
System-Specific Separable Basis Based on Tucker Decomposition:
Application to Density Functional Calculations
Jeheon Woo, Woo Youn Kim,* and Sunghwan Choi*

Cite This: J. Chem. Theory Comput. 2022, 18, 2875−2884 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: For fast density functional calculations, a suitable
basis that can accurately represent the orbitals within a reasonable
number of dimensions is essential. Here, we propose a new type of
basis constructed from Tucker decomposition of a finite-difference
(FD) Hamiltonian matrix, which is intended to reflect the system
information implied in the Hamiltonian matrix and satisfies
orthonormality and separability conditions. By introducing the
system-specific separable basis, the computation time for FD density
functional calculations for seven two- and three-dimensional
periodic systems was reduced by a factor of 2−71 times, while
the errors in both the atomization energy per atom and the band gap were limited to less than 0.1 eV. The accuracy and speed of the
density functional calculations with the proposed basis can be systematically controlled by adjusting the rank size of Tucker
decomposition.

■ INTRODUCTION
Numerical methods for replacing partial differential equations
with finite-dimensional algebraic equations are essential for the
electronic structure calculations of molecular or solid
systems.1,2 The atom-centered and plane-wave basis methods
are frequently used for nonperiodic and periodic systems,
respectively.3,4 Real-space methods are potentially competitive
with the aforementioned methods because of their flexibility
and computational simplicity.5 However, they have not yet
been widely adopted for electronic structure calculations.
Discretization of the simulation domain results in a large
dimension for the Hamiltonian and orbitals. To mitigate the
increase in memory usage and computational costs due to the
large dimension, tensor decomposition techniques can be
applied to real-space methods.6−9

Tensor decomposition techniques are not limited to real-
space methods.10 They have been actively investigated to
accelerate various quantum chemistry methods that require a
large amount of computational and memory resources (e.g., a
perturbation method,10,11 coupled cluster theory,12−14 and full
basis representation methods15). For density functional
calculations, tensor decomposition techniques using real-
space methods have been studied because orbital values on a
rectangular grid can be represented as an order-3 tensor. Solala
et al. applied tensor decomposition to density functional
calculations to minimize memory load.6 Their results show
that the Tucker decomposition method can successfully
compress the orbitals represented on a cubic grid from the
results of bubbles and the cube numerical framework, which is
a variation of real-space methods. Tensor decomposition can
be used to compress orbitals on a three-dimensional (3D) grid

and build a basis for a self-consistent field (SCF) procedure.
Gavini et al. proposed a Tucker tensor basis derived from a
separable approximation of the Hamiltonian. It effectively
reduces the dimensions of a Kohn−Sham (KS) Hamiltonian
matrix originally represented on an equidistant finite-element
grid.8

The separability of the basis is an important property to
reduce the computational costs of many operations. A typical
separable basis can be obtained from the simple product of
three 1D functions (e.g., a Gaussian function). To impose
system information on such a basis, a 1D function that reflects
the system information on a general polyatomic structure
needs to be developed. By contrast, a Hamiltonian matrix that
implicitly includes all system information can be easily
constructed on a real-space grid. Using the Hamiltonian on a
real-space grid is an attainable solution for imposing system
information on a separable basis.
Herein, we propose a system-specific separable basis derived

from a finite-difference (FD) KS Hamiltonian matrix and
investigate its performance for 2D and 3D periodic structures.
The resulting basis is constructed by reflecting information on
the Hamiltonian of the system and is also separable along the
axes of the spatial coordinates. These two features are common
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to other types of Tucker tensor basis.8 A key contribution of
this work is that the basis is built directly from a finite-
difference method, and its nonzero patterns are used in the
projection process instead of introducing a separable
Hamiltonian. In addition, the convergence of our basis is
systematically controlled by increasing the rank size of Tucker
decomposition. In the following, we briefly explain the
mathematical background of our method, followed by the
implementation details. We then discuss the performance of
the proposed basis on density functional calculations for 2D
and 3D periodic systems and demonstrate its advantages for
reducing the computation time of density functional
calculations.

■ METHOD
Tucker Representation and Higher-Order Singular-

Value Decomposition. Here, we briefly introduce a Tucker
representation and a higher-order singular-value decomposi-
tion (HOSVD) method for completeness. A more detailed
explanation can be found in previous papers.16,17

The Tucker representation is used to represent an order-d
tensor, ∈ × ··· ×N N Nd1 2 , as a contraction of a small order-d
core tensor, ̃ ∈ × ···r r rd1 2 , and d unitary factor matrices,

∈ ×U n N r( ) n n (n ∈ {1, 2, ..., d}), where Nn and rn are the
dimensions of the nth axis for the original and core tensors,
respectively.16−19 Then, the Tucker decomposition can be
written as

∑≈ ̃ ······
···

··· U U Ui i i
j j j

j j j i j i j i j
d

, ,

(1) (2) ( )
d

d

d d d1 2

1 2

1 2 1 1 2 2
(1)

The convergence of eq 1 is mathematically guaranteed as rn
approaches Nn.

10 However, the Tucker representation is
frequently used to find a compact representation of a given
tensor, which means rn < Nn. This compact representation can
reduce the computational complexity and memory consump-
tion of tensor operations, thereby minimizing accuracy loss.17

An HOSVD method is the most common choice to find a
set of U(d) and the corresponding .10,16 This is one
multilinear extension of the matrix singular-value decom-
position (SVD). In the HOSVD method, U(n) is obtained as
the left singular vector of a factor-n flattened tensor n( )

∈ × ··· ···− +( )N N N N N( )n n n d1 1 1 . Because all U(n) from HOSVD are
unitary, ̃ in eq 1 can be evaluated from the contraction of the
original tensor with the obtained U(n), as follows:

∑̃ = * *··· *···
···

··· U U U( ) ( ) ( )j j j
i i i

i i i i j i j i j
d

, ,

(1) (2) ( )
d

d

d d d1 2

1 2

1 2 1 1 2 2
(2)

where (·)* indicates a complex conjugate.
To obtain a compact Tucker representation, the singular

vectors of n( ) with large singular values are denoted as

∈ ×U ( )n N r( ) n n . The compact core tensor is computed using
consecutive tensor contractions, as shown in eq 2. Although
the memory usage for ̃ and U(n) is much smaller than that for
, the key patterns of can be recovered by contraction with

U(n), as in a typical compact SVD.
In the field of quantum chemistry, the Tucker representation

has been used to accelerate the calculation of two-electron
integrals of atom-centered basis functions or tensor contrac-
tions for higher-order methods.10,12,20−22 Here, we build a

separable basis using the Tucker decomposition of the KS
Hamiltonian in the FD representation.

Tucker Decomposition of the Finite-Difference
Hamiltonian. For an Nx × Ny × Nz Cartesian grid, the FD

Hamiltonian matrix, H, is constructed on  ×N N N N N N( ) ( )x y z x y z . H
c a n b e r e s h a p e d i n t o a n o r d e r - 6 t e n s o r

∈ × × × × ×N N N N N Nx y z x y z, the elements of which are given by

=′ ′ ′ Hijki j k pq (3)

where p and q denote the indices of grid points whose x, y, and
z indices are (i, j, k) and (i′, j′, k′), respectively.
To ensure that the factor matrices of the Hamiltonian matrix

span low-lying orbitals well, we introduce a constant fictitious
potential, which implies that δ= −′ ′ ′ H Vijki j k pq pqconst . This
constant potential shifts the eigenspectrum of the original
Hamiltonian downward without changing the eigenvectors, so
that the factor matrices from the decomposition of a
Hamiltonian matrix with fictitious potentials are more likely
to span low-lying orbitals of the Hamiltonian, which are
physically meaningful. For simplicity, we do not denote the
fictitious potential in this section. A more detailed explanation
for the fictitious potential is provided in the Appendix.
Using the HOSVD method, can be decomposed into the

core tensor, ̃ , and the corresponding factor matrices, U:

∑≈ ̃
α β γ α β γ

αβγα β γ α β γ α β γ′ ′ ′
′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′U U U U U Uijki j k i j k i j k
, , , , ,

(1) (2) (3) (4) (5) (6)

(4)

where α, β, γ, α′, β′, and γ′ are the indices of
̃ ∈ × × × × ×( )r r r r r r1 2 3 4 5 6 .

Owing to the Hermitian property of H, if r1 = r4, r2 = r5, and
r3 = r6, the flattened Hamiltonian matrices and factor matrices
satisfy the following relations:

= * = * = *

= * = * = *α α β β γ γ

H H H H H H

U U U U U U

( ) , ( ) , ( ) ,

( ) , ( ) , ( )i i j j k k

(1) (4) (2) (5) (3) (6)

(1) (4) (2) (5) (3) (6)
(5)

Hereafter, for convenience, we use Ux, Uy, Uz, H(x), H(y), and
H(z) instead of U(1), U(2), U(3), H(1), H(2), and H(3),
respectively. Similarly, the rank sizes of Ux, Uy, and Uz are
denoted as rx, ry, and rz, respectively.
However, we define the square matrix form of ̃ as

̃ = ̃
μν αβγα β γ′ ′ ′H (6)

where μ and ν are the indices of ̃ ∈ ×H ( )r r r r r r( ) ( )x y z x y z . From eqs
4 and 5, H̃ can be rewritten as

̃ = ⊗ ⊗ ⊗ ⊗H U U U H U U U( ) ( )x y z H x y z (7)

where ⊗ and (·) H denote the Kronecker product and the
conjugate transpose, respectively. Here, H̃ is the projection of
H on separable basis vectors U (≔ Ux ⊗Uy ⊗Uz). As discussed
in the previous section, the convergence of Ux, Uy, and Uz to
make both sides of eq 7 equal is mathematically guaranteed as
rx, ry, and rz reach Nx, Ny, and Nz, respectively. Therefore, it is
guaranteed that H̃ becomes equal to H when its dimension rx
× ry × rz becomes Nx × Ny × Nz.
Here, U is a set of separable basis vectors that can reduce the

dimensions of the Hamiltonian from Nx × Ny × Nz to rx × ry ×
rz. In addition, U satisfies the orthonormality condition
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because Ux, Uy, and Uz are orthonormal matrices. If U spans
physically meaningful eigenstates of the original Hamiltonian
well, we only need to diagonalize H̃, which has a smaller
dimension than that of H. In addition, U denotes a set of
numerical basis vectors that are never explicitly constructed.
Owing to its separability, operations with U can be replaced by
operations with three small matrices, Ux, Uy, and Uz. Therefore,
the memory requirement for U is not Nx × Ny × Nz × rx × ry ×
rz but rather Nx × rx + Ny × ry + Nz × rz.
To evaluate H̃, instead of directly evaluating the right-hand

side of eq 7, we project three terms of the Hamiltonian matrix
separately: kinetic energy, local potential, and nonlocal
potential terms. Owing to the properties of U and the nonzero
patterns of the three terms, the evaluation of H̃ can be
efficiently performed. A further explanation of the projection of
the Hamiltonian matrix is described in the Appendix.
Unlike typical basis functions that use a predetermined

formula, our U reflects the system information (e.g., relative
positions of atoms, phase factors, and cell size) because it is
constructed from the decomposition of the Hamiltonian matrix
that includes system information. Hereafter, we name U the
system-specific separable basis vector and investigate its
applicability to density functional calculations.

Before we discuss the performance of the system-specific
separable basis in a density functional calculation, we plot its
overall process in Figure 1. The right and left panels of Figure
1 represent the conventional SCF procedure and the additional
process, respectively. In the system-specific basis calculation,
the basis vectors are constructed using the eigendecomposition
of H(x)H(x)

H , H(y)H(y)
H , and H(z)H(z)

H . The eigenvectors of
H(x)H(x)

H , H(y)H(y)
H , and H(z)H(z)

H are identical with the left
singular vectors of H(x), H(y), and H(z), respectively. To avoid
the SVD of a large sparse matrix, we perform eigendecompo-
sition instead of SVD.
After basis construction, the original Hamiltonian is

projected to the obtained basis space. The eigenvalues and
eigenvectors of the projected Hamiltonian are then computed
using a typical matrix diagonalization method. The orbital, ϕp,
for comput ing the dens i ty , ρ , i s eva luated asÙ
ϕ ⊗ ⊗U U U( )p

x y z H , where ϕp and
Ù
ϕp are the pth

eigenvectors of H and H̃, respectively. We note that ϕp

satisfies the orthonormality condition because both
Ù
ϕp and U

are orthonormal. The Hartree and the exchange-correlation
(XC) potentials for the obtained ρ are evaluated in the same
way as the ordinary FD calculation.

Figure 1. Schematic illustration of a conventional self-consistent field procedure (right panel) and the additional process introduced by the system-
specific separable basis (left panel).
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To accelerate the system-specific basis vector calculations,
we introduce two approximations. The first approximation is
using the fixed basis during the SCF loop. In other words, the
basis is constructed in the first step of the SCF loop using the
initial Hamiltonian matrix; it is then used in the subsequent
SCF steps. Although the construction of the basis set is not
computationally heavy, changes in the basis set at every SCF
step reduce the speed of SCF convergence. For a fixed basis,
only two local potential terms (Hartree and XC potentials)
must be updated at each SCF step. Therefore, only the
projection of the updated local potential is performed for each
SCF step.
The second approximation is discarding the nonlocal

pseudopotential in the basis construction. The errors

introduced by the two approximations are plotted in Figure
S1. The approximations may induce errors up to 100 meV in
both the atomization energy and the band gap; however, these
deviations disappear when the rank size sufficiently converges,
and the approximations lead to a ∼6× increase in speed in all
tested cases. Hereafter, all results are obtained using both
approximations.

Implementation and Experiments. The construction of
system-specific basis vectors and the projection of the
Hamiltonian are performed using the Tucy package, which is
written in C++ and has a Python interface. For density
functional calculations, our Python package, called the grid-
based open-source Python engine for large-scale simulation
(GOSPEL), was used. GOSPEL supports FD calculations and

Figure 2. Results of 1D Fourier transform of the first five vectors of factor matrices from the initial Hamiltonian of the seven different systems: C,
SiC, Si, SrTiO3, BaTiO3, hBN, and hBCN. The blue and red dashed lines indicate basis vectors from the Γ- and X-points, respectively. Ux and Uz

denote the factor matrices of the x- and z-axis, respectively, where the z-axis is a nonperiodic axis of hBN and hBCN.
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system-specific separable basis calculations using the Tucy. In
GOSPEL, the Hartree potential was evaluated using the
interpolation scaling method, as in our previous studies.23,24

An XC potential is evaluated from the experimental version of
libXC.25

To assess the convergence and performance enhancement,
both the reference FD and system-specific separable basis
calculations were performed using the same systems. All
computational options were used equally in both cases, and all
calculations were performed using a single thread of an Intel
Xeon Gold 6234 CPU. The PBE26 functional was used for the
XC functional, and optimized norm-conserving Vanderbilt27

pseudopotentials were used. All 2D and 3D periodic structures
were calculated using (4 × 4 × 1) and (4 × 4 × 4) k-point
meshes, respectively. For the kinetic energy matrix, a 7-point
FD matrix is used. SCF procedures end when the sum of the
occupied band energies converges to less than 10−6 Hartree.
For iterative diagonalization for both typical FD and the

projected Hamiltonian matrices, we use LOBPCG functions
implemented in scipy,28 a highly mature and optimized Python
package for scientific computing. A compressed sparse row
format is used for the FD Hamiltonian instead of a dense
matrix format to compute the matrix-vector multiplications.
Tucy and GOSPEL are freely available in their online git
repositories (https://gitlab.com/jhwoo15/gospel and https://
gitlab.com/jhwoo15/tucy, respectively).
Because the cell parameters do not exactly match the

multiples of a given grid spacing, the actual grid spacing is set
to have the closest value of the given spacing within a small
difference (up to 0.1 bohr). Here, we denote the given grid
spacing instead of the actual grid spacing in the paper for better
readability. The actual grid spacing corresponding to each
structure is listed in Table S1.
The performance of the system-specific separable basis is

assessed for seven structures: three cubic diamond structures
(C, SiC, and Si), two ABO3 perovskites (BaTiO3 and SrTiO3),
and two hexagonal 2D materials (hBN and hBCN). The
atomic coordinates and cell parameters of the seven systems
are presented in the third section of the Supporting
Information. We used the atomization energy per atom for a
fair comparison between systems with different numbers of
atoms. Hereafter, we refer to the atomization energy per atom
as the atomization energy.

■ RESULTS AND DISCUSSION

To confirm the dependency of the system-specific separable
basis on the system information, we plot the results of the 1D
Fourier transform of the first five vectors of the factor matrices
constructed from the initial Hamiltonian at the Γ- (blue bars)
and X- (red bars) points (see Figure 2). In the lowest panel,
only Γ-point data is visible because only one k-point was
sampled along the nonperiodic axis of the 2D hexagonal sheet
structures.
First, the blue bars are symmetrically distributed in all cases

because the basis vectors at the Γ-point are always real
regardless of the structure. However, at the X-point, the basis
vectors and Hamiltonian matrices are no longer symmetric
because of the phase factor; therefore, the basis vectors are no
longer symmetric in Fourier space. One interesting point
related to the k-space is that the basis vectors at the X-point are
not just shifts in the basis vector at the Γ-point. This indicates
that the basis vectors at different points in the k-space are not
the products of Γ-point basis vectors with the phase factor, and
the basis vectors at each k-point are constructed in a way that
reflects the overall Hamiltonian matrix.
Figure 2 also shows the structural dependency of the basis

vectors. The ABO3 structures have a common pattern. C and
Si structures also share a similar pattern. However, the SiC
structure has a different shape than those of other diamond
structures. SiC is composed of two different elements;
therefore, the nature of the covalent bonds in SiC is largely
different than those of C and Si. Likewise, the basis vectors of
two hexagonal sheet structures show different patterns along
the x-axis, whereas the basis vectors along the z-axis show a
similar trend. This implies that hBN and hBCN show different
characteristics along the periodic axes but not along the
nonperiodic axis. Although it is difficult to elucidate which
system information changes a specific pattern in the basis
vectors that we obtain, we can observe the structural and phase
dependencies of the system-specific basis vectors.
We investigated whether the obtained basis vectors can

properly span an orbital from the reference FD calculations.
We projected the reference orbitals from the FD calculation of
the SrTiO3 on U and calculated their residuals. Figure 3 plots
the sizes of the projection residual on U constructed with
different rank sizes (rx, ry, and rz). The large residual size means
that the basis space does not sufficiently span the reference
orbital. The tested reference orbitals were obtained from
ordinary FD calculations of SrTiO3. For good readability, we

Figure 3. Size of the projection residual of (a) the first 100 orbitals and (b) the occupied orbitals of SrTiO3 at the Γ-point. The residual is
computed by the projection of the reference orbitals, ϕp, on the separable basis vectors, U, obtained from Tucker decomposition with different rank
sizes.
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present the residual size of the first 100 orbitals and occupied
orbitals in Figure 3a and 3b, respectively.
For small rank sizes, the basis vectors do not sufficiently

cover the reference orbitals, but they span the orbitals better as
the rank size increases (see Figure 3a). In addition, it was
observed that the residual sizes for the low-lying orbitals do not
always decrease first as the rank size increases, but those for
high virtual orbitals slowly converge to zero. This indicates that
the basis space spans the orbitals sufficiently, especially for low-
lying orbitals.
To investigate the effects of system-specific separable basis

vectors in the SCF procedure, we performed density functional

calculations for the tested structures. The computational
details and results are summarized in Tables S3−S9.
Figure 4 shows the absolute errors in atomization energies,

|ΔEa| (black line), and band gaps, |ΔEg| (blue line), as a
function of the number of basis vectors, R = rx × ry × rz. For
the cubic diamond structures and ABO3 structures, we sampled
the same rank sizes for all three axes, whereas the rank size of
the hexagonal sheet structures is proportional to the cell size
along each axis. The same cell parameters and rank sizes were
used for the single-atom calculations needed to calculate the
atomization energies.

Figure 4. Convergence behavior of system-specific separable basis vectors as a function of the number of basis vectors, R, on a log−log scale. The
blue and black lines indicate the absolute errors in the band gap and atomization energy per atom (|ΔEg| and |ΔEa|), respectively. Both the system-
specific separable basis and reference finite-difference calculations were performed with h = 0.2 bohr.
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The atomization energy and the band gap do not converge
monotonically with respect to R, whereas the monotonic
convergence of the total energy is guaranteed by the variational
principle, as shown in the 10th column in Tables S3−S9. In the
test range of R, the systems show convergence within 0.1−10
meV for both |ΔEa| and |ΔEg|. Elucidating the dependence of
the error convergence on the structures is difficult with a few
test cases. Nonetheless, we note that the system-specific
separable basis converges well, even in systems with transition
metals or a nonperiodic axis.
To investigate the speed of SCF calculations with a system-

specific separable basis, we plot the elapsed times for the
overall calculations and three major bottlenecks for Si
calculations as a function of R in Figure 5. To check the
dependence of the computation time on the grid spacing h, we
also plotted the results with different h values. The blue,
orange, and green lines indicate the results with h values of 0.3,
0.25, and 0.2 bohr, respectively. The dashed lines represent the
elapsed time for the reference FD calculations. The elapsed
time of the total SCF procedure with the system-specific
separable basis increases as R increases but does not show a
dramatic change with respect to h, as shown in Figure 5a. By
contrast, the total elapsed time of the reference FD results
increased rapidly as h decreased.
The increase in the elapsed time of the reference calculations

originates from diagonalization, which is the primary bottle-
neck. As shown in Figure 5b, most of the elapsed time for the
reference calculations is spent in diagonalization, and its cost is
strongly dependent on the h values. For the case of a system-
specific separable basis, the elapsed time of the diagonalization
is independent of the choice of h and is much smaller than that
of the reference cases. This is because the dimensions of the

projected Hamiltonian matrix are determined not by the
number of grid points, N = Nx × Ny × Nz, but by R which is
much smaller than N.
The system-specific separable basis additionally induces the

basis construction and projection processes. Figures 5c and d
show the elapsed time for projection and basis construction,
respectively. The computational time for basis construction
relies on h values because we obtain Ux, Uy, and Uz from the
direct diagonal izat ion of smal l dense matr ices ,
H(x)H(x)

H ,H(y)H(y)
H , and H(z)H(z)

H . Despite the strong h depend-
ence, the basis construction time occupies only a small part of
the overall time. Contrary to the basis construction time, the
cost of the projection depends on both h and R. The detailed
computational complexities of the projections and basis
construction are explained in the Appendix. The projection
time increases as R increases and h decreases. However, large
differences in the elapsed time of the projection as a function
of h are not shown, except for a few small R cases. Hence, the
total computational time for a system-specific basis calculation
does not increase significantly as h decreases.
Although system-specific separable basis calculations require

additional processes, they show excellent performance in
diagonalization; thus, the overall computational costs are
reduced in most cases. Here, we discuss only the results of Si,
but we observed the same trend for other systems (see the
sixth−ninth columns of Tables S3−S9).
Figure 6 summarizes the overall performance enhancement

by the new basis with respect to the reference FD calculations
as a function of R/N, when h = 0.2 bohr. Figure S3 shows the
performance enhancement results with other h values. For all
systems, smaller R/N values resulted in larger performance
enhancement. This is because a smaller R/N implies a larger

Figure 5. Elapsed times of density functional calculations according to the number of basis vectors on a log−log scale. Elapsed time for (a) total
SCF calculation, (b) diagonalization, (c) projection of the Hamiltonian matrix, and (d) construction of the system-specific separable basis. The
dashed lines in (a) and (b) represent the elapsed time for the reference finite-difference calculations for the same system (Si) and computational
conditions. Blue, orange, and green lines represent the results for h of 0.3, 0.25, and 0.2 bohr, respectively.
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reduction in the dimension of the Hamiltonian matrix,
resulting in faster diagonalization. The elapsed time for each
component for all calculations is included in Tables S3−S9.
The intersections of the horizontal and vertical lines represent
the smallest R/N case for each system, where both |ΔEa| and
|ΔEg| were less than 100 meV. The intersections of the ABO3
and hexagonal sheet structures were ∼8% and ∼2%,
respectively. The diamond structures should have an R/N of
∼5% to achieve a tolerance of 100 meV, except for Si. The N
value for the Si system is greater than those of the other
diamond structures because the cell volume of Si is larger than
that of the others. In addition, the R for the error convergences
was slightly smaller than that of the others. Therefore, the Si
system showed significant performance enhancement.
To be more practical, a system-specific separable basis must

achieve performance improvements with sufficiently high
accuracy. The system-specific separable basis balances speed
and accuracy by tuning R. A large R achieves high accuracy but
simultaneously reduces the calculation speed, as shown in
Figures 4 and 6. Table 1 summarizes the performance
enhancements of the tested systems for 100, 50, and 25 meV
tolerances for both types of errors. As shown in Figure 6, the
use of large R/N to achieve high accuracy reduces the gains in
computation speed. However, significant acceleration (2−
14×) was achieved, even within a small tolerance value of 25
meV.

■ CONCLUSION
Here, we proposed a system-specific separable basis derived
from Tucker decomposition of a finite-difference Hamiltonian
and investigate its performance in density functional

calculations. We show that the new basis can successfully
span low-lying orbitals and that their coverage is systematically
improved by increasing the rank size of Tucker decomposition.
The proposed basis dramatically reduces the dimensions of the
Hamiltonian matrix and hence accelerates the diagonalization
of the Hamiltonian matrix. We confirmed the properties of the
basis vectors and measured the performance enhancements
using seven selected systems. The system-specific separable
basis achieved a 2−71× increase in computation speed with
100 meV tolerance for the band gap and the atomization
energy. Higher accuracy can be achieved for all tested systems
with a larger rank size but a lower gain in computation speed
(e.g., 2−14× increase with a 25 meV tolerance). Here, we
validated the performance of the system-specific separable
basis only for density functional calculations. However, we
expect it to be useful for higher-order quantum chemical
methods because our basis benefits from the advantages of
both the real-space method (e.g., fast numerical integrations
and derivatives) and the typical basis function expansion
method (e.g., low dimension of basis space and separability).

■ APPENDIX

Negative Shift of the Hamiltonian Matrix
We introduced a fictitious potential to obtain singular vectors
that well span low-lying orbitals. By the application of a large
negative constant potential, the eigenspectrum of H is shifted
down. This shift avoids a large positive eigenvalue of H, so the
singular vectors that mainly span the high virtual orbitals are
not selected in the compact HOSVD. In Figure S2, the results
of representability tests with different sizes of the fictitious
potentials are plotted. If the magnitude of the fictitious
potential is sufficiently large, its value does not affect the
representability of the basis vectors. We used −500 au as the
fictitious potential for all calculations presented in this work.

Projecting the Hamiltonian Matrix on a System-Specific
Separable Basis Space
A KS Hamiltonian matrix is composed of three terms: kinetic
energy matrix, T, local potential matrix, Vlocal, and nonlocal
potential matrix, VNL. Each term has a specific nonzero pattern;
therefore, we replace the projection of the Hamiltonian matrix,
H̃, with the projection of each matrix using its nonzero pattern.
An FD kinetic energy matrix in order-6 tensor format, ,

can be represented as follows:

δ δ δ δ δ δ= + +′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′T T Tijki j k ii
x

jj kk ii jj
y

kk
z

ii jj kk
z

(8)

where Tn (n ∈ {x, y, z}) is the second-order FD matrix along
the n-axis and δ is the Kronecker delta. Owing to the
separability and orthonormality of U, the projection of the
kinetic energy matrix on U, ̃ , was obtained by three 1D
projections as follows:

Figure 6. Performance enhancement by a system-specific separable
basis as a function of the ratio of dimensions of the finite-difference
and the projected Hamiltonian matrices, R/N. The intersections of
the horizontal and vertical lines represent the smallest R/N cases,
where both the atomization energy and the band gap have errors of
less than 100 meV. For all calculations, with or without basis vectors,
a grid spacing of 0.2 bohr was used.

Table 1. Performance Enhancements of the Tested Systems at Various Error Tolerancesa

diamond ABO3 hexagonal sheet

tolerance (meV) C SiC Si SrTiO3 BaTiO3 hBN hBCN

100 5.88 (5.59%) 5.86 (4.56%) 71.43 (0.95%) 3.65 (6.66%) 2.07 (8.95%) 13.31 (2.34%) 24.17 (1.86%)
50 3.14 (6.98%) 2.51 (6.63%) 71.43 (0.95%) 1.65 (9.70%) 2.07 (8.95%) 4.27 (4.53%) 7.70 (3.06%)
25 2.39 (8.59%) 1.71 (7.87%) 14.07 (2.40%) 1.65 (9.70%) 2.07 (8.95%) 4.27 (4.53%) 5.36 (3.79%)

aThe percentages in parentheses indicate the ratio of dimensions of the finite-difference and the projected Hamiltonian matrices, R/N.
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In eq 9, the projection of the kinetic energy matrix is calculated
using the projections of the three 1D kinetic energy matrices. If
we assume that rx = ry = rz = R1/3 and Nx = Ny = Nz = N1/3, the
computational complexity of evaluating each term of the

second line in eq 9 becomes +R N R N( )1/3 2/3 2/3 1/3 .
In the FD representation, the local potential matrix, Vlocal,

has nonzero values only on the diagonal, which means that
Vpq
local = Vp

localδpq, where p and q are the indices on a 3D grid. If p
and q are decomposed into (i, j, k) and (i′, j′, k′), respectively,
t h e l o c a l po t en t i a l i n t en so r f o rm be come s

δ δ δ=′ ′ ′ ′ ′ ′Vijki j k ijk ii jj kk
local local . Because of this nonzero pattern of

the local potential, the 3D projection of ′ ′ ′ijki j k
local is transformed

as follows:
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The first, second, and third parentheses in eq 10 represent
the x-, y-, and z-axis projections, respectively. Each projection
is performed with the contraction of an order-6 tensor with
two matrices; therefore, it requires an 8-nested for-loop.
However, using the nonzero pattern of ′ ′ ′ijki j k , the x-, y-, and
z-axis projections are performed by 5-, 6-, and 7-nested for-
loops, respectively. The computational complexities of the

three projections are R N( )2/3 , R N( )4/3 2/3 , and R N( )2 1/3 ,
respectively. In our test, the last projection was a major
bottleneck in the local potential projection.
Because all electron−electron interactions are represented

by the local potential under the KS density functional theory, a
nonlocal potential matrix, VNL, is only from the pseudopoten-
tial. The most frequently used pseudopotential is the
Kleinman−Bylander (KB)29 formula given by

∑ ∑= *V P D P( )pq
a l m

p
a lm a lm

q
a lmNL

,

, , ,

(11)

where P and D are a KB projector matrix and a coefficient
matrix for each pair of angular momenta, respectively, and a, l,
and m denote the indices for the atom, the angular
momentum, and the magnetic momentum, respectively.
Similar to eq 10, we consider the tensor form of a nonlocal
potential term, NL, and KB projectors, ijk

a lm, and ′ ′ ′i j k
a lm, ). The

projection of the nonlocal potential is computed as follows:
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w h e r e ̃ = ∑α β γ α β γ′ ′ ′P U U Ua lm
i j k ijk

a lm
i
x

j
y

k
z,

, ,
, a n d

̃ = ∑αβγ α β γ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′U U Ua lm
i j k i j k

a lm
i
x

j
y

k
z,

, ,
, . The computational com-

plexity of αβγ
a lm, was + +NR N R N R( )1/3 2/3 2/3 1/3 . The

evaluation of αβγ
a lm, is performed only once in the overall

calculation because the nonlocal term does not change during
the SCF procedure.
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