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Genetic variations found in the coding and non-coding regions of a geneare known to influence the structure as

well as the function of proteins. Serine palmitoyltransferase long chain subunit 1 a member of α-oxoamine

synthase family is encoded by SPTLC1 gene which is a subunit of enzyme serine palmitoyltransferase (SPT).

Mutations in SPTLC1 have been associated with hereditary sensory and autonomic neuropathy type I (HSAN-I).

The exact mechanism through which these mutations elicit protein phenotype changes in terms of structure,

stability and interaction with other molecules is unknown. Thus, we aimed to perform a comprehensive

computational analysis of single nucleotide polymorphisms (SNPs) of SPTLC1 to prioritize a list of potential

deleterious SNPs and to investigate the protein phenotype change due to functional polymorphisms. In this

study, a diverse set of SPTLC1 SNPs were collected and scrutinized to categorize the potential deleterious

variants. Our study concordantly identified 21 non- synonymous SNPs as pathogenic and deleterious that might

induce alterations in protein structure, flexibility and stability. Moreover, evaluation of frameshift, 3’ and 5’
UTR variants shows c.*1302T> Gas effective. This comprehensive in silico analysis of systematically

characterized list of potential deleterious variants could open avenues as primary filter to substantiate plausible

pathogenic structural and functional impact of variants.

Key words: Single nucleotide polymorphisms, computational, deleterious, variants, bioinformatics tools

Corresponding author: Department of Health Care Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad, Pakistan. Email: pjohn@asab.nust.edu.pk

phingolipids belong to a diverse family of

cellular lipids that perform fundamental

functions both as membrane components and as

signaling molecules (1). Cells obtain sphingolipids

intrinsically by de novo biosynthesis and

extrinsically by up- take and reusing the exogenous

sphingolipids (1). An endoplasmic reticulum-

confined enzyme, serine palmitoyltransferase

(SPT), is a pyridoxal 5'- phosphate dependent

multimeric enzyme, which acts as a vital player for

de novo biosynthesis of sphingolipids. This enzyme

catalyzes the foremost step of sphingolipid

metabolism i.e., the condensation of L-serine and

palmitoyl coenzyme (CoA) for producing 3-

ketodihydrosphingosine (KSD) (2, 3). The activity

of SPT in de novo sphingolipid biosynthesis

S
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pathway is required for various normal cellular

functions including the survival of adipocyte cells.

The decreased de novo sphingolipid biosynthesis

inside adipocytes leads to adipocyte death, adipose

tissue remodeling, and metabolic disorder (4).

An important SPT subunit, SPT long chain

subunit 1 encoded by SPTLC1 gene is the member

of α-oxoamine synthase family (5). It is mapped to

chromosome 9q22.1-q22.3, and contains 15 exons

that encode for a protein with 473 amino acid

residues (6). The structure and function of SPT is

usually disturbed by mutations in SPTLC1 gene,

which occur at amino acids that are highly

conserved throughout various species (7).

Mutations in SPTLC1 have been associated with

hereditary sensory and autonomic neuropathy type I

(HSAN-I) (6, 8). HSAN-I is an autosomal

predominant dynamic degenerative hereditary

disorder of peripheral sensory neurons

characterized by dorsal root ganglia (DRG) and

motor neurons degeneration. It is the most common

subtype of HSAN or hereditary sensory neuropathy

(HSN). In HSAN-I, the enzymatic selectivity of

mutant SPT is lost and L-alanine is utilized as an

alternative substrate, which results in the formation

of atypical and neurotoxic 1-deoxy-spingolipids (9,

10). This promiscuous enzymatic activity of mutant

SPT is suggested to be the pathological reason of

HSAN-I (11, 12). A noticeable rise in endoplasmic

reticulum (ER) stress has also been observed in

HSAN-I patient cells, expressing the p.V144D

mutant SPTLC1 protein as compared to cells of

healthy controls (13). The protein modifications

reflect the altering cellular events that bring about

HSAN-I. Recently, a notable change in the

expression of a group of proteins in the

mitochondria and ER has been detected in SPTLC1

p.V144D mutant lymphoblasts (14-16). Notably,

identified changes also exhibited in the p.C133W

and p.C133Y mutations (17).

During recent years, there has been extensive

consideration in associating the genetic variations

to protein phenotype changes. However,

determining the disease-associated missense

mutations had been a challenging task for genetic

disorder research. Owing to the significance of

SPTLC1 mutations and its subsequent link with a

spectrum of clinical pathologies, this study has

intended to investigate the disease causal mutations

in exonic and regulatory regions (5’ and 3’ UTRs)
to develop the predictions and facilitate their

pathogenic characterization based on their impact to

structure and function of SPTLC1 protein. Thus, we

implemented computational approach for screening

the possible detrimental mutations of SPTLC1 and

computationally analyzed structural and functional

impact of screened potential mutations.

Material and methods

Collection of dataset

The SPTLC1 polymorphisms data belong to

NM_006415.2 transcript and NP_006406.1 amino

acid sequence was mined from databases including

NCBI (National Centre for Biotechnology

Information) affiliated dbSNP(18) and exome

variant server (Server EV. NHLBI GO exome

sequencing project (ESP)). Concerned protein

sequence and information was retrieved from

Ensembl (19) (ENSG00000090054; ENSP00000
262554), OMIM (Online Mendelian Inheritance in

Man) (20) and UniProt (UniProt Consortium, 2015)

(O15269), that provide ample high-quality

sequence and functional information of protein for

our computational analysis. Redundant mutations

obtained from various sources were eliminated to

reform the data. Based on variants nature and

position, data was classified as missense, insertion

and deletions, frameshift and untranslated regions

(Fig. 1A).

Analysis of variants at genomic level

Prediction of nsSNPs having structural and

functional impact

To predict important SNPs influencing a

protein upon substitution functionally, servers like
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Sorting Intolerant from Tolerant (SIFT),

Polymorphism Phenotyping v2 (PolyPhen-2),

Protein Variation Effect Analyzer (PROVEAN) and

MutPred were used. These servers provide rapid

analysis of variants supporting high-throughput

investigation at genetic and protein level. Firstly,

the variants were assessed by a sequence

homology-based program SIFT (21-23). If the score

of the variant was less than a chosen threshold

(≤0.05), the variant was classified as deleterious
and vice versa. Physiochemical differences,

evolutionary conversation, and substitution

proximity to the structural level alterations of

protein upon substitution were identified by

PolyPhen-2 (24). The variant was categorized as

“probably damaging” by PolyPhen-2, if the

position-specific independent count (PSIC) score

was 0.99-1.00, and “possible damaging” if the score
was 0.50-0.99, and the rest were categorized as

“benign” (with no phenotypic influence). Biological
functional changes of a protein due to a variant

were also computed by PROVEAN that worked on

sequence clustering and alignment-based scoring.

The variant was classified as deleterious if the

prediction score was <-2.5 (25, 26), according to

PROVEAN program. To examine whether the

molecular variance was involved in insurgence of

human diseases, the impact of variants was also

estimated by web-based tool MutPred (27).

Indels, frameshift and UTR variants analysis

The detrimental nature of insertions, deletions

and frameshift mutations were predicted by SIFT

Indel Classifier that requires comma separated list

of chromosome coordinates, orientation (1, -1) and

indels as input (28). Functionally important indels

were also filtered by PROVEAN. The indels were

considered deleterious if the score was <=-2.5 and

neutral if the variant score was > -2.5 (25, 26).

Functional sequence pattern positioned in 5’ and 3’
UTR sequences were collected from dbSNP (18)

and specialized untranslated regions of eukaryotic

mRNAs databases: UTRdb and UTR site (29, 30).

These variants were analyzed by UTR specific tool

UTRScan. User submitted sequences were carefully

searched by UTRScan for any functional elements

or patterns endorsed by UTRsite and UTR database.

Analysis of variants at structural level

Modeling of SPTLC1 protein structure

The human SPTLC1 protein sequence

comprising 473 amino acid residue was subjected to

SWISS-MODEL (31-34) for homology modeling.

Evaluation of modeled structure was carried out

using ERRAT (35), RAMPAGE (36) and ProSA-

web (37) servers. The structure was passed through

energy minimization step to remove the internal

constraints with GROMOS96 implementation of

Swiss-PdbViewer 4.1.0 after adding hydrogen

atoms (38).

Analysis of protein characteristics properties

MUpro server was used to find out the effect

of non-synonymous SNPs (nsSNPs) on protein

stability. The predicted score less than 0 shows

decrease in protein stability due to the mutation;

contrariwise, a score greater than 0 refers to an

increase in protein stability (39). Solvent acce-

ssibility of structures was predicted by an artificial

neural network-based program NetSurfP-1.1 (40)

and Predict Protein (41). For approximating residue

specific quality of protein structure prediction and

the inherent B-factor profile of all residues along

the chain by combining local structure assembly

variations with sequence- and structure-based

profilingResQ server was used (42).

Functional analysis of mutations

Multi-scale binding pockets on SPTLC1

protein surface were explored by GHECOM 1.0:

Grid-based HECOMi finder server (43). Functional

association of SPTLC1 protein was critically

assessed using the Search Tool for the Retrieval of

Interacting Genes (STRING) v10 database (44).

Protein-Protein interaction of SPTLC1 including

both physical and functional associations based on

known interactions (curated and experimentally

determined), predicted interactions (gene
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neighborhood, gene fusions and gene co-

occurrence), text mining, co-expression and protein

homology was identified. The edges of network

represent the association between nodes (interacting

proteins).

Protein-protein docking simulation

A flexible protein docking approach, the

HADDOCK (High Ambiguity Driven protein-protein

DOCKing) version 2.2 (45) was used to perform

modeling of biomolecular complex: SPTLC1 with

its highest interacting partner. The identification

of active and passive residues of interacting

biomolecules was performed by CPORT (46).

Results

Mutation spectrum of SPTLC1 gene

The examined gene comprises a total of 273

human SNPs belonging to different classes of

mutations including synonymous and non-

synonymous. Among all the included mutations in

our study, missense mutations seemed to be the

most abundant mutations with n =168 (61.5%)

when compared to indels (n = 3), frameshift (n = 9),

and UTRs (n = 94; 34.4%) (Fig. 1A). Noticeable
uneven distribution of mutations in exons is

represented in Fig. 1B.

Analysis at genomic level

Fig. 1. Distribution of SPTLC1 nucleotide variants. A: pie chart representing different classes of mutations; B: scatter plot representing
the number of missense, indels, frameshift mutations per exon and number of 3’UTR and 5’UTR variants; C: radar chart representing the
total number of pathogenic and neutral SPTLC1 variants by each prediction program..
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Analysis of deleterious missense mutations

Among the 168 missense mutations,

SIFTanalysis revealed 80 (47.6%) nsSNPs as

“damaging” or “intolerant” having a tolerance
index score of ≤0.05, while 88 (52.3%) mutations
were “tolerant” with > 0.05 score (Fig. 1C). Out of

80 damaging mutations, 33 (41.25%) and 24 (30%)

nsSNPs were “extremely-intolerant” with 0.00 and
0.01 score, respectively and 23 (28.75%) nsSNPs

were just “intolerant”. According to PolyPhen-v2

prediction, a total of 63 (37.5%) nsSNPs were

expected to be damaging. Of which, 36 nsSNPs

were “probably damaging” with score ranging from

0.99 to 1.00, and 27 were “possibly damaging” with
score ranging from 0.5 to 0.9, and the remaining

105 nsSNPs were classified as benign. A total of 77

(45.8%) mutations were predicted deleterious and

91 (54.1%) were neutral by PROVEAN. Among all

the deleterious mutations 54 (70.1%) were least

deleterious, 23 (29.8%) were deleterious with score

< -5.0, of which 2 mutations (p.C133CY and

p.C133W) were deleterious with score < -10.0.

About 104 (61.9%) and only 28 (16.66%) nsSNPs

with > 0.5 and 0.75 probability score were

predicted as disease associated mutations by

MutPred. However, the concordant analysis

Table 1. List of selected SPTLC1 missense variants with their corresponding exon, chromosome position and protein
variants with predicted scores by SIFT, PolyPhen-2, PROVEAN, MutPred and MUpro.

S.
No.

NT
Variant

Ex
on

Chr.
position

PRO
Variant

PolyPhen-2 SIFT PROVEAN Mut-
Pred

MUpro

Pred Score Pred Score Pre
d

Score Pred
PR

1 310G>A 4 92080914 104A>T pr dmg 0.998 dmg 0.01 del -3.079 0.779 -1.2661182

2 325C>G 4 92080899 109L>V pr dmg 0.989 dmg 0.01 del -2.901 0.856 -1.0533436

3 398G>A 5 92080045 133C>Y pr dmg 1 dmg 0 del -10.725 0.839 -0.282728

4 399T>G 5 92080044 133C>W pr dmg 1 dmg 0 del -10.726 0.853 -0.31455734

5 431T>A 6 92068095 144V>D pr dmg 0.998 dmg 0 del -6.207 0.871 -1.9523302

6 457G>A 6 92068069 153A>T pos dmg 0.882 dmg 0 del -3.584 0.901 -1.3441989

7 481G>A 6 92068045 161A>T poss dmg 0.87 dmg 0 del -3.411 0.796 -1.2131073

8 485T>G 6 92068041 162I>S pr dmg 0.996 dmg 0 del -5.365 0.772 -2.3519006

9 524T>C 6 92068002 175I>T pr dmg 0.999 dmg 0 del -4.698 0.784 -1.8899242

10 563A>C 7 92059306 188D>A pr dmg 0.988 dmg 0.01 del -7.484 0.895 -0.97234279

11 743A>G 8 92055442 248Y>C benign 0.053 dmg 0 del -7.668 0.771 -0.67134313

12 832T>G 9 92050016 278S>A poss dmg 0.59 TOL 0.07 del -2.641 0.845 -1.2437183

13 929C>G 10 92047668 310A>G benign 0.006 dmg 0.02 del -2.824 0.832 -1.4961316

14 946G>A 10 92047651 316G>S pr dmg 0.993 dmg 0.01 del -5.191 0.927 -1.3775049

15 952T>A 10 92047645 318C>S pr dmg 0.989 TOL 0.05 del -8.278 0.808 -0.56363416

16 992C>T 11 92047261 331S>F benign 0.222 dmg 0.03 del -4.533 0.759 -0.67561754

17 992C>A 11 92047261 331S>Y poss dmg 0.454 dmg 0 del -4.50 0.825 -0.97224916

18 1055C>T 11 92047198 352A>V benign 0.066 dmg 0.01 del -2.909 0.857 -0.63107997

19 1160G>C 13 92038342 387G>A benign 0.41 dmg 0.03 del -3.117 0.817 0.07064886

20 1334G>A 15 92032553 445R>Q pr dmg 0.998 dmg 0.01 del -3.245 0.88 -1.3868538

21 1333C>T 15 92032554 445R>W pr dmg 1 dmg 0 del -6.841 0.874 -1.2548201
NT: nucleotide; Chr: chromosome; PRO: protein; Pred: prediction; Accu: accuracy; PR: probability; poss: possibility; dmg: damaging; TOL:
tolerant; N: neutral; DIS: disease.
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predicted 21 mutations mentioned in Table 1 as

potential predicted mutations that can be

deleterious. Protein stability analysis by MUpro

revealed that all the selected mutants would

decrease the stability except p.G387A as the

predicted score of all other mutants was less than

Table 2. SIFT indel classifier and PROVEAN prediction analysis for indels and frameshift variants.

Nucleotide variant Coordinates Subs.

type

Exo

n

AA

variant

Clin.

sig.

PROVEAN SIFT

Score Pred. Score Pred.

c.139delC 92112481 FS-del 2 Q47Kfs NA - - 0.858 dam

c.174delA 92108826 FS-del 3 E59Nfs NA - - 0.858 dam

c.281_282delTG 92080942:92080943 FS-del 4 V94Gfs NA - - 0.858 dam

c.277_278insA 92080946:92080947 FS-ins 4 T93Nfs NA - - 0.858 dam

c.452_454delGCC 92068072:92068074 del 6 R151del NA -12.837 dele 0.858 dam

c.804_805insTA 92050043:92050044 FS-in 9 A269Terfs NA - - 0.858 dam

c.895_897delGAT 92047700:92047702 del 10 D299del NA -8.167 dele 0.529 dam

c.963_964insG 92047633:92047634 FS-ins 10 S322Vfs NA - - 0.858 dam

c.1031delT 92047222 FS-del 11 L344Rfs NA - - 0.858 dam

c.1029_1030delCC 92047223:92047224 FS-del 11 L344Vfs NA - - 0.858 dam

c.1305_1307delAGA 92034831:92034833 del 14 E436del NA -1.925 N 0.858 dam

c.1361_1362delAG 92032525:92032526 FS-del 15 E454Gfs NA - - 0.783 Dam
Subs. Type: substitution type; FS: frameshift; del: deletion; ins: insertion; Clin.sig.:clinical significance; Pred.: prediction; dele: deleterious; N: neutral; dam:
damaging.

Fig. 2. Selected human SPTLC1 predicted protein structure evaluation and energy value representation. A: ERRAT indicates 94.987
overall quality factor; B: colored bars used for representing the computed energy values in KJ/mol of template and predicted model (grey
color for template used for structure prediction, green color for predicted model before energy minimization, and orange color for predicted
model after energy minimization step); C: superimposition of template 3a2b (grey) and predicted SPTLC1 structure (orange red) shows
high structural similarity.
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Table 3. UTRScan prediction result for 3’UTR variants of SPTLC1 protein (Transcript ID:NM_006415.2).

S.No. rs ID Position Prediction S.No. rs ID Position Prediction

1 rs758071979 c.*10C>T - 40 rs115637483 c.*490A>G -

2 rs200727312 c.*11G>A - 41 rs531407417 c.*494T>C -

3 rs778790410 c.*13G>A - 42 rs74939390 c.*525G>T uORF [519,608]

4 rs756960214 c.*20G>C uORF [17,109] 43 rs144733313 c.*569G>A uORF [519,608]

5 rs753599241 c.*23T>C uORF [17,109] 44 rs367609260 c.*581T>C uORF [519,608]

6 rs867197507 c.*28C>T uORF [17,109] 45 rs537125477 c.*590T>G -

7 rs374737655 c.*31C>T uORF [17,109] 46 rs773137233 c.*614C>T -

8 rs760602474 c.*38C>T uORF [17,109] 47 rs576072015 c.*654A>G -

9 rs370307230 c.*39G>A uORF [17,109] 48 rs765100762 c.*657A>C -

10 rs202080725 c.*46A>C uORF [17,109] 49 rs761445360 c.*664C>G -

11 rs550740752 c.*46G>A uORF [17,109] 50 rs189417944 c.*670G>A -

12 rs763262266 c.*50T>C uORF [17,109] 51 rs866982133 c.*711T>G uORF [705,782]

13 rs773269599 c.*58C>T uORF [17,109] 52 rs142008725 c.*713A>C uORF [705,782]

14 rs535778954 c.*60C>T uORF [17,109] 53 rs879644362 c.*745C>G uORF [705,782]

15 rs73653020 c.*61G>A uORF [17,109] 54 rs768395365 c.*750C>T uORF [705,782]

16 rs777118329 c.*68A>G uORF [17,109] 55 rs568268325 c.*809T>C -

17 rs1131864 c.*78C>T uORF [17,109] 56 rs527344506 c.*822C>T -

18 rs769349062 c.*95C>T uORF [17,109] 57 rs374347262 c.*828T>G uORF [827,1057]

19 rs1131866 c.*102A>G uORF [17,109] 58 rs760223808 c.*864C>T uORF [827,1057]

20 rs7024575 c.*112G>A - 59 rs535318963 c.*867G>A uORF [827,1057]

21 rs189582528 c.*124A>G - 60 rs570805058 c.*875A>T uORF [827,1057]

22 rs771433261 c.*133A>G uORF [125,250] 61 rs570164486 c.*916A>G uORF [827,1057]

23 rs745563960 c.*144A>G uORF [125,250] 62 rs775237786 c.*932A>G uORF [827,1057]

24 rs544879549 c.*147G>A uORF [125,250] 63 rs771458551 c.*983T>C uORF [827,1057]

25 rs184220566 c.*178T>A uORF [125,250] 64 rs559735773 c.*1009G>T uORF [827,1057]

26 rs552433019 c.*190A>C uORF [125,250] 65 rs530944752 c.*1015G>A uORF [827,1057]

27 rs753700526 c.*196A>G uORF [125,250] 66 rs367968859 c.*1034T>C uORF [827,1057]

28 rs377023278 c.*217T>A uORF [125,250] 67 rs766363634 c.*1046T>C uORF [827,1057]

29 rs531033514 c.*228A>G uORF [125,250] 68 rs145019674 c.*1052A>G uORF [827,1057]

30 rs563505829 c.*272A>G - 69 rs77041650 c.*1067C>T uORF [1063,1158]

31 rs766183581 c.*290T>C ORF [281,376] 70 rs548652432 c.*1068A>G uORF [1063,1158]

32 rs542032121 c.*320G>A ORF [281,376] 71 rs142740904 c.*1154T>C uORF [1063,1158]

33 rs564259149 c.*334C>G ORF [281,376] 72 rs112076327 c.*1170T>C -

34 rs529884120 c.*401C>A - 73 rs760602744 c.*1209G>A uORF [1177,1242]

35 rs372012368 c.*402A>T - 74 rs541013337 c.*1221C>T uORF [1177,1242]

36 rs7944 c.*445A>G uORF [410,478] 75 rs562277733 c.*1226G>T uORF [1177,1242]

37 rs868416931 c.*451G>T uORF [410,478] 76 rs530126189 c.*1230G>A uORF [1177,1242]

38 rs541284488 c.*483A>G - 77 rs7035964 c.*1302T>G CPE [1290,1339],

IRES [1243,1339],

uORF [1265,1333],

PAS [1300,1339]

39 rs181586912 c.*488G>T -
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Table 4. UTRScan prediction result for 5’UTR variants of SPTLC1 protein.

S.No. rs ID Transcript ID Position Prediction

1 rs750255730 NM_006415.2 c.-3A>G -
2 rs758217796 NM_006415.2 c.-6C>A -
3 rs746676272 NM_006415.2 c.-7G>T -
4 rs754378890 NM_006415.2 c.-10G>C -
5 rs780821663 NM_006415.2 c.-19C>T -
6 rs558203491 NM_006415.2 c.-27C>T -
7 rs770382920 NM_006415.2 c.-28C>A -
8 rs201897322 NM_006415.2 c.-29A>C -
9 rs773682043 NM_006415.2 c.-34T>C -
10 rs866449132 NM_006415.3 c.-39C>A -
11 rs749631140 NM_006415.3 c.-49A>G -

NM_006415.3 c.-49A>T -
12 rs774659397 NM_178324.2 c.-51G>A -
13 rs55740103 NM_006415.3 c.-64T>C -
14 rs552690353 NM_178324.2 c.-70C>T -
15 rs184693119 NM_006415.3 c.-76T>C -
16 rs111298150 NM_006415.3 c.-96C>T -
17 rs557306141 NM_178324.2 c.-103G>T -

Fig. 3. Analysis of protein properties. A: secondary structure and solvent accessibility analysis by PredictProtein; B: the local quality
defined as the distance deviation (in Angstrom) between residue positions in the model and the native structure; C: stability of different
parts of the structure in terms of beta factor by ResQ server.
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zero (Table 1).

Indel, frameshift and UTR variants analysis

A total of 94 UTR variants were identified.

Out of which 17 variants were lying in 5’ UTR and
77 in 3’ UTR sequences (Tables 3 and 4). The
UTRscan identified that 21 variant had no effect,

but 55 variants were lying in the region important

for open reading frame (ORF) and 1 variant

c.*1302T>G in 3’UTR was found in the region

associated with polyadenylation signal (PAS),

cytoplasmic polyadenylation (CPE), internal

ribosomal entry site (IRES) (Table 3).

SPTLC1 structural analysis

3D structure modeling and evaluation

Native human SPTLC1 model built by

homology modeling based on 3a2b.1.A template

showed the good overall quality and stereo-

chemical properties suggesting a reliable structure

Fig. 4. Protein mutations analysis. A: 21 identified mutations in the protein sequence showed that all the predicted mutations belong to the
serine C-palmitoyltransferase activity domain of the protein; B: structural differences between selected wild type and mutant residues of
SPTLC1 protein.
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(Fig. 2). The whole structure was modeled from 83-

471 residues and consisted of 17 alpha and 12 beta

sheets. RAMPAGE showed 376 (97.2%) residues

in favored region, 9 (2.3%) in allowed region, and

only 2 (0.5%) residues (Ala172 and Lys268) as

outliers. However, the local model quality

estimated by PROSA-web calculated the energies

of residues as negative and the overall quality

model of the predicted structure indicated the -9.24

z-score that lies within the characteristic range.

Table 5. Surface accessibility prediction scores by NetSurfP and ResQ web server for models.

Position Residue RSA ASA Z-score Class
assigned

rBF nBF

104 A 0.022 2.402 0.215 B 21.03 -0.38

T 0.031 4.244 -0.356 B - -
109 L 0.089 16.296 -0.912 B 22.39 -0.21

V 0.086 13.234 -0.852 B - -
133 C 0.2 28.108 -2.467 B 23.41 -0.08

Y 0.22 46.993 -2.339 B - -
W 0.182 43.867 -2.631 B - -

144 V 0.117 17.937 0.914 B 23.54 -0.06
D 0.105 15.188 0.997 B - -

153 A 0.128 14.128 0.525 B 22.14 -0.24
T 0.156 21.609 0.577 B - -

161 A 0.017 1.840 0.828 B 21.90 -0.27
T 0.018 2.441 0.737 B - -

162 I 0.033 6.105 0.675 B 20.65 -0.27
S 0.035 4.102 0.607 B - -

175 I 0.044 8.214 0.470 B 21.16 -0.36
T 0.047 6.477 0.275 B - -

188 D 0.085 12.220 -0.493 B 22.10 -0.24
A 0.072 7.912 -0.395 B - -

248 Y 0.087 18.656 -0.160 B 22.43 -0.20
C 0.092 12.917 -0.080 B - -

278 S 0.040 4.676 -1.360 B 21.67 -0.30
A 0.040 4.419 -1.457 B - -

310 A 0.047 5.223 -2.633 B 22.10 -0.24
G 0.045 3.534 -2.626 B - -

316 G 0.028 2.196 -1.564 B 20.77 -0.41
S 0.034 3.973 -2.044 B - -

318 C 0.045 6.290 -0.178 B 21.33 -0.34
S 0.037 4.301 -0.952 B - -

331 S 0.360 42.227 -0.624 E 24.66 0.07
F 0.360 72.352 -0.700 E - -
Y 0.376 80.394 -1.037 E - -

352 A 0.025 2.799 0.332 B 21.44 -0.33
V 0.025 3.873 0.234 B - -

387 G 0.311 24.460 -1.840 B 29.44 0.67
A 0.340 26.750 -1.867 E - -

445 R 0.041 9.389 0.259 B 20.76 -0.41
Q 0.043 7.662 0.338 B - -
W 0.047 11.328 0.068 B - -

RSA: relative surface area (value <0.2 (buried residues);> 0.2 (exposed residues). ASA: absolute surface area (value <25% of
ASAmax(buried); value> 25% of ASAmax(exposed)); B: buried or E: exposed; rBF: raw beta factor; nBF: normalized beta factor.
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Protein characteristic properties analysis

In our analysis, PredictProtein predicted that most

of the residues were in buried region (Fig. 3A).

Thus, we employed NetSurfP server. Most of the

identified mutant residues belonged to the buried

region of protein (Table 5) except Ser331.

Moreover, the estimated local quality defined as the

distance deviation between native and model

protein residual position using support vector

regression showed that most of the residues were

below the cut-off value (Fig. 3B). The stability and

flexibility of different parts of the model evaluated

by ResQ server depicted that most of the residues

belonged to the well-order structure of the protein

as the calculated raw and normalized beta factor

values were less than the cut-off score (Fig. 3C

and Table 5). It has been observed that the

mutated residues belonged to the serine C-

palmitoyltransferase activity domain (Fig. 4A).

Also, structural difference of amino acids revealed

that substituted residues have explicit properties

like size, shape, density and charges (Fig. 4B), thus

would impact the stability and interaction with

other molecules

Functional analysis of mutations

To elucidate the protein function and its

association with other molecules, protein network

analysis and interaction pattern has opened the

avenues. Top 5 binding pockets predicted by

GHECOM were graphically represented in Fig.5A.

Protein-protein network and interaction analysis

The STRING database exhibited 10 functional

partners of SPTLC1, among which 8 were found

with the confidence score >0.9 and two with score

>0.99 (Fig. 5B and Table 6). Predicted interaction

network has demonstrated that SPTLC2 and

SPTLC3 were the strongest interaction partners

with highest score (c ≥ 0.99) (Fig. 5B and Table 6)
and were shown to be involved in heterodimer

formation with SPTLC1 protein. We pursued our

analysis to investigate the SPTLC1 protein

interaction upon binding to SPTLC2. Interacting

residues of SPTLC1 with SPTLC2 protein are

illustrated in Fig. 6.

Fig. 5. Functional analysis of mutations. A: predicted multi-scale binding pockets on protein surface representation by GHECOM; B:
functional protein network analysis. STRING interaction interwork show the association of SPTLC1 with different protein partners. In the
above picture circles represent the one protein and the edges represent the protein-protein interactions.
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Table 6. Predicted functional partners of SPTLC1 by STRING database.

Node 1 Node 2 Neighbourhood

on

chromosome

Phyloge

netic

cooccur

rence

Homo

logy

Co

expre

ssion

Experimental

ly

determined

interaction

Data

base

annot

ated

Automated

Text  mining

Combi

ned

score

SPTLC1 SPTLC2 0 0.526 0.74 0.27 0.925 0.9 0.931 0.996

SPTLC3 SPTLC1 0 0.526 0.733 0.27 0.921 0.9 0.928 0.995

SPTSSA SPTLC1 0 0 0 0.049 0.329 0.9 0.864 0.99

SPTSSB SPTLC1 0 0 0 0 0.329 0.9 0.864 0.99

KDSR SPTLC1 0.09 0 0 0.092 0 0.9 0.652 0.967

ORMDL3 SPTLC1 0 0 0 0.128 0.462 0.9 0.282 0.961

ZDHHC9 SPTLC1 0 0 0 0.053 0 0.9 0.274 0.925

GOLGA7 SPTLC1 0 0 0 0.053 0 0.9 0 0.901

SPTLC1 NAA50 0 0 0 0.104 0 0 0.868 0.877

AGXT SPTLC1 0 0 0 0.051 0 0.8 0.187 0.832

Fig. 5. Proposed binding interaction model between wild SPTLC1 and SPTLC2 reveals the active residues of wild SPTLC1 protein.
Orange represents wild SPTLC1 while green represents SPTLC2.  A: illustration of interacting model and binding pocket before and after
180o rotation; B: residues of wild SPTLC1 binding pocket involved in interaction are labelled.
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Discussion

Due to the continuous discovery of genetic

variations, experimentally delineation of the

correlation of disease associated missense variants

with underlying biological mechanism is

demanding. Thus, in the era of computational

biology, advanced insilico programs exhibit reliable

approach in listing out the candidate genetic

variants in accordance to their deleterious impact

and consequence on structure and function of

corresponding proteins. The concordant analysis of

prediction programs increases the prediction

accuracy, and thus reduces the false positive rate.

In the present study, computational screening

was done using sequence and structure homology-

based programs including SIFT and PolyPhen-2.

Computational pathogenic variants prediction

programs review has inferred that SIFT and

PolyPhen has better execution power in identifying

the pathogenic variants (47), likewise supported by

Gnad et al., in 2013 (48). In addition, we also

incorporated PROVEAN and MutPred results for

our analysis. All missense mutations were further

checked for disease association. Deleterious

missense mutations predicted by three of the

servers were selected. The destabilizing effect in

majority of the deleterious mutations gives an

indication about the disturbance in the structure and

function of protein. Taking in consideration the

above selection scheme, the selected mutations

were screened from the data sets for further analysis

(Table 1).

Among all selected missense mutations (Table

1), clinical and molecular consequences of some of

the mutations have been reported previously (49-

53). The variant p.S331F wass found to be

associated with early-onset and a severe HSAN

phenotype (49, 50, 53). Additionally, p.C133W,

p.C133Y and p.V144VD variations in SPTLC1

were the most examined missense mutations and

observed to be the most widely recognized reason

for HSAN-I (5, 51, 54, 55). Our concordant in

silico predictions for p.C133W, p.C133Y and

p.V144D mutations also revealed the high

deleterious effects (Table 1).

Prediction results of SIFT Indel Classifier and

PROVEAN depicted frameshift variants and indels

in coding sequence of SPTLC1 as deleterious.

Likewise, UTR variants were examined to search a

variant in any functional pattern endorsed by

UTRsite and UTR database. The 3’UTR contains
the two different polyadenylation signals that

mediate the poly (A) tail synthesis (56): nuclear

polyadenylation signal (PAS) and CPE element.

Native human SPTLC1 model built by

homology modeling based on 3a2b.1.A template

shows the good overall quality and stereo-chemical

properties. Protein relative solvent accessibility

gives a protein structural and functional insight (57)

as due to a residual mutation the solvent

accessibility can be decreased, affecting protein

stability. On average, disease causing variants that

are likely to destabilize the protein reside mostly at

the buried region of protein (58). In our analysis,

most of the identified mutant residues belonged to

the buried region of protein (Table 5) except

Ser331. It has also been observed that the mutated

residues belonged to the serine C-

palmitoyltransferase activity domain and the

structural difference of amino acids revealed that

substituted residues have explicit properties like

size, shape, density, and charges (Fig. 4B), and thus

will impact the stability and interaction with other

molecules.

Predicted interaction network demonstrated

that SPTLC2 and SPTLC3 were the strongest

interaction partners. The SPTLC1-SPTLC2-

SPTSSA complex expresses a strong preference for

C16-CoA substrate, while SPTLC1-SPTLC3-

SPTSSA complex uses both C14-CoA and C16-

CoA substrate, with slight preference for C14-CoA

(59). A study shows that SPTLC1 mutations induce

a shift in SPT substrate specificity that leads to the

formation of atypical non-degradable neurotoxic
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sphingolipid metabolites resulting in HSAN-I (13).

Study has also revealed the importance of disease-

causing mutations in the active site of SPT that

alters the relative positions of hydrophobic residues

of both SPTLC1 and SPTLC2 subunits at dimer

interface, thus affecting the enzyme activity (9, 60).

Hence, it is certainly estimated that the enzymatic

action of SPT would be influenced by the mutations

either through the allosteric property of protein or

the disturbance in the geometry of key residues

present within the active site of enzyme that

contributes in the recognition of substrate, or

through the inadequate dimerization of the SPT

monomers (61). It has been reported that in

p.C133W, p.C133CY and p.V144D model, these

amino acid residues do not specifically interact with

the coenzyme or the substrate but lie at two

closures of the loop that contact the other monomer

to retain the dimer structure (61). Our study also

shows that these selected residues also do not

directly contact with SPTLC2 protein, but may be

present around the interacting residues (Fig. 6).

Many previous comprehensive studies have

shown the efficacy of consolidated computational

programs for sorting detrimental variants from huge

dataset (62-68). Previous studies have mentioned

several physiological alterations in SPTLC1 mutant

cells, including a rise in both ER stress and

potential oxidative phosphorylation (13, 14). Thus,

in this study, we systematically demonstrated the

computational investigation of SPTLC1 variants to

study the aberrant effect of most deleterious

variants affecting the structural and functional

properties of protein.

In the study, we demonstrated a bioinfor-

matics-based strategy for prioritizing the potentially

functional SNPs from enormous set of poly-

morphisms. It proposes that the combination of

various computational tools may impart an

alternative approach that could opt for targeting

SNPs. However, the functional consequence of

candidate SNPs was not experimentally evaluated.

We believe that in future our provided prioritized

list of potentially deleterious variants will be

helpful for determine the contribution of key SNPs

in disease progression.
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