164].

6.5. DNA Damage Responses

Cells lacking CD47 exhibited more rapid repair of dsDNA strand breaks induced
by ionizing radiation [217]. Faster repair of DNA damage is probably supported by the
increased induction of anabolic pathways that generate the nucleotides we observed in
CD47-deficient cells after exposure to ionizing radiation [200]. Furthermore, CD47 expres-
sion selectively sensitized Jurkat T cells to specific inhibitors of topoisomerases, which
are known targets of schlafen-11 (SLFN11), and to class I histone deacetylase (HDAC) in-
hibitors [217]. SLFN11 expression in human cancers is positively correlated with sensitivity
to genotoxic agents, including topoisomerase inhibitors [218–224]. Loss of SLFN11 expres-
sion in cancer cells involved hypermethylation of its promoter and epigenetic changes in
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histone acetylation [225,226]. Correspondingly, expression of SLFN11 in resistant cancer
cell lines induced by class I HDAC inhibitors restored their sensitivity [225].

CD47 mRNA expression is positively correlated with SLFN11 mRNA expression in a
subset of human cancers but not in the corresponding nonmalignant tissues in TCGA [217].
CD47 knockdown, gene disruption, or treatment with a CD47 function-blocking antibody
decreased SLFN11 expression in Jurkat cells. TSP1 also suppressed SLFN11 expression in
WT but not CD47-deficient T cells [217]. Re-expressing SLFN11 restored radiosensitivity in
CD47-deficient cells. Disruption of CD47 in PC3 prostate cancer cells similarly decreased
SLFN11 expression and was associated with a CD47-dependent decrease in acetylation
and increased methylation of histone H3 in the SLFN11 promoter region [217]. CD47
mRNA expression was also negatively correlated with SLFN11 promoter methylation in
some tumors [217]. The ability of HDAC or topoisomerase inhibitors to induce SLFN11
expression in PC3 cells was lost when CD47 was targeted in these cells. Disrupting
CD47 in PC3 cells also increased resistance to etoposide. These data identify CD47 as a
context-dependent regulator of SLFN11 expression and suggest an approach to improving
radiotherapy and chemotherapy responses by combining these treatments with CD47-
targeted therapeutics.

6.6. Clearance of Dead/Dying Cells

Early studies by Savill and colleagues identified TSP1 as a bridging molecule that
targets apoptotic cells for clearance by macrophages, involving TSP1 interactions with
αvβ3 integrin and CD36 on phagocytes [36]. TSP1-dependent clearance of apoptotic cells
was subsequently implicated in an anti-inflammatory activity that protected mice from
endotoxic shock [227]. Recent studies extended this pro-phagocytic activity of TSP1 to
the clearance of aged red blood cells and implicate clustered CD47 as the conformation-
dependent TSP1 receptor on aged red blood cells [52,228]. Correspondingly, TSP1 enhanced
the phagocytic activity of macrophages in vitro, and loss of Thbs1 decreased the phago-
cytic activity targeting muscle cells of male dysferlinopathic BlaJ mice [229] and in a fixed
hindlimb muscle ischemia model [230]. The relevance of these studies to the tumor microen-
vironment remains to be defined, but the recently reported TSP1-enhanced phagocytosis of
hepatocellular carcinoma cells is consistent with this mechanism [231].

7. Regulation of Intercellular Signaling Mediated by Extracellular Vesicles

EVs released by malignant cells mediate multiple types of intercellular communication
in the tumor microenvironment (Figure 5) and can disseminate via the circulation to
initiate the formation of a metastatic niche [232,233]. Tumor EVs function by transporting
macromolecules, including mRNAs, miRNAs, other non-coding RNAs, and proteins with
oncogenic roles in the tumor microenvironment [234]. We identified a new role for CD47
in regulating intercellular communication mediated by EVs released by T cells [109]. The
mRNA content in EVs differed between WT and CD47-deficient cell lines, and uptake of
those EVs by target cells led to CD47-dependent changes in gene expression in target cells
that regulate angiogenesis and immune cell function (Figure 5a). These initial findings led
us to investigate further the role of CD47 in EVs produced by normal and malignant cells
and how CD47 regulates which RNAs are packaged into EVs.

7.1. Regulation of Vascular Cells

Treatment of HUVEC with EVs from MDA-MB-231 breast carcinoma cells inhibited
the VEGF signaling pathway [184]. EVs derived from triple-negative versus ER+/PR+

breast carcinoma cells differentially altered expression of VEGFR2, AKT3, AKT2, and HIF
in HUVEC corresponding with their tumorigenic potential (Figure 5b). This correlated
with a higher abundance of CSCs in MDA-MB-231 relative to T47D1 cells. CD47high EVs
derived from CSCs were taken up more by HUVEC than were CD47low EVs. Notably,
their uptake was not attenuated by a CD47 blocking antibody. Treatment of HUVEC with
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breast CSC-derived EVs decreased TSP1 mRNA in HUVEC, and a CD47 function-blocking
antibody reversed that inhibition [235].
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Figure 5. Roles of TSP1 and CD47 in the intercellular communication mediated by EVs in the tumor
microenvironment. EVs derived from T cells (a) modulate angiogenic signaling in endothelial cells
and activate other T cells in a CD47-dependent manner. EVs produced by cancer cells and cancer
stem cells (b) have TSP1- and CD47-dependent effects on endothelial cells and other tumor cells
that CD47 antibodies can modulate. EVs enriched with TSP1 from myeloid-derived suppressor cells
(MDSCs, (c)) stimulate chemotaxis, blocked by a CD47 antibody. EVs produced by cancer-associated
fibroblasts (d) containing TSP1 associated with LRP1 are circulating poor survival markers.

Another study of MDA-MB-231 EVs identified a role for TSP1 associated with EVs in
promoting the invasion of the cancer cells through a HUVEC monolayer [236]. Analysis of
TSP1low and TSP1high EVs derived from knockdown and re-expression approaches from
MDA-MB-231, and MCF7 cells revealed that TSP1 promotes cell migration in MCF7 cells
and reduced in MDA-MB-231 cells in vitro, as well as in a zebrafish model. EV-derived
TSP1 impaired the integrity of the endothelial layer by lowering the expression of the
intercellular junction molecules ZO-1 and VE-cadherin. Some of the EV-induced changes
in HUVEC mRNA expression were reversed by the peptide LSKL, inhibiting activation
of latent TGFβ by TSP1. This suggested that TGFβ signaling mediates some effects of EV
TSP1 to disrupt endothelial intercellular junctions.

Additional studies have identified TSP1 protein in EVs released by malignant cells.
EVs derived from nasopharyngeal (NP) carcinoma cells enhanced angiogenic signaling
by increasing tubulogenesis, migration, and invasion of HUVEC in a dose-dependent
manner as compared to EVs from immortalized nasopharyngeal epithelial cell lines [237].
Proteomic analysis of these EVs identified upregulation of some proangiogenic proteins
and reduced TSP1 in NP carcinoma EVs compared to nasopharyngeal epithelial cell EVs.
This suggested that angiogenic signaling mediated by tumorigenic EVs may be due to
loss of the suppressive effect of TSP1. Similarly, TSP1 in EVs was reduced after MDCK
kidney epithelial cells were transformed by oncogenic H-Ras [238]. Conversely, treatment
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of non-small cell lung carcinoma cells with pigment epithelium-derived factor increased
TSP1 levels in released EVs, which inhibited the motility and invasion of the cells [239].

7.2. Regulation of Immune Cells

TSP1 associated with EVs released by cancer cells may also modulate antitumor
immunity. TSP1 and CD47 were identified on the surface of EVs released by myeloid-
derived suppressor cells (MDSCs) induced in mice by implanted 4T1 mouse mammary
carcinoma [129]. The EVs stimulated chemotaxis of MDSCs, which was inhibited by CD47
and TSP1 function-blocking antibodies (Figure 5c). The CD47 counter-receptor SIRPα was
identified on MDSCs but not on the released EVs, whereas TSP1 was enriched 12-fold on
EVs compared to the parental MDSCs.

EVs released by wild-type versus CD47-deficient T cells altered the sensitivity of
recipient T cells to the inhibition of TCR-mediated activation by TSP1 in a CD47-dependent
manner [109]. Activation of T cells with anti-CD3 strongly induced TSP1 mRNA and
increased TSP1 expression on the cell surface in wild-type cells but not in a CD47-deficient
T cell mutant. However, the expression of TSP1 on the released EVs did not require CD47.

7.3. Cancer-Associated Fibroblasts

TSP1 is associated with EVs released by cancer-associated fibroblasts via a complex
that includes LRP1 and annexin A6 [41] (Figure 5d). Depletion of these EVs decreased
metastasis in a pancreatic cancer model, and high circulating levels of these EVs were
associated with decreased survival in pancreatic cancer patients.

8. TSP1 and Carcinogenesis

Several studies support roles for TSP1 in carcinogenesis. Targeted overexpression of
TSP1 in the epidermis delayed and reduced premalignant epithelial hyperplasias induced
by chemical carcinogens [240]. This protective role of TSP1 over-expression was extended
to UVB-induced skin carcinogenesis [130] and spontaneous mammary adenocarcinomas in
TgN-neu mice [241]. Conversely, loss of Thbs1 increased mammary adenocarcinomas in
these mice [241] and increased osteosarcoma incidence but not the incidence of some other
malignancies in mice lacking p53 [19]. In a murine model of prostate cancer metastasis to
bone, increased TSP1 was observed in platelets, and implantation of tumors in Thbs1 null
mice resulted in increased tumor size [242]. On the other hand, the absence of TSP1 reduced
bone marrow-derived cell mobilization and enhanced osteoclast formation, resulting in
decreased tumor-induced bone formation, suggesting a role of TSP1 in the pre-metastatic
niche formation.

TSP1 limited angiogenesis and inflammatory responses that contribute to colorectal
carcinogenesis in ApcMin/+ mice [243] and colorectal carcinogenesis induced by chronic
inflammation [244]. The ability of TSP1 to regulate the responses of cells and tissues to
stress prompted us to examine whether loss of TSP1 also has systemic effects on metabolism
that modulate carcinogenesis [195]. ApcMin/+:Thbs1−/− mice exhibited decreased survival
and higher tumor multiplicities in the small and large intestine relative to ApcMin/+ mice
when fed a low-fat Western diet. However, the protective effect of endogenous TSP1 was
lost when the mice were fed a high-fat Western diet. Biochemical profiles of liver tissue
identified systemic metabolic changes associated with the effects of TSP1 and dietary
lipid intake on tumorigenesis. A high-fat Western diet differentially regulated amino acid,
energy, and lipid metabolism in ApcMin/+:Thbs1−/− mice relative to ApcMin/+ mice. Changes
in ketone body and tricarboxylic acid cycle intermediates identified functional interactions
between Apc and TSP1 signaling that control mitochondrial function. These data suggest
that the protective role of TSP1 to limit adenoma formation in ApcMin/+ mice results in part
from improved mitochondrial function and eicosanoid signaling [245].
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9. Development of TSP1 Derived Agents for Anti-Tumor Therapy

The characterization of TSP1 as a potent inhibitor of angiogenesis led to efforts to
harness this activity for anti-tumor therapies by targeting CD36 [43–47]. However, as
discussed above and reviewed elsewhere, the multifaceted role of TSP1 in the tumor mi-
croenvironment may compromise the intended therapeutic effect [246,247]. Three recently
reported approaches differ mechanistically from past abandoned clinical approaches, some
of which focus on beneficial modulation of TSP1-CD47 interactions.

Consistent with the anti-angiogenetic and antitumor activities of TSP1-mimetic pep-
tides ABT-510 and ABT-898 [248], one approach increased the concentration of anti-
angiogenic fragments of TSP1 in the tumor microenvironment. Tumor regression and
vascular normalization were observed in a syngeneic orthotopic mouse model of advanced-
stage epithelial ovarian cancer treated daily with recombinant type 1 repeats (3TSR),
including or without fusion to a CD47-binding sequence (FYVVMWK, 4N1), and expressed
from adeno-associated virus (AAV) vectors [249]. A single administration of the AAV
agents resulted in durable expression of the TSP1-derived products for at least 30 days.
AAVs expressing 3TSR alone or with the CD47-binding sequence resulted in marked tumor
reduction. However, only the 3TSR AAV enhanced survival at 60 days. The 3TSR AAV
was associated with a greater survival benefit and prevention of second lesions than the
CD47-binding peptide AAV, despite the combination AAV being the most active in vitro.
The authors speculate that the differential in vivo efficacy of the 3TSR vs. CD47-binding
peptide could be due to the loss of vector transduced cells in the latter resulting in a
suboptimal level of expression. However, 4N1 has questionable CD47 functional specificity
based on its demonstrated activity on CD47 deficient cells [107]. These studies support
the continued exploration of TSP1-derived agents as second-generation antiangiogenic
or vascular-normalizing therapies. This could be especially relevant in combination with
immunotherapies benefiting from improved tumor-immune cell infiltration.

CD36 has reemerged in anti-tumor therapy as an immunotherapy target on macrophages
and T cells [250]. CD36 is selectively expressed on intratumoral regulatory T cells and
enables them to metabolically adapt to the lactic-acid enriched tumor microenvironment
by increasing fatty acid uptake. Combining anti-PD-1 therapy with an anti-CD36 antibody
in a syngeneic mouse melanoma model effectively reduced tumor burden than either
agent alone. TSP1 and the parent peptide upon which the Abbott CD36 drug ABT-510
was based inhibit fatty acid uptake. Although ABT-510 does not significantly inhibit
fatty acid uptake [251], future TSP1-derived therapeutic agents that potently inhibit CD36
fatty acid transport could enhance anti-tumor immunity and improve T cell-targeted
combination therapies.

A recent effort to therapeutically inhibit TSP1 interaction with CD47 utilized in silico
tools to identify a putative TSP1 interaction surface on CD47. This surface was used to
design a cyclic peptide (TAX2) that reportedly binds to TSP1 with low micromolar affin-
ity [252]. Principally characterized for antiangiogenic activity in vitro, TAX2 activity was
sensitive to CD36 blockade. The authors proposed that the activity of TAX2 is mediated by
liberating TSP1 from its high-affinity interaction with CD47 and promoting its interaction
with CD36. TAX2 reduced tumor burden in a mouse syngeneic melanoma model, reduc-
ing tumor vascularization. Consistent with its TSP1-CD47 inhibitor activity, TAX2 also
exhibited antithrombotic activity [253]. While these studies suggest the potential value of
TSP1-CD47 disrupting agents, the TAX2 peptide falls short of demonstrating the specificity
and potency needed as a robust research tool and bone fide pretherapeutic agent.

10. Conclusions

The apparent contradictions that have emerged from efforts to define the role of TSP1
in the tumor microenvironment are understandable considering its interactions with multi-
ple signaling receptors and with angiogenic and immune-modulatory factors in the extracel-
lular matrix. To date, efforts to develop therapeutics have targeted the TSP1 receptors CD36
and CD47. Although TSP1 mimetics targeting CD36 showed antitumor efficacy in mice
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and dogs, these have not proven effective in human clinical trials [45–47]. CD47-targeted
antibodies have shown more promising results in human clinical trials [54,148–151], but
it remains unclear whether modulating TSP1 signaling plays any role in their efficacy.
However, preclinical studies using the CD47 antibody B6H12 indicate that some CD47
antibodies can block both TSP1 and SIRPα interactions with CD47 [54]. Next-generation
CD47-targeted agents that selectively disrupt the TSP1-CD47 versus the CD47-SIRPα inter-
action are needed to differentiate the roles of each in CD47 receptor biology and remain a
focus of our ongoing work [254].

A persistent challenge to developing therapeutics targeting the TSP1-CD47 interaction
is the lack of molecular details for this interaction. Structural data, perhaps enabled by
increasingly high-resolution cryo-EM techniques, could define the critical interaction inter-
face, which would help develop therapeutic antibodies, nanobodies, and small molecule
antagonists that selectively block TSP1 interactions with CD47.

Another strategy that we are pursuing is to knock down CD47 expression in the tumor
microenvironment using antisense morpholino oligonucleotides, which limit both TSP1-
and SIRPα-CD47 signaling. These morpholinos have proven effective in limiting tumor
growth in immune-competent hosts when combined with radiotherapy, chemotherapy, or
an immune checkpoint inhibitor targeting CTLA4 on T cells [113,114,206].

Continued investigation is also needed to define which interactions of TSP1 in the
tumor microenvironment play dominant roles in regulating tumor growth, metastasis,
and sensitivity to host immune surveillance. This knowledge could guide the develop-
ment of receptor-specific targeting strategies. Future therapies will undoubtedly need to
combine elements of TSP1-signaling agonists with antagonists to effectively balance its
pleiotropic effects on tumor growth and anti-tumor immunity. Based on the divergent
clinical correlations between TSP1 expression and prognosis in different cancer types,
optimal TSP1-directed therapies may be cancer type-specific.
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