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Abstract Humans perform saccadic eye movements two to three times per second. When doing

so, the nervous system strongly suppresses sensory feedback for extended periods of time in

comparison to movement time. Why does the brain discard so much visual information? Here we

suggest that perceptual suppression may arise from efficient sensorimotor computations, assuming

that perception and control are fundamentally linked. More precisely, we show theoretically that a

Bayesian estimator should reduce the weight of sensory information around the time of saccades,

as a result of signal dependent noise and of sensorimotor delays. Such reduction parallels the

behavioral suppression occurring prior to and during saccades, and the reduction in neural

responses to visual stimuli observed across the visual hierarchy. We suggest that saccadic

suppression originates from efficient sensorimotor processing, indicating that the brain shares

neural resources for perception and control.

DOI: 10.7554/eLife.25073.001

Introduction
People skillfully combine acquired knowledge, and sensory feedback, a combination that is typically

modeled using Bayesian statistics (Körding, 2007; Angelaki et al., 2009). This framework effectively

captures behavior in numerous tasks broadly corresponding to perceptual decision-making

(Ernst and Banks, 2002; van Beers et al., 1999; Fetsch et al., 2011; Drugowitsch et al., 2014;

Acuna et al., 2015), or online movement control (Wolpert et al., 1995; Körding and Wolpert,

2004; Izawa and Shadmehr, 2008; Crevecoeur et al., 2016). Although perceptual decision-making

and sensorimotor control are often considered different phenomena, they cannot really be dissoci-

ated in the real world – we need to use the same brain for movement and perception (Cisek, 2012;

Wolpert and Landy, 2012). Perceptual decision-making and sensorimotor behaviors may thus be

linked.

A salient case of crosstalk between perception and sensorimotor behavior is saccadic suppres-

sion: visual acuity is reduced around the time of a saccade. It is often assumed that this mechanism

maintains stable perception of our surroundings (Wurtz, 2008). However, the behavioral and neural

dynamics of saccadic suppression are difficult to explain if it were purely related to compensating

for shifts in the retinal image induced by saccades and by the need to maintain perceptual stability.

Indeed, previous work has shown that saccadic suppression is controlled centrally, and typically

lasts for >100 ms even for saccadic movements of ~50 ms (Ibbotson and Krekelberg, 2011). Fur-

thermore, simulating the displacement of the retinal image without a saccade does not elicit similar

suppression as during real saccades (Diamond et al., 2000; Thiele et al., 2002). As well, the
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reduction of visual acuity was reported to selectively impact the magnocellular pathway (Burr et al.,

1994), although motion detection is still active (Castet and Masson, 2000). It is unclear why main-

taining perceptual stability would require such a long, powerful, and selective suppression of sensory

feedback, if it were purely related to perception, and independent of motor control. After all, there

is a price to be paid to discard so much sensory information for some 100 ms. Thus, saccadic sup-

pression is a complex phenomenon, for which a meaningful function has not been clearly identified.

Here we phrase this problem in the framework of Bayesian estimation during closed-loop control

of saccades. In this framework, we show theoretically that the timing of saccadic suppression is

expected if the brain uses the same posterior beliefs about the state of the eye for perception and

control. Indeed, our model shows that uncertainty about the instantaneous state of the eye should

increase with motor commands as a result of signal-dependent noise and of sensorimotor delays,

making delayed sensory information less reliable around the time of movement. In an optimal esti-

mation framework, this gives lower weights to sensory inputs when we move. Our study thus shows

how sensorimotor control can give rise to sensory suppression in an efficient brain, provided that

the nervous system uses a common substrate for perception and for control. We discuss how this

theoretical result may arise from shared neural resources supporting perceptual and motor

systems.

Results

An optimal control model of eye movements
If we want to explore the relationship between saccadic suppression and control we need to model

the underlying system. First, the nature of the representation matters: although saccades are often

simplistically viewed as ballistic (or open-loop) movements, these movements are monitored online

through the corollary discharge (Van Gisbergen et al., 1981; West et al., 2009; Goossens and Van

Opstal, 2000; Xu-Wilson et al., 2011; Sommer and Wurtz, 2008; Optican, 2009). Second, sensory

feedback matters: we are not ‘blind’ during saccades. There is no peripheral interruption of sensory

eLife digest Although we have the impression that our eyes move smoothly from place to

place, we in fact perform rapid eye movements called saccades several times per second.

Experiments have shown that our ability to perceive contrast and flashes decreases before and

during each saccade. This phenomenon is known as saccadic suppression.

A prevailing hypothesis to explain saccadic suppression suggests that by making vision

temporarily less sharp for the rapid eye movement, the nervous system discards visual information

about movement and helps us to perceive the world as stable. However, this does not explain the

timing of saccadic suppression. Indeed, for saccades of about 50 milliseconds, the brain begins to

reduce the sharpness of vision roughly 100 milliseconds before each eye movement begins. Why

does the brain discard so much visual input?

To answer this question, Crevecoeur and Kording generated a computer model that took into

account three properties that previous experiments have detected in animal nervous systems. First,

transferring information between the retina and the neurons that control the movement of the eyes

involves delays. Second, when neurons generate commands to move the eyes, they also show

random fluctuations in activity that increase with the intensity of the commands. And third, visual

information can still influence eye movement during a saccade. As a result of incorporating these

three properties, the model predicted optimal timings for saccadic suppression that correspond to

those that occur in real life.

Visual perception and the control of eye movements have often been considered as separate

functions of the brain. However, the model generated by Crevecoeur and Kording suggests that

perception and the control of eye movement may in fact involve common brain regions. Further

research is now needed to investigate predictions made by the model, which should provide new

insights into how the brain supports vision.

DOI: 10.7554/eLife.25073.002
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inflow, and information about specific spatiotemporal frequency or color is still good (Burr et al.,

1994; Burr and Morrone, 1996). Moreover, target jumps during long saccades can influence move-

ment (Gaveau et al., 2003). We should thus model saccades as driven by closed-loop control

(Figure 1a).

To describe saccades in the context of closed loop control, we model a controller that takes the

sensory feedback and the corollary discharge as input, and outputs motor commands. We employ a

Linear-Quadratic-Gaussian (LQG) controller, which can deal with noise both in sensory feedback and

control signals. We use a second order model for the oculomotor plant (see Materials and methods).

This explicit model of saccadic control allows us to derive predictions of eye movement behaviors

and gives us a control process that we can relate to saccadic suppression.

The important feature of this control design in the context of this paper is its state estimator. The

control of saccadic eye movements relies on the corollary discharges as well as on sensory feedback,

which jointly allow state estimation. This state estimator has two main components. The first is a for-

ward model that dynamically updates the current estimate based on the corollary discharge

(Figure 1a, bottom: Forward Model). The output is a prior estimate of the next state at the next

step. The second component is the sensory extrapolation, which combines the delayed sensory

feedback with the corollary discharge to estimate the current state (Figure 1a: Sensory Extrapola-

tion, red). This sensory extrapolation is critical for the behavior of the model.

The presence of sensory extrapolation is supported by previous studies showing that error sig-

nals used to generate saccades depend on an estimate of the present state of the eye or of the

target (Bennett et al., 2007; Ferrera and Barborica, 2010; Diaz et al., 2013; Blohm et al., 2005;

de Brouwer et al., 2002), which clearly requires extrapolation of sensory feedback. Indeed,

because the system only has access to the delayed feedback, this feedback must be extrapolated

to compare it with the one step prediction, or prior. This operation does not appear explicitly in

standard control models in which sensorimotor delays were considered (Izawa and Shadmehr,

2008; Crevecoeur et al., 2016; Todorov and Jordan, 2002; Crevecoeur and Scott, 2013),

because these previous studies used system augmentation, and the sensory extrapolation in this

case falls out of the block-structure of the model. However, this component is necessary, and
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Figure 1. Model architecture and simulations of eye movements. (a) Schematic representation of the control and estimation architectures. We consider

a closed loop controller based on optimal feedback control and state estimation. The dynamics of the eye plant corresponded to a second order

system with time constants taken from the literature (13 ms and 224 ms). Bottom: Optimal state estimator based on usual Kalman filtering, and

augmented with the extrapolation of sensory feedback to compensate for sensorimotor delays (Sensory Extrapolation, red box). The symbolic

representation of the signals in blue follows the same notations as in the Materials and methods: y tð Þ is the sensory feedback, x̂ tjyð Þ is the extrapolation

of sensory feedback, u :ð Þ is the sequence of previous and current control commands, x̂P :ð Þ and x̂ :ð Þ are the prior and posterior estimates at the

corresponding time steps. (b) Top: Modeled saccadic eye movement from the first (x�
1
) to the second fixation target (x�

2
). Bottom: Associated control

function. Time zero corresponds to the end of the fixation period to the first target. (c) Illustration of the sensory extrapolation performed in the state

estimator. The simulated task is to track the target, which suddenly starts moving (velocity jump) with or without position jump in the opposite

direction. The simulated eye trajectory shows how the extrapolation of target motion over the delay interval generates a catch up saccade (black arrow).

This compensatory movement is also illustrated in the velocity trace.
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ignoring it can lead to instability (Crevecoeur and Scott, 2013). In the present model, the sensory

extrapolation is performed explicitly (Equation 5), which also allows us to incorporate the impact

of the signal-dependent noise that accumulates over the delay interval during the extrapolation

(see also Materials and methods). The model then corrects the one step prediction, weighting the

difference between feedback and expected feedback optimally (Figure 1a, K tð Þ is the Kalman

gain).

Saccades and smooth pursuit
The first behavior that our model must describe is a saccade. The model reproduces stereotyped,

step-like trajectories (Figure 1b, top), like those found during real saccades. Moreover, the associ-

ated commands provide a typically wide agonist burst, followed by a short, sharp antagonistic inflec-

tion, which stabilizes the eye at the target (Figure 1b, bottom). This pattern of control, shaped by

the fast time constants of the oculomotor plant, is compatible with the pattern of burst neurons that

generate saccades (Van Gisbergen et al., 1981). Thus the model replicates both behavioral and

physiological aspects of saccadic eye movements.

A second behavior that our model can capture is smooth pursuit. We do not imply that these two

behaviors are supported by the same neural hardware, and the model does not make any prediction

about their neural implementation. Instead, we simply assume that optimal state estimation under-

lies both saccades and pursuit, which is in agreement with the hypothesis that these movements are

distinct outputs of shared sensorimotor computations (Orban de Xivry and Lefèvre, 2007; Krau-

zlis, 2004). The model reproduces typical responses to changes in target velocity, occurring with or

without initial target jump (Figure 1c). When the target starts moving (velocity jump), position error

accumulates over the delay interval, which in turn requires a rapid compensatory movement to catch

up with the target (Figure 1b, light blue). Although the controller was not explicitly designed to

model the interaction between saccades and pursuit, the catch-up saccade in Figure 1b naturally

falls out of the simultaneous correction for errors both in position and velocity. In contrast, when the

target jumps backwards at the onset of the velocity jump (Figure 1c, dark blue), the eye starts mov-

ing smoothly and there is no catch-up saccade (Rashbass, 1961). The model also reproduces correc-

tions following perturbations applied during movement through internal monitoring of the corollary

discharge, as well as online corrections for target jumps occurring during long saccades (simulations

not shown). In all, the model generates typical trajectories and control commands associated with

eye movements, and reproduces the dynamic estimation of the target resulting from the sensory

extrapolation.

Saccadic suppression as a consequence of optimal estimation
Our muscles produce signal dependent noise; the stronger the muscles pull, the more noisy the

state. The phasic activity associated with the agonist burst induces a peak in the variance of the con-

trol signal (Figure 2a, solid). Thus motor commands produce instantaneous noise, and because of

the delay, there is no way for the nervous system to directly subtract or filter out this noise. As a con-

sequence, the extrapolation error computed over an interval that includes even a fraction of the con-

trol burst has higher variance. In other words, moving the eye effectively induces visual uncertainty,

which can only go back to baseline after the end of muscle activation.

The time-varying variance induced by control-dependent noise has a direct impact on the weight

of retinal signals, through the Kalman gains (K tð Þ, Figure 2b). Recall that this matrix weights the dif-

ference between the current and expected estimates of both position and velocity, conditional upon

the available visual information (see Materials and methods, y tð Þ, Equation 4 and Figure 1) to cor-

rect the one-step prediction. We thus focus on the weight of position feedback, as it appears closely

related to saccadic suppression.

During saccades, the extrapolation variance increases as a result of signal dependent noise and

of sensorimotor delays (Vt, Equation 8). As the Kalman gain is inversely proportional to this variance,

the transient increase associated with the agonist burst generates a reduction in K tð Þ, and thus low-

ers the weight of position feedback about the eye position in the state estimator. And indeed, sen-

sory suppression is seen before and during the time of simulated saccades (Figure 2b). The period

of suppression predicted by the model is long because the high variance period includes the move-

ment time in addition to the delay (gray rectangle in Figure 2c). The model predicts that the onset
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of saccadic suppression should precede movement onset by a time interval equal to the delay, which

was fixed to 100 ms in the model (see Materials and methods), although previous work suggested

that it could be shorter (Gaveau et al., 2003). Considering that processing times in the retina

approach ~50 ms (White et al., 2009), a conservative estimate for the onset of suppression accord-

ing to the model ranges from 100 ms to 50 ms prior to movement onset. Our theoretical predictions

thus indicate that feedback about retinal stimuli from this time window should be given less weight

to optimally estimate the state of the eye.

We can also see related effects in the simulated pursuit task. The presence of a catch up saccade,

even a small one (4deg in Figure 2), is sufficient to evoke a transient increase in extrapolation vari-

ance (Figure 2d–f). This results in a reduction in the weight of sensory feedback with similar timing

as for larger saccades. In contrast, when the eye starts moving smoothly (Figure 2f), there is no

catch-up saccade needed and the model predicts no visible change in the weight of sensory feed-

back. Because the model is linear, there is no transition between the simulated pursuit and saccade

task, thus the apparent transition in the behavior results from the correction for the error in position

that accumulates during the delay interval (Figures 1 and 2, light blue). The fact that suppression

occurs for saccades specifically results from the high control signals required for these movements.

In contrast, the pursuit task without a saccade uses smaller control signals that do not evoke any visi-

ble change in the weight of sensory feedback. The behavioral finding (Schütz et al., 2007) that sac-

cades but not smooth pursuit elicit suppression of sensory feedback, and that the suppression scales

with the amplitude of the catch-up saccade, directly results from this model.

Behaviorally, we can analyze data from perception experiments. According to our hypothesis,

suppression should occur prior to movement onset, reach a maximum close to movement onset

(Figure 3b), and scale with the movement amplitude with relatively invariant timing across ampli-

tudes. Interestingly, this goes even down to the level of microsaccades, inducing partial suppression
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despite being very small in amplitude (Hafed and

Krauzlis, 2010). These known properties of sac-

cadic suppression are in line with the model pre-

diction (Figure 3b, black): contrast sensitivity is

reduced and visual stimuli such as flashes, gra-

tings, or small displacements are less likely to be

accurately perceived (Diamond et al., 2000;

Burr et al., 1994; Watson and Krekelberg,

2011; Burr et al., 1999; Bridgeman et al., 1975;

Beeler, 1967). This even happens when the stim-

uli are chosen so that the eye movement does

not change the retinal image, which is compatible

with the model (see the simulated contrast reduc-

tion of a white stripe, Figure 3a). Finally,

although timing is preserved across amplitudes

(Ibbotson and Krekelberg, 2011), the model

predicts that the magnitude of suppression scales

with the saccade amplitude as observed experi-

mentally (Ridder and Tomlinson, 1997). This

scaling is a direct consequence of signal-depen-

dent noise.

A brief increase in the Kalman gain following

the saccade can be observed in Figures 2 and

3. This increase is due to the fact that the abso-

lute value of the motor command is transiently

lesser than the activity required to maintain the

eye at the eccentric target. Thus, during this

short interval, the Kalman gain becomes greater

than during the simulated fixation. This feature

resembles post-saccadic enhancement, which

characterizes the enhanced motor response to a

velocity jump in the target following a saccade

(Lisberger, 1998; Ibbotson et al., 2007). How-

ever, this transient increase in the model was not

sufficient to generate a behavior similar to the

one observed experimentally, despite the fact

that larger differences in the Kalman gain can do

so (simulations not shown). This observation and

the fact that motion detection is active during

saccades (Castet and Masson, 2000) suggest

that the model needs further refinement to fully

capture the processing of velocity signals during

and after saccades.

The model also predicts changes in neural

activity relative to the timing of saccadic sup-

pression. One way to implement the Kalman

gains is to simply drive neurons less strongly

when there is more uncertainty. This should pre-

dict reduced firing rates around the time of sac-

cades. Indeed, a large number of experimental

studies have found such a neural suppression

across the hierarchy of visual areas.

(Ibbotson et al., 2008). The pathways begin

with the lateral geniculate nucleus (LGN)

(Reppas et al., 2002) and the superior colliculus

(SC) (Hafed and Krauzlis, 2010), and continue in
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Figure 3 continued on next page
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the cortical areas V1 (Kagan et al., 2008), MT,

MST, MSTd (Ibbotson et al., 2008;

Bremmer et al., 2009), and VIP

(Bremmer et al., 2009) (Figure 3b, colored

bars). Interestingly, the timing is very similar

across brain regions, which emerges naturally

from the fact that the loop through the outside

world with its delays is the dominating time-

scale. Thus there is suppression of visual signals across the entire visual hierarchy consistent with a

sensorimotor origin of saccadic suppression.

Discussion
We have presented a feedback control model that assumes signal-dependent noise and delays, and

uses state estimation to optimally control eye movements. It is built on the insight that motor noise

is unavoidable and produces sensorimotor uncertainty. It is also based on the key assumption that

saccades are supported by closed-loop control including retinal signals. This assumption is further

developed below. This model allowed us to propose the hypothesis that saccadic suppression origi-

nates from efficient sensorimotor integration. Behaviorally, it describes the dynamics of both smooth

pursuit and saccades. Perceptually, it describes the suppression of sensation around the time of sac-

cades. Neurally, it captures the reduction of neural responses to visual stimuli presented before or

during saccades.

The important motivation behind this study was that cancelling the retinal shift induced by the

saccade, as commonly assumed, does not explain the phenomenon of saccadic suppression. Indeed,

suppression in this case should only occur when the eyes move, and should not be stronger than the

moderate loss in performance associated with saccades simulated as a rapid displacement of the

visual scene (Diamond et al., 2000). All discarded information beyond movement-related effects

would otherwise represent a net loss (up to ~100 ms for some brain areas, Figure 3b). Thus it is clear

that saccadic suppression is either very inefficient, or that maintaining a stable visual scene is just not

its only purpose. We provide an alternative hypothesis that captures suppression qualitatively in the

context of sensorimotor control. Rather than providing a definite answer to why suppression occurs,

we highlight a plausible explanation and expect that it provide an insightful framework for interpret-

ing data about visual processing.

Although the model is not straightforward to test experimentally, our assumption about a com-

mon origin for saccadic suppression and movement control makes testable predictions for prospec-

tive experimental work. For instance, as we suggest that perception is impaired by sensorimotor

control, it is conceivable that control might be impaired by a perceptual task. That is, if it were possi-

ble to train participants to pay attention to visual stimuli displayed during saccades, thereby increas-

ing the weight of sensory feedback, then the theory predicts that movement trajectories should

become more variable as a result of suboptimal state estimation. There is already clear evidence

that the locus of attention and the goal of saccadic movements are linked (Kowler et al., 1995) (and

many references thereto). Here our specific prediction is that saccade trajectories should become

more variable from trial to trial when participants are forced to use sensory information presented

during the interval of saccadic suppression. As well, assuming that saccadic suppression is directly

linked to the variance of sensory feedback through the Kalman filter, the model predicts that varying

the reliability of sensory information may have an impact on the magnitude of saccadic suppression.

Observe that these two predictions also assume that suppression can be flexibly modulated depen-

dent on the behavioral context, which to our knowledge has not been documented.

In addition to capturing the major aspects of behavioral and neural suppression, our model

explains the previous findings of Watson and colleagues (Watson and Krekelberg, 2011), who

investigated the detection of noisy gratings in humans, and found that the best explanation for sac-

cadic suppression was a stimulus-independent reduction in the response gain. This result is a key

aspect of saccadic suppression: the retinal images do not become intrinsically noisier; instead it is

the visual system that responds less to a given stimulus. Our model also accounts for this observa-

tion: by reducing the sensory weight in the Kalman gain, the controller becomes less sensitive to

sensory information. This is due to the uncertainty induced by the motor commands, which is clearly

Figure 3 continued

suppression were drawn following the authors’

summary or based on visual inspection of the

corresponding references.
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independent of the retinal image. The contribution of our model is to show that such stimulus-inde-

pendent reduction in response gain may be rooted in efficient computations about the state of the

eye.

We propose this mechanism as a plausible origin of saccadic suppression, but cannot indicate

how the visual system performs this operation at the level of neural circuits. We draw a qualitative

link between Kalman filtering and the reduction in sensory weight or neural excitability, and thus this

link remains speculative. However, the model does provide hints about what to look for. First, the

increase in extrapolation variance clearly results from convolving the motor-dependent noise with

the expected eye dynamics over the delay interval. Second, this increase is directly proportional to

the integrated motor command. Thus, convolutional networks in the visual system receiving the cor-

ollary discharge as input may easily implement a reduction in the gain of neural responses that

achieves statistically optimal sensory weighting. Any anatomical or functional similarity between

these putative neural operations and neural data may thus provide insight into the circuitry underly-

ing state estimation.

A compelling aspect of our model is its simplicity, as the distinct behaviors and the dynamic esti-

mation simply fell out of the simplest instance of linear stochastic optimal control (LQG). Besides sac-

cadic suppression, our model succeeded at the difficult task of controlling fast movements with

comparatively long delays, without artificially interrupting the sensory inflow. While previous models

of saccadic control tend to only consider open-loop controllers (Harris and Wolpert, 1998), or

closed-loop control with internal feedback only (Optican, 2009; Jürgens et al., 1981; Chen-

Harris et al., 2008), there is evidence that sensory information remains available and may influence

online control. Indeed, motion detection during saccades is not suppressed (Castet and Masson,

2000), and peri-saccadic target jumps evoke adaptation (Panouillères et al., 2016). In addition, a

large retinal slip prior to saccade initiation can elicit curved movements (Schreiber et al., 2006),

indicating that retinal information prior to saccade onset can influence online control. Finally, Gaveau

and colleagues reported partial corrections of eye trajectories following target jumps occurring dur-

ing long saccades (Gaveau et al., 2003). The fact that these corrections accounted for a small pro-

portion of the target jump can be explained in the model, as a lower weight of sensory feedback

leads to only partial correction of the target jump (estimates take longer to converge to the true

value). Thus, although evidence may not be definitive, these previous observations collectively sug-

gest that sensory feedback must be considered in a model of neural control of saccades.

Based on this assumption, our model predicts that sensory feedback must be strongly reduced,

but not completely suppressed, as observed experimentally (Castet and Masson, 2000). This is

because the Kalman filter achieves an optimal projection in the probabilistic sense, by making the

estimation error orthogonal to (or statistically uncorrelated with) the estimated state. Thus, the

decrease in the Kalman gain during movement indicates that state information prior to the saccade

still carries some information about the current state, and thus can be exploited to derive optimal

estimates. The resulting control law (see Materials and methods, Equation 10) plays the role of a

burst generator, and can be easily inserted as such in more complex models of gaze control.

We have formulated the hypothesis that saccadic suppression originates from sensorimotor proc-

essing, although suppression has been characterized behaviorally as a perceptual phenomenon.

Thus our theoretical developments imply that perception and control share a common neural sub-

strate in the visual system. There are already strong pieces of evidence for shared resources. Indeed,

previous work emphasized that perception and action share estimates of target speed (Priebe and

Lisberger, 2004). Recently, a strong link between saccadic suppression and visual-motor neurons

has been established in superior colliculus of macaque monkeys (Chen and Hafed, 2017). Further-

more, the motion on its own must not be suppressed to maintain perceptual stability, instead it

must be equal to the commanded movement monitored online, thus perception is also conditional

upon the ability to integrate extra-retinal signals accurately, both during saccades and pursuit

(Sommer and Wurtz, 2008; Blohm et al., 2005; Hafed and Krauzlis, 2010; Bedell and Lott, 1996).

If perceptual and sensorimotor processes were completely decoupled, posterior beliefs about

sensory information could be separated from movement-related effects, and perception around the

time of saccades could be as good as during simulated saccades (Figure 4, H1). Alternatively, a

motor origin of saccadic suppression implies that the same posterior beliefs are shared for percep-

tion and control, which is suboptimal as it impacts perception of otherwise reliable sensory signals

(Figure 4, H2). Thus the hypothesis of shared resources requires a functional explanation. Although
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perception on its own is suboptimal during saccades (we discard a lot of meaningful information),

the shared resources model is clearly cheaper in terms of neural resources. It may thus be globally

optimal to tolerate perceptual loss during saccades rather than commit to more neural resources for

visual processing, considering perceptual and control systems together. Using the same posterior

belief for perception and action also ensures self-consistency, in the sense that the same stimulus is

not deemed more or less reliable dependent on how we use it. Self-consistency is known to charac-

terize perceptual judgment tasks, where participants make continuous use of the hypothesis to

which they previously committed (Stocker and Simoncelli, 2007). Our model suggests that similar

principles may govern the use of posterior beliefs about the state of the eye for perception and con-

trol, indicating that these functions emerge from a shared neural substrate. We hope that future

work will investigate whether this theory is generally applicable to other examples of active sensory

suppression associated with voluntary actions such as force generation and reaching

(Chapman et al., 1987; Blakemore et al., 1999; Seki et al., 2003).

Materials and methods

Biomechanical model
We consider a second-order, low-pass filter as a biomechanical model of the oculomotor plant.

Based on previous modeling work (Robinson et al., 1986) we set the time constants to t1 ¼ 224ms

and t2 ¼ 13ms. In the sequel, scalars are represented with lower-case characters, vectors with bold

lower-case and matrices with capitals. Thus the state-space representation of the continuous-time

differential equation representing the eye dynamics was:

x
:
1

x
:
2

� �

¼
0 1

�1= t1t2ð Þ � t1þ t2ð Þ= t1t2ð Þ

� �

x1

x2

� �

þ
0

1= t1t2ð Þ

� �

u (1)

where x1 is the eye angle, x2 is the eye velocity, u is the command input and the dot operator is the

time derivative. The explicit dependency on time was omitted for clarity. This representation takes

the form

x
:
¼ AxþBu (2)

with x:¼ x1 x2½ �T representing the state of the system.

H1: Separated Resources

Control

Policy

Estimation /

Belief

Target 

Location Motor 

Commands

Sensory 

Feedback

Eye Plant

Estimate Delay

Decision
Estimation /

Belief

Control

Policy

Estimation /

Belief

Target 

Location Motor 

Commands

Eye Plant

Estimate Delay

Decision

H2: Shared Resources 

Sensory 

Feedback

SensorimotorPerceptual

Figure 4. Schematic illustration of separate or shared resources hypotehses. In the hypothesis of separated

resources (H1), computations of the posterior belief are carried out independently for perception and control. In

this scenario, the uncertainty induced by the control commands does not impact the perceptual estimate. This

possible architecture is optimal in the sense that it would minimize loss of sensory information. In the hypothesis

of shared resource (H2), the computation of the posterior belief about the state of a variable is shared for

perception and control, thus both processes are similarly influenced by control-dependent noise. Although the

first hypothesis is optimal, the second hypothesis is more efficient in terms of neural resources, and is also self-

consistent (see Discussion).
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The plant model was then augmented with the target position and target velocity, and trans-

formed into discrete time model to include sensorimotor noise. The discrete-time stochastic dynam-

ics governing the change of state over time, and the equation describing the visual signals available

in the brain (y tð Þ) are as follows:

x tþ dtð Þ ¼ Adx tð ÞþBdu tð Þþa"tBdu tð Þþ �t; (3)

y tð Þ ¼ x t� dtð Þþst (4)

The matrices Ad and Bd form the discrete-time state space representation of the continuous-time

system defined in Equation 1, which for a discretization step of dt corresponds to: Ad ¼ edtA, and

Bd ¼
R

dt

0

esAds

� �

B. The constant a>0 is a scaling parameter; "t, �t and st are Gaussian noise disturban-

ces. The multiplicative noise ("t) is a scalar with zero mean and unit variance, whereas the additive

sources of noise are 4-dimensional random disturbances with zero mean and variance set to S�;s,

which will be defined below. The measurement delay was dt¼ 100ms in a agreement with measured

and modeled latencies of rapid saccadic responses to visual stimuli (Munoz and Everling, 2004;

Stanford et al., 2010). The subscript t for the random noise disturbances was used to remind that

these series do not have finite instantaneous variation; but they have finite variance over the discreti-

zation interval of dt.

The variable y tð Þ defined in Equation 4 represents the retinal information that is available to con-

trol the eye movement, which in the context of this paper is the state vector delayed by dt and cor-

rupted by the sensory (stÞ. Thus this definition captures the hypothesis that the available sensory

information is a noisy and delayed measurement of the state. Recall that the augmented state vector

includes position and velocity, as well as the target position and velocity.

Closed-loop controller
Optimal estimation and control of the stochastic system defined in Equations 3 and 4 can be

derived in the framework of extended Linear-Quadratic-Gaussian control (LQG), including the effect

of control and state-dependent noise (Todorov, 2005). However this approach is not necessarily

well suited for handling sensorimotor delays because it requires system augmentation

(Crevecoeur and Scott, 2013), and as a consequence the estimator achieves optimal (probabilistic)

projection of the prior estimate onto the delayed state measurement (Anderson and Moore, 1979).

Since we know that the visual system extrapolates sensory information to compute the present state

of the eye or of a moving target (Bennett et al., 2007; Ferrera and Barborica, 2010; Diaz et al.,

2013; Blohm et al., 2005), we were interested to derive an optimal estimator that explicitly extrapo-

lates sensory signals, captured in y tð Þ, over the interval dt (see also Figure 2). The key aspect of this

estimator design is that, by taking into account the control function u sð Þ; t � dt � s � t, the variance

of the extrapolated sensory signal is dynamically adjusted as a function of the control-dependent

noise (3rd term of Equation 3).

More precisely, we assume that neural processing of sensory signals consists in computing an

estimate of the present state of the eye given the delayed sensory signals as follows:

x tjyð Þ ¼ edtAy tð Þþ

Z

t

t�dt

e t�sð ÞABu sð Þds: (5)

Using the notation M tð Þ :¼ etA, it is easy to observe that the extrapolation error (Dt) follows a

Gaussian distribution defined as follows:

x tjyð Þ ¼ x tð ÞþDt; (6)

Dt ~N 0;Vtð Þ; (7)
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Vt ¼M dtð ÞSsM dtð ÞTþ

Z

t

t�dt

a
02

M t� sð ÞBu sð Þu sð ÞTBTM t� sð ÞTds; (8)

where a
0
:¼ a dtð Þ�1=2 was defined in agreement with the unit-variance Brownian noise disturbance

considered for the stochastic differential equation.

With these definitions, we can derive an adaptive estimator based on standard Kalman filtering

using the extrapolated state (Equation 8) instead of the available state measurement (Equation 4).

The state estimate is computed in two steps as follows:

x̂
P tþ dtð Þ ¼ Adx̂ tð ÞþBdu tð Þ (9)

x̂ tþ dtð Þ ¼ x̂
P tþ dtð ÞþK tð Þ x tjyð Þ� x̂ tð Þð Þ; (10)

and the Kalman gain, K tð Þ, as well as the covariance of the estimated state are updated iteratively

following standard procedures (Anderson and Moore, 1979). Observe from Equation 10 that a

reduction in the Kalman gain has a direct impact on the use of visual feedback through the relation-

ship between this feedback (y tð Þ) and the sensory extrapolation (x tjyð Þ, Equation 5). In other words,

visual information conveyed in the sensory feedback participates less to the estimation when the Kal-

man gain is low.

Observe that the separation principle does not hold because the variances of the one-step pre-

diction and of Dt both depend on ut. Thus our approach is valid under the assumption that the con-

trol must not be jointly optimized with the state estimator. Instead of optimizing iteratively the

controller and the state estimator as in the extended LQG framework (Todorov, 2005; Phillis, 1985),

we computed the controller independently based on the heuristic assumption that the separation

principle applied, and then optimized the state estimator defined in Equations 9–10 by taking into

account the effect of control-dependent noise explicitly (Equations 6–8). The controller was thus

obtained by solving the LQG control problem while ignoring the multiplicative noise in Equation 3

as follows:

u tð Þ ¼ � RþBT
dStþ1Bd

� ��1
BT
dStþ1Ax̂ tð Þ (11)

In Equation 11, R represents the cost of motor commands, and the matrices St are computed off-

line following standard procedures (Todorov, 2005; Astrom, 1970).

We developed this approach to include the extrapolation of sensory data while considering the

control over the delay interval explicitly. Using feedback control based on a predicted state is known

as finite spectrum assignment (FSA), which is germane to a Smith predictor in that it aims at remov-

ing the delay from the feedback loop (Zhong, 2010). Here, FSA was chosen to reconstruct the pre-

dicted state (instead of the system output as for the Smith predictor), allowing the use of position

and velocity estimates in the control law (Equation 11).

Numerical simulations
The only free parameters are a (the scaling of the signal dependent noise), the covariance matrices

of �t and st (respectively S� and Ss), and the cost-function used for control. We used the following

values: the constant a was set to 0:08, S� was 10
�3 � BdB

T
d and Ss was 10�6 times the identity matrix

of appropriate dimension. These parameters were manually adjusted so that when adding the sig-

nal-dependent term to the variance of the extrapolation error (Equation 8), the Kalman gains con-

verged to steady-state values and the variances of the extrapolated state and of the motor noise

were comparable during fixation. It is clear that changing the noise parameters may influence the

results qualitatively. However the key feature of the adaptive estimator is that the extrapolation vari-

ance increases monotonically with the square of the motor command, which is why the extrapolated

measurement is dynamically reduced during movement. This aspect does not depend on the differ-

ent noise parameters.

The cost parameters were adjusted to generate simulated saccades compatible with typical

recordings of eye movements in humans, and these parameters do not impact the results qualita-

tively. For saccadic movements, we simulated two fixation periods at the initial (x�
1
) and final (x�

2
)
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targets during which the cost of position error was QFIXATION; i ¼ x1 � x�i
� �2

. The two fixation periods

were separated by the movement time, which was a 50 ms window during which the eye was free to

move without any penalty on the state vector. For the smooth movements in response to velocity

jumps, we simulated a fixation to the target and changed the target state during a simulation run.

The cost of motor commands in all cases was Ru tð Þ2, with R: ¼ 0:01. Finally we used a discretization

step of 5 ms.

One difficulty is that the extrapolation requires that all state variables, including the target, be

observed independently (Equation 4). This is not fully compatible with the visual system, because

there is no measurement of the target state independent of the state of the eye. This limitation

could be overcome by considering another observer that reconstructs the state vector prior to

extrapolating the sensory feedback. Here, instead of considering such additional observer, we

injected similar amounts of signal-dependent noise in the sensory feedback about the state of the

eye as about the state of the target. This procedure was chosen for simplicity and captures the intui-

tive idea that if the eye position is very noisy, then information about the target location logically

shares the same uncertainty.
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