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Targeting the vasculature in hepatocellular carcinoma
treatment: Starving versus normalizing blood supply

Ken Liu1,2,3,4, Xiang Zhang1,2,3, Weiqi Xu1,2,3, Jinbiao Chen4, Jun Yu1,2,3, Jennifer R. Gamble5 and Geoffrey W. McCaughan4

Traditional treatments for intermediate or advanced stage hepatocellular carcinoma (HCC) such as transarterial chemoemboliza-
tion (TACE) and anti-angiogenesis therapies were developed to starve tumor blood supply. A new approach of normalizing
structurally and functionally abnormal tumor vasculature is emerging. While TACE improves survival in selected patients, the
resulting tumor hypoxia stimulates proliferation, angiogenesis, treatment resistance and metastasis, which limits its overall
efficacy. Vessel normalization decreases hypoxia and improves anti-tumor immune infiltrate and drug delivery. Several pre-clinical
agents aimed at normalizing tumor vasculature in HCC appear promising. Although anti-angiogenic agents with vessel
normalizing potential have been trialed in advanced HCC with modest results, to date their primary intention had been to starve the
tumor. Judicious use of anti-angiogenic therapies is required to achieve vessel normalization yet avoid excessive pruning of
vessels. This balance, termed the normalization window, is yet uncharacterized in HCC. However, the optimal class, dose and
schedule of vascular normalization agents, alone or in combination with other therapies needs to be explored further.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common cancer
in men and ninth most common in women worldwide.1 The
disease carries a highmortality rate and represents the thirdmost
frequent cause of cancer death globally. The median survival
following diagnosis is poor, ranging from four to 20 months.2,3

While potentially curative therapies such as surgical
resection, liver transplantation or ablation can result in
5-year overall survival rates of 470%,4 they are applicable
to less than 30% of patients with HCC.5 Currently, treatment
options for patients with intermediate and advanced HCC
remain limited and are considered palliative.6 Transarterial
chemoembolization (TACE) which combines injection of
chemotherapy and occlusion of the tumor blood supply, has
been shown to improve survival in some randomized
controlled trials of patients with unresectable HCC but not
others.7–9 After an initial objective tumoral response in
approximately 25–40% of patients, treated tumors can
revascularize and require retreatment until the capacity to
keep the cancer under control is lost. For patients with
advanced HCC, the only therapy with proven benefit is the
multi-kinase inhibitor sorafenib which extends median overall
survival by two to three months.10

Amongst its anti-tumor properties, sorafenib also exerts
anti-angiogenic effects by inhibiting vascular endothelial
growth factor (VEGF) receptor tyrosine kinases.11 Hence,

conventional treatments such as arterial embolization and
sorafenib aim to starve the tumor of its blood supply (and
therefore oxygen and nutrients). In contrast, an emerging
concept in cancer treatment is the “normalization hypothesis”
where tumor vessels, which are aberrant both in structure and
function, are normalized to improve tumor perfusion and
oxygenation. Such approaches have been associated with
reduced metastasis and improved delivery of chemo-, radio-
and immune therapies.12

In this review, we describe the structural and functional
abnormalities in HCC blood vessels. We will then discuss the
treatment of HCC by targeting the vasculature through two
opposing approaches: the traditional method of starving the
blood supply and the newparadigmof vasculature normalization.

CHANGES IN VASCULATURE IN HCC

Like other solid tumors, HCC cannot grow beyond a few
millimeters in size without angiogenesis.13 Through a process
of angiogenic switch,14 an HCC is able to evolve from a
dysplastic nodule and grow in size by acquiring an increasing
number and density of unpaired arteries (i.e., not accompa-
nied by bile ducts) supplying it. This switch is the rate-limiting
step in hepatocarcinogenesis and is stimulated by an
imbalance of angiogenic factors in favor of those that are
proangiogenic. Both tumor cells and adjacent cells secrete
VEGF, basic fibroblast growth factors (bFGF), angiopoietins,
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platelet derived growth factor (PDGF), placental growth factor
(PlGF) and transforming growth factor among others. The
tumor subsequently becomes hypervascular and draws blood
from ectopic arteries to obtain nutrients for growth and to
metastasize to distant organs.15,16 However, these vessels are
both structurally and functionally abnormal (Figure 1).

Tumor vessel structure. Macroscopically, tumor vessels
are tortuous, with uneven diameters and irregular branching
patterns. While normal liver sinusoidal endothelium is
fenestrated and lacks a basement membrane (BM), HCC
sinusoidal endothelium is thicker, has fewer fenestrations,
shows BM formation and expresses the phenotype of
capillary blood vessels. Hence this process is termed
capillarization.17 Endothelial cell proliferation is dramatically
increased and circulating bone marrow-derived endothelial
progenitor cells and hematopoietic stem cells are recruited to
aid tumor angiogenesis.18 Endothelial cells of HCC vessels

can lose their polarity and detach from the BM causing them
to stack upon each other (stratification) and protrude into the
lumen.19 Quantitation of these abnormal tumor vessels by
immunostaining for endothelial cell markers such as CD34
(i.e., the tumor microvessel density), has been shown to be
independent poor prognostic factors for disease-free and
overall patient survival in HCC.20 Furthermore, liver tumor
cells themselves actively participate in the formation of new
vessels either partially by occupying the vessel wall in mosaic
vessels or completely in vasculogenic mimicry,21,22 which is
associated with high tumor grade, invasion and metastasis,
and shortened survival.23

The BM of the capillarized sinusoids is affected to varying
degrees ranging from relatively intact BM in differentiated
HCCs to sharply defective BM in more anaplastic HCCs.24

This degradation of BM is mediated by matrix metalloprotei-
nases (MMP) which are highly expressed in HCC cells.25

Moreover, degradation of the BM by MMP2 and MMP9

Figure 1 Structure of normal vessels vs. tumor vessels in the liver sinusoid. (a) In healthy liver sinusoids, the endothelium is regular, fenestrated and lacks a basement
membrane. Hepatic stellate cells remain in a quiescent state. (b) In hepatocellular carcinoma, the endothelium is thickened and loses its fenestrations while a discontinuous
basement membrane is formed through a process called capillarization. Tumor cells form the vessel wall in some areas. Hepatic stellate cells become activated and release
vascular endothelial growth factor as well as other angiogenic factors. These vessels are structurally and functionally abnormal.
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mobilizes proangiogenic factors such as VEGF sequestered in
the BM, thus further potentiating tumor angiogenesis.26 Both
MMP2 and MMP9 expression have been demonstrated to be
predictors of poor prognosis in HCC patients.27,28

Capillaries are enveloped bymural pericytes. In the liver, the
hepatic stellate cell (HSC) expresses multiple smooth muscle
cell markers and are considered the pericyte equivalent.29 In
HCC, HSCs become activated by secretion of cytokines such
as PDGF and transforming growth factor-β by tumor cells.
Tumor-activated HSCs in turn create a proangiogenic,
prometastatic microenvironment by facilitating endothelial
proliferation and survival through release of VEGF as well as
other angiogenic factors. While pericytes are deficient in the
abnormal vessels of non-HCC tumors,30 activated HSCs
proliferate and enhance their coverage of the sinusoids in
cirrhosis and HCC.29 Increased numbers of HSCs in the HCC
microenvironment is associated with cell migration and
invasion.31

Abnormalities of tumor vasculature are also seen at the
ultrastructural and molecular level. Schmitt et al. demon-
strated VEGF-induced disruption of occludin-delineated tight
junctions in HCCs and peritumoral normal liver parenchyma,
thus facilitating a possible mechanism for tumor invasion.32

The aberrant expression of claudins, which are integral
structural and functional components of tight junctions, is
observed in HCC and may have a causal role in tumor
formation and progression by inducing epithelial–mesenchy-
mal transition (EMT).33 In addition, vascular endothelial
(VE)-cadherin (a key protein in endothelial adherens junc-
tions) is endocytosed and uncoupled from catenin-associated
proteins in response to VEGF. As a consequence, endothelial
cell-cell junctions are loosened and vascular permeability is
increased in VEGF-induced tumor angiogenesis.34

Tumor vessel function. These abnormalities in endothelial
cells, BM and cell junctions collectively contribute to tumor
vessels which are excessively leaky in HCC with several
consequences arising from this.35,36 First, the extravasation of
proteins and fluid into tumor interstitium leads to peritumor
edema and interstitial hypertension via increases in oncotic
pressure and hydrostatic pressure. The impaired diffusion of
molecules and vascular collapse caused by capillarized
sinusoids, peritumoral edema and interstitial hypertension
reduces delivery of oxygen and therapeutic agents into the
tumor.37,38 This results in a tumor microenvironment of
hypoxia, acidosis and potentially reduced efficacy of anti-
cancer treatments. Prognostically, tumor pressure in HCC has
been shown to correlate with differential grade, presence of
vascular invasion and intrahepatic metastasis, as well as local
and distant recurrence rates after treatment.39,40

Second, the poorly organized tumor vasculature with
tortuous, irregularly shaped, and leaky vessels is less
responsive to vasoactive signals and unable to support
efficient blood flow.41 There is considerable heterogeneity in
tumor blood flow which is brisk in some areas and sluggish in
others.42 This variation is not only observed spatially, but also
temporally as blood flow changes with continuous vessel
remodeling. This patchy perfusion leads to non-uniform
delivery of oxygen, nutrients and drugs to the tumor. The
influx of immune effector cells into the tumor is also impaired

due to alterations in leukocyte-endothelium adhesion
molecule and chemokine expression.43

Third, the rapid proliferation of tumor and non-tumor cells,
leaky vessels and regional hypoperfusion all result in hypoxia
which is a potent stimulator of angiogenesis mediated by the
expression of hypoxia-inducible factor 1 (HIF-1).44 This leads
to the formation of more non-productive HCC vessels which
further aggravates hypoxia thereby establishing a vicious
cycle (Table 1 and Figure 2). Tumor hypoxia has numerous
other cancer-promoting effects in HCCwhichwill be discussed
in the following section.

TRADITIONAL TREATMENT APPROACH—STARVING
HCC OF BLOOD SUPPLY

The recognition of the classical model of tumor angiogenesis
as a therapeutic target was made in the 1970s by Folkman.45

Simplistically, it was thought that limiting or obliterating the
angiogenic response could improve outcomes, essentially
starving the tumor to death. As HCCs typically have arterial
hypervascularity, it would therefore seem logical to starve the
tumor of its blood supply as a therapeutic approach. First
described by Doyon et al. in 1974,46 transarterial embolization
(TAE) achieves angiographic occlusion of the HCC blood
supply using embolizing agents. It capitalizes on the unique
situation of HCC acquiring its blood supply from the hepatic
artery while the surrounding liver (with dual blood supply)
receives blood predominantly from the portal vein.47 The
selective arterial occlusion by embolic agents such as gel
foam or polyvinyl alcohol results in tumor ischemia, hypoxia
and ultimately necrosis while minimizing damage to liver
tissue. The addition of regional chemotherapy (TACE) with
lipiodol (theoretically) enhances anti-tumor effects as che-
motherapeutic agents can be given at higher concentrations
and remain localized in the tumor for longer periods.48 As
radioembolic agents do not work by creating ischemia from
vessel occlusion,49 they will not be discussed here.

Efficacy of arterial embolization. Over the past decade,
TACE has become standard of care for patients with
Barcelona clinic liver cancer (BCLC) stage B (intermediate)
HCC.50 Although early randomized controlled trials (RCTs)
demonstrated strong anti-tumor effects in TAE or TACE
compared with conservative or suboptimal treatments (e.g.,
tamoxifen or intravenous 5-fluorouracil), all failed to show a
survival benefit. It was not until 2002, that two RCTs
demonstrated improved survival.7,9 Results from meta-
analyses and systematic reviews are overall in favor of TACE
over non-active treatment. Two meta-analyses which
included almost identical studies (five out of six RCTs in
common) both found TAE or TACE improved the two-year
survival compared with non-active treatment in patients with
unresectable HCC.51,52 Overall, the improvement observed in
survival with arterial embolization was 46–47%. On the other
hand, a more recent Cochrane meta-analysis of nine RCTs
revealed no difference in survival.53 However, the inclusion of
studies of patients with either early stage HCC (who benefit
most from curative therapies) or advanced HCC (who have
poor response and less tolerance to TACE) may have
biased these results.54 While studies of TACE may differ
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procedurally in use of chemotherapy agents (or lack thereof),
embolizing material and number of repeated treatments, it is
clear that patient selection is important. The most ideal
candidates for TACE are patients with liver confined tumors
(unresectable, without vascular invasion), preserved liver
function (Child-Pugh class A or B) and the absence of portal
vein thrombosis.

TAE vs. TACE. Although TACE is the more widely accepted
treatment approach, it remains doubtful whether it is superior
to TAE alone. Several RCTs and two meta-analyses have
indicated no survival difference between the two
treatments.51,55–59 These results suggest TACE derives its
anti-tumor effects predominantly from the ischemic effect due
to embolization rather than the addition of chemotherapy.

Limitations of TACE and the effect of tumor hypoxia.
Aside from the aforementioned restrictions on patient selec-
tion, TACE holds other drawbacks in HCC treatment. Although
the intention of TACE is to starve the HCC of its blood supply,
the resulting hypoxia in the tumor has subsequently been
shown to stimulate dedifferentiation, proliferation, angiogen-
esis and metastasis of the cancer itself.60 Recently, Lai et al.61

demonstrated a significant association between hypoxia in
TACE treated HCCs and the induction of CK19, a marker for
an aggressive tumor phenotype. A histological study of 24
HCCs treated with TAE in patients undergoing surgical
resection found the proliferative activity of tumor cells and
intratumoral endothelial cells was increased after TAE com-
pared to untreated tumors.62 Accordingly, the rate of local
recurrence after initial TACE is upwards of 80% and recurrent
tumors have significantly shorter doubling times compared to
primary HCCs.63

Central to these processes is the role of HIF-1α, a
heterodimer transcription factor, which induces the expression
of genes involved in cell survival, proliferation and
angiogenesis.44 During normoxia HIF-1α is hydroxylated,
ubiquinated and rapidly degraded by proteosomes. In response
to hypoxia, HIF-1α binds to the promoter region of VEGF and
induces its transcription. Protein levels of both activated HIF-1α
and VEGF are significantly increased following TACE.64,65

During hypoxia, HIF-1α and VEGF through the modulation of
other proteins (such as myeloid cell factor 1 and Bcl-2) create
an environment of apoptosis-blocking and tumor cell
survival.66,67 Specifically, arterial embolization has been shown
to upregulate the anti-apoptotic protein Bcl-2 which causes
HCC cells to escape apoptosis induced by anoxic injury,
rendering them resistant to further embolization treatments.65 In
addition, hypoxia can contribute to carcinogenesis via HIF-1α

Table 1 Detrimental effects of hypoxia in carcinogenesis

Detrimental effects of hypoxia in carcinogenesis

Induction of a more aggressive tumor phenotype
Upregulation of growth factors
Induction of apoptosis resistance60

DNA hypermethylation of tumor suppressor genes68

Induction of EMT70

Impaired anti-tumor immune response
Impaired entry of anti-tumor immune cells, e.g., CD8+ T cells36

Recruitment of immunosuppressive Treg cells and MDSCs80,83

Increased expression of immune checkpoints85

Stimulation of angiogenesis60

Induction of chemoresistance and radioresistance60

EMT, epithelial-mesenchymal transition; MDSC, myeloid-derived suppressor cell.

Figure 2 Vicious cycle of hypoxia, non-productive angiogenesis and tumor growth. Angiogenesis is required for a tumor to grow beyond a few millimeters. However, this
neovascularisation produces abnormal leaky vessels which give rise to interstitial hypertension, edema and tumor hypoxia. Although some treatments (e.g., TACE) aim to achieve
hypoxia in order to kill the tumor by starvation, hypoxia has been demonstrated to stimulate further angiogenesis and tumor growth through a variety of mechanisms (see text:
Limitations of TACE and the effect of tumor hypoxia). HIF-1α, hypoxia-inducible factor 1α; IGF-2, insulin-like growth factor-2; MDSC, myeloid-derived suppressor cell; MMP, matrix
metalloproteinases; TACE, transarterial chemoembolization; VEGF, vascular endothelial growth factor.
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independent processes such as DNA hypermethylation of
tumor suppressor genes.68 The upregulation of HIF-1α and
VEGF along with other angiogenic factors such as insulin-like
growth factor-2 (IGF-2) induced by hypoxia play a major role in
the stimulation of neovascularisation69 and EMT70 which
facilitate tumor progression and metastasis. Moreover,
reciprocal positive regulation exists between these factors as
IGF-2 increases HIF-1α stability which in turn induces VEGF
expression.71 Prognostically, increased plasma levels of
HIF-1α, VEGF and IGF-2 are all associated with the develop-
ment of metastasis and poor outcomes in post-TACE patients
and HCC patients in general.72–75

Tumor hypoxia is also a known driver of chemoresistance in
HCC. Through both HIF-1α-mediated and HIF-1α-independent
pathways, hypoxia can protect tumor cells from chemotherapy
induced apoptosis.76,77 In addition, hypoxia elicits the expres-
sion of multidrug resistance-related genes such as multidrug
resistance protein 1 and lung resistance protein in HCC cell
lines.77 An autocrine signaling loop involving PDGF-BB, Akt
and HIF-1α which confers cisplatin resistance in HCC cell lines
under hypoxic conditions has also been discovered.78 Con-
versely, HIF-1α downregulation by antisense gene therapy
enhances the therapeutic efficacy of doxorubicin against
HCC.79 These mechanisms could explain the lack of an
additive effect seen in chemoembolization over bland emoliza-
tion alone, as discussed previously, while the use of systemic
chemotherapy in HCC has similarly been ineffective.
The tumor microenvironment is altered by hypoxia in its

immune status. Although not yet extensively studied in HCC,
the effect of hypoxia on the intrahepatic immune infiltrate may
be crucial.75 Hypoxia has been shown, in other cancers, to
promote chemokine-mediated recruitment of immunosup-
pressive Treg cells80,81 and myeloid-derived suppressor
cells.82 Furthermore, recruited monocytes and resident
macrophages in the hypoxic tumor microenvironment differ-
entiate into tumor associated macrophages (TAMs). The
polarization of these TAMs favor a tumor-promoting M2-like
phenotype over a tumor-suppressive M1-like phenotype.81

This concept that hypoxia converts the tumor microenviron-
ment from immunosupportive to immunosuppressive appears
to also apply in HCC.83 Indeed, both the presence and balance
(CD8+ effector cells vs. Treg) of within tumor infiltrating
lymphocytes have proved to be independent prognostic
factors in HCC.84 Furthermore, programmed death-ligand 1
(PD-L1) expression is increased by HIF-1α in hypoxia and
facilitates the evasion of anti-tumor immunity by HCCs.85,86

Thus, through the exacerbation of hypoxia (in an already
hypoxic microenvironment), the anti-tumor effects of TAE or
TACE are modest and self-limiting. Arterial embolization may,
in fact, paradoxically promote the HCC to become more
aggressive and evasive leading to progression and metas-
tasis. The limitation of starving tumor blood supply to treat
HCC is further highlighted by the lack of efficacy seen when
combining TACE with anti-angiogenic therapies such as
sorafenib87 and bevacizumab.88 Clearly other approaches
need to be explored.

Mechanisms of action of current anti-angiogenic
therapies. Although TACE is the par excellence example of
targeting HCC via vascular starvation the current small

molecule tyrosine kinases also do this to a certain extent.
Sorafenib, regorafenib, lenvatinib, sunitinib, cediranib and
axitinib are multi-targeted tyrosine kinase inhibitors trialed in
HCC with activity against receptor tyrosine kinases involved
in neovascularization and tumor progression including VEGF
receptors (VEGFR) 1–3 and/or PDGF receptors (PDGFR)-α
and -β. Both VEGF and PDGF pathways are key mediators of
angiogenesis which are overexpressed and play significant
roles during hepatocarcinogenesis.89 When VEGF interacts
with VEGFRs on the endothelial cell surface, it causes
autophosphorylation of its intracellular tyrosine kinase and
activation of downstream proteins resulting in a mitogenic
effect on endothelial cells.90 The binding of PDGF to its
receptors, after dimerization and activation of the intracellular
tyrosine kinase, stimulates endothelial cell migration (rather
than proliferation) as well as survival and migratory signals to
pericytes that provide support to vascular endothelial cells.91

Inhibition of these intracellular tyrosine kinase receptors has
been shown to reduce endothelial cell proliferation, tubule
formation, microvascular area and density in tumors (i.e.,
starving the tumor by inhibiting angiogenesis).11,92 Multi-
kinase agents which target both VEGFRs and PDGFRs have
additive effects on limiting angiogenesis as inhibiting
PDGFRs has been shown to cause pericyte detachment
from the endothelium, leaving endothelial cells more suscep-
tible to VEGF inhibition.91 Furthermore, some multi-targeted
have direct anti-cancer effects. For example, sorafenib
inhibits Raf kinase which is part of the Raf/MEK/ERK
signaling cascade involved in cell growth and survival and
is overactivated in HCC.11 Hence multi-kinase inhibition may
enable these small molecules to be used as monotherapies,
something that has not proved effective with the pure VEGF
antagonist bevacizumab. The efficacy of these anti-
angiogenic therapies in clinical trials is discussed below.

NOVEL TREATMENT APPROACH—NORMALIZATION OF
VASCULATURE IN HCC

The normalization hypothesis. Realizing the limitations of
starving tumor vasculature due to the adverse consequences
of hypoxia, a growing number of pre-clinical and clinical
studies have explored the emerging (yet counterintuitive)
paradigm of normalizing vasculature to treat cancer. Normal-
ization of the vasculature adopts approaches that reverse the
classical phenotype of tumor blood vessels at the cellular and
molecular level as opposed to simply obliterating the
vasculature. This essentially means a change to the tumor
microenviroment with less hypoxia, less vascular leak,
increased pericyte numbers together with an increase in the
infiltration of CD8+ T cells and a decrease in the neutrophil to
lymphocyte ratio (i.e., the opposite to changes seen in new
HCC tumor vessels as described above).36 Such changes
have the potential increase delivery of other cancer directed
therapies and may be synergic with immune directed
therapies such as checkpoint inhibition.

Pre-clinical studies. Examples of effective vessel normal-
ization have been now been demonstrated at the experimental
level. Hamzah et al.93 observed that vessel normalization in

Starving vs. normalizing blood supply to treat HCC
Liu et al.

5

Clinical and Translational Gastroenterology



tumor-bearing mice deficient in Rgs5 (a protein overexpressed
by pericytes in aberrant tumor vasculature) was associated
with significant increases in infiltrating tumor-specific CD4+
and CD8+ T cells and prolonged survival. In a separate study
of mice treated with a designer angiostatic peptide, anginex,
increased leukocyte infiltration was also seen through impro-
ved leukocyte-vessel wall interactions in tumor vessels.94

Several in vitro and in vivo studies of vessel normalizing
agents have now also documented anti-tumor activity against
HCC (Table 2). Placental growth factor is a member of the
VEGF subfamily. After binding to its receptor VEGFR-1, it
induces pro-cancer responses in endothelial, malignant, and
immune cells. Increased expression of PlGF is associated with
poor prognosis in HCC.95 Importantly, PlGF inhibition reduces
tumor growth and induces vessel normalization in experi-
mental HCC models.96,97 Histidine-rich glycoprotein (HRG) is
a host-produced protein deposited in the tumor stroma which
can induce a change in polarization TAMs in favor of the M1-
like phenotype. This effect of HRG on TAM polarization also
indirectly resulted in tumor vessel normalization. Both these
processes are PlGF-mediated. Furthermore, Vandewynckel
et al.98 recently demonstrated that PlGF inhibition possibly
exerts its anti-tumor effects by improving intratumor hypoxia
which is a potent activator of the pro-survival, PKR-like
endoplasmic reticulum kinase (PERK) pathway in HCC cells.
A number of pharmacological agents that target the driver of

abnormal vasculature, HIF-1α, have also been linked to
vasculature normalization. EZN-2968 is a RNA antagonist
that specifically binds HIF-1α mRNA and reduces its expres-
sion by 80% and the expression of VEGF mRNA by 50% in
mice livers.99 A phase I study presented results demonstrating
its anti-tumor activity in patients with advanced malignancy
including HCC.100 Another suppresser of HIF-1α is NVP-
BEZ235, a dual PI3K/mTOR inhibitor which induces apoptosis
of hypoxic cells. This novel agent has exhibited promising
activity against HCC.101

Several vasoactive traditional Chinese medicine com-
pounds have exhibited anti-tumor efficacy against HCC in
mouse xenograft models. Sinomenine hydrochloride, a known
inducer of vascular normalization,102 has also been shown to
inhibit HCC growth by promoting cell cycle arrest and
caspase-dependent apoptosis.103 Tanshinone IIA, a herbal
extract from Chinese sage (Salvia miltiorrhiza), inhibited HCC
metastasis and improved survival after palliative resection
through the promotion of VEGFR-1/PDGFR-related vascular
normalization.104 This anti-metastatic potential was also seen
in a study of Buyang Huanwu decoction.105

As the benefits of vascular normalization extend beyond
cancer, novel targets also arise from non-oncological studies
of vascular biology. We have developed a novel Blockmir to
inhibit miR-27a, a microRNA which targets VE-cadherin
resulting in its downregulation. This led to vascular normal-
ization and potently enhanced recovery from ischemic limb
injury in mice.106 Early experience with the same Blockmir in a
subcutaneous isograft HCCmodel demonstrated an inhibition
of tumor growth (Zhao et al. Accepted Cancer Res. 2017). In
the B16F10 melanoma model, the Blockmir decreased
vascular leak and tissue hypoxia, increased pericyte numbers,
induced greater infiltration of T cells into the interior of the
tumor and showed a reduction in tumor growth by 60% (Zhao
et al. Accepted Cancer Res. 2017). Interestingly, such
vascular normalization effects plus the effect of an anti PD-1
monoclonal antibody showed a synergistic anti-tumor effect.

CURRENT CLINICAL ANTI-ANGIOGENIC THERAPIES:
DO THEY HAVE VESSEL NORMALIZING POTENTIAL?

Non-HCC directed therapies. The normalization hypoth-
esis was initially proposed in an attempt to explain the
observation that some anti-angiogenic therapies potentiate
the effects of chemotherapy and radiotherapy.12 Multiple
clinical trials have shown that combination therapy with
bevacizumab (humanized anti-VEGF monoclonal antibody)
and conventional chemotherapy improved patient survival
and response rates over either therapy alone. This effect was
observed across multiple advanced stage (metastatic)
cancers: colorectal cancer, non-small cell lung cancer, breast
cancer and renal cancer.107–110 Given that anti-VEGF
therapy aims to starve tumor blood supply and is associated
with vessel pruning while chemotherapy relies on this same
blood supply for drug delivery, these findings were unex-
pected. It was hypothesized by Jain et al. that anti-VEGF
therapy augmented chemotherapy delivery and efficacy by
transiently reversing vessel abnormalities (and hence the
tumor microenvironment) without destroying them. In a
landmark study, the same group went on to demonstrate
that within 12 days of infusion, a single dose of bevacizumab
in rectal carcinoma patients reduced microvascular density
and improved vessel permeability, pericyte coverage and
interstitial hypertension.111 These are all markers of vascular
normalization (Table 3). Conversely, Yang et al. recently
showed that discontinuation of anti-VEGF treatment in mice
created a period of profound structural abnormality in liver
sinusoidal capillaries with enlargement of pore sizes, loss of
VE-cadherin and hyper-permeability.112 These changes led

Table 3 Features of vessel normalization

Features of vessel normalization36

Reduced vessel diameter and tortuosity
Decrease in vascular permeability
Decrease in tissue hypoxia
Decrease in interstitial pressure and edema
Increase in pericyte coverage around blood vessels
Improvement in number and function of intratumoral immune cells

Table 2 Pre-clinical agents that have potential normalization activity

Pre-clinical agents that have potential normalization activity

PlGF inhibitors96,97

Some traditional Chinese medicine compounds102–104

HIF-1α inhibitors99

VE-Cadherin modulator (e.g., Blockmir to inhibit miR-27a)106

HIF-1α, hypoxia-inducible factor 1α; PlGF, placental growth factor; VE-Cadherin,
vascular endothelial cadherin.
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to tumor extravasation and marked promoted liver
metastases in a mouse colorectal cancer model.
It is important to recognize that beneficial effects of anti-

VEGF therapy may be dose dependent. According to Jain and
colleagues, a paradox exists with anti-angiogenic therapy
where judicious application leads to selective pruning of
immature tumor vessels leaving a relatively normalized
network of vessels.12 While on the other hand, sustained or
high doses may result in excessive regression of vasculature
leading to the same adverse effects of hypoxia seen in
treatment attempts to starve the tumor.113 This delicate
balance has been termed the “normalization window”.12 This
refers to a transient pharmacologically induced time period
after the commencement of anti-angiogenic therapy during
which tumor vessels exhibit features of normalization and
improved functionality (reduced hypoxia) resulting in increa-
sed vulnerability of cancer cells to cytotoxic therapies.114 The
commencement and duration of this window has been studied
across different cancers using different vessel normalizing
agents and can vary widely. For example, the time period of
increased oxygenation in mice melanoma, breast carcinoma
and ovarian carcinoma models treated with bevacizumab was
demonstrated to be between day two and day four after
starting treatment.115 In comparison, mice with human glioma
xenografts treatedwith anti-angiogenic agent suramin showed
improved oxygenation compared to controls for up to 5 weeks
afterwards.116 The normalization window in human HCC is
currently not known.

HCC directed therapies. In contrast to the aforementioned
studies in other cancers, the synergistic effects of anti-
angiogenic therapies have not been reproduced in HCC.
Phase II trials of bevacizumab combined with systemic
chemotherapy117,118 did not show numerically superior
response rates (RR), progression-free survival (PFS), or
overall survival (OS) compared to bevacizumab alone or
chemotherapy alone.119,120

Thalidomide exerts anti-angiogenic effects via inhibition of
VEGF, bFGF and HIF-1α to improve tumor hypoxia and
interstitial hypertension—changes associated with vessel
normalization.121–123 However, clinical trials of thalidomide
either alone124,125 or in combination with chemotherapy126 or
radiotherapy127 in unresectable HCC have been met with
disappointing results (o5% RR).
Although sorafenib and sunitinib can destroy tumor vascu-

lature, they also both demonstrate the ability to normalize
tumor vasculature.128 Currently, sorafenib is licensed for use
as monotherapy but it might prove effective when combined
with chemotherapy on the basis of its vascular normalizing

properties. An exploratory phase II RCT of sorafenib plus
doxorubicin vs. doxorubicin alone in advanced HCC found
encouraging results with greater median PFS and OS seen in
combination therapy.129 However, the same authors could not
confirm the superiority of sorafenib plus doxorubicin compared
with sorafenib in a phase III trial of 346 patients.130 No survival
benefit was seen at the cost of higher toxicity. Trials of sunitinib
with reduced dosing showed modest activity with 2.9% RR,
3.9 months PFS, and 9.8 months OS.131 Interestingly, a
greater decrease in tumor vascular permeability (Ktrans,
measured by dynamic contrast-enhanced magnetic reso-
nance imaging) at day 14 after treatment was associated with
partial response or stable disease. This suggests that degree
of vascular normalization may be a determinant of HCC
response to sunitinib. Nevertheless, a phase III trial of sunitinib
vs. sorafenib in untreated patients with advanced HCC was
terminated early due to significantly worse survival (7.9 vs.
10.2 months median OS) and higher toxicity.132

In recent developments, another multi-kinase inhibitor
lenvatinib has been reported to have non-inferior overall
survival compared to sorafenib for first-line treatment in
patients with unresectable HCC.133 In the second-line setting,
regorafenib was also found to significantly improve OS in
patients with HCC who progressed on sorafenib.134 However,
the effects of these treatments on vessel normalization are
not known.
Targeting the epidermal growth factor signaling pathway via

erlotinib can reduce vascular permeability, tumor hypoxia and
enhance responses to chemotherapy and radiation.135 Phase
II studies in advanced HCC have demonstrated 0–9% RR,
3–4 months PFS and 10–13 months OS.136,137 However, the
combination of erlotinib with other anti-angiogenesis agents
such as sorafenib and bevacizumab failed to show any
additional benefit.138,139

Other agents directed against VEGFR such as cediranib,
axitinib and ramucirumab have all demonstrated normal-
ization properties in other cancers but have not been shown
to benefit HCC patients beyond the effect seen with
sorafenib.140–145 Thus, although normalization effects are
seen with some of the above agents, synergistic effects in
human HCC either with chemotherapy or anti-angiogenic
therapies have not so far been seen.

FUTURE PERSPECTIVES

Vascular normalization with anti-angiogenic agents is now an
emerging approach to treat many cancers. In human HCC
clinical trials, current anti-angiogenic therapies (beyond
sorafenib) have not found the “normalization window” in order

Table 4 Potential approaches using vessel normalization in hepatocellular carcinoma

Potential approaches using vessel normalization in hepatocellular carcinoma

Normalization alone
Normalization and established chemotherapy drugs (increase drug delivery)
Normalization and multi-kinase inhibitors (increase drug delivery)
Normalization and immunotherapy e.g., checkpoint inhibitors
(increase entry and activity of anti-tumor immune cells)
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to improve outcomes. It is likely that the optimal class, dose
and schedule of these agents required to achieve normal-
ization and yet avoid excessive pruning is not known.
Moreover, the exact timing of combination chemotherapy or
radiotherapy in order to capitalize on the normalization window
when their anti-tumor effects are enhanced is similarly unclear.
These unknowns may partially explain why benefits seen in
pre-clinical studies have not translated into clinically signifi-
cant improvements. Another unanswered question is whether
and how this transient normalization window can be
prolonged. Clearly further characterization of the normal-
ization window is needed. Current approaches to treat HCC
using anti-VEGF therapies and multi-targeted tyrosine kinase
inhibitors are unlikely to be sufficient even if used appro-
priately. Therefore, a multipronged approach involving several
anti-angiogenic pathways is likely to be required. Other
relevant mediators of vessel normalization and their drug
targets also need to be explored. Novel strategies such as
targeting VE-cadherin particularly in combination with
checkpoint inhibitors appear to be promising (Table 4).
Contributing to this challenge is a lack of validated surrogate

biomarkers to signify when, or indeed if, vascular normal-
ization has occurred. In addition to guiding appropriate dosing
and scheduling of therapy, biomarkers can be used to identify
patients who may benefit most from vascular normalization,
while avoiding futile treatment and toxicity in others. Traditional
methods to assess response based on tumor shrinkage146

may not accurately reflect reduction in viable tumor burden
(without necessarily reducing size) due to necrosis caused by
anti-angiogenic therapies. Functional imaging of HCC vascu-
lature such as perfusion computed tomography, dynamic
contrast-enhanced magnetic resonance imaging or ultra-
sound have proved to be useful biomarkers in HCC but are
limited by their complexity, cost and need for specialized
technologies and expertise.131,147 Blood-based biomarkers
for antiangiogenic therapy have similarly shown promise in
predicting outcomes131 but require validation in large
prospective RCTs.
Since the cancer-promoting effects of hypoxia impacts on

numerous different mechanisms, emergence of new anti-
cancer therapies will continually provide opportunities for
combination therapy. For instance in the advent of immune
checkpoint inhibitors used to treat other advanced cancers,
combination therapy between sorafenib, anti-programmed
death receptor-1 (PD-1) antibody and other immunotherapies
to concomitantly target the hypoxic and immunosuppressive
microenvironment has shown promise.146

CONCLUSION

Hepatocellular carcinoma is a hypervascular tumor with a poor
prognosis and heavy global burden. There has been much
interest in targeting its vasculature as a therapeutic approach.
While TACE improves survival in carefully selected patients

it may eventually become a victim of its own success due to the
detrimental effects of tumor hypoxia and thus limit its overall
efficacy. To date the clinical efficacy of anti-angiogenic agents
in advanced HCC, either alone or in combination with other
therapies, has been modest at best. Although there is
evidence pointing to benefits of vasculature normalization,

the results have failed to demonstrate comparable efficacy
with the current standard of care, sorafenib. A better under-
standing of the normalization window is required to guide
dosing of anti-angiogenic therapy in relation to concomitant
therapies. The development of biomarkers may help in
selecting patients who benefit from these targeted therapies.
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