
1. Introduction
Hydration on the illuminated lunar surface has now been well established following remote observations of a 
3 μm hydration band by five infrared spectrometers (Chauhan et al., 2021; Clark, 2009; Honniball et al., 2020; 
Pieters et al., 2009; Sunshine et al., 2009). The 2.8–3.5 μm IR hydration feature (hereafter referred to as the 3 μm 
band) however suffers from uncertainties in removing thermal emission from reflectance measurements made 
with passive spectrometers (Lucey et al., 2021). The primary complication with interpretation of passive 3 μm 
band measurements lies in decoupling the radiance contributions of solar reflectance and lunar thermal emission, 
which are roughly equal near 3 μm at lunar dayside temperatures (Clark, 1979; Vasavada et al., 2012). In addition, 
the choice of a surface photometric function and the relation of lunar emissivity to reflectance and the applicabil-
ity of Kirchoff's law further complicate the analysis.

Using data from the Moon Mineralogy Mapper (M 3) spectrometer on the Chandrayaan-1 mission (Green 
et al., 2011) various analysis methods have been put forward to remove the thermal component. However, inter-
pretations from the same raw M 3 data are not consistent and arrive at conflicting conclusions about the presence 
and strength of diurnal and latitudinal variations measured by the 3 μm band. Comprehensive summaries and 
discussion of observations to date in the 3 μm band are given by Grumpe et al. (2019), and Lucey et al. (2021). 
Here we provide a brief overview. McCord et al. (2011) found strong variations in the 3 μm band depth as a func-
tion of latitude and time of day, as well as striking differences between mare and highlands regions. Bandfield 
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combined with the uniform measurement capabilities of multispectral lidar make it a valuable spectroscopic 
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Plain Language Summary Outstanding questions and conflicting results related to the variability 
of water and hydroxyl on the lunar surface require new measurement systems and techniques that are ideally 
independent of the temperature of the surface. A light detection and ranging (lidar) system with multiple laser 
wavelengths that are sensitive to the total water (H2O + OH) content of the surface would provide important 
validation of disagreeing passive results and would fill data gaps at high latitudes on the day side and cover 
the entire night side. We have performed simulations of a four-wavelength lidar system, which showed the 
technique is able to measure the amount of total water with a precision of 52 ppm or better. Our results indicate 
an orbital multi-wavelength lidar would fill crucial data gaps and confirm or refute hypotheses related to the 
generation mechanisms, form, and migration of water and/or hydroxyl on the surface.
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et al.  (2018), found a persistent 3 μm band across the lunar surface, with minimal variations as a function of 
latitude, time of day, or composition. S. Li and Milliken (2017) found strong variations at low latitudes, asym-
metric abundances between morning and evening terminators and little variation at high latitudes. Lastly, Wöhler 
et al. (2017) and Grumpe et al. (2019) observed no variation below latitude ∼30° and strong symmetric variations 
above ∼30°. The varying interpretations of observations from a single passive spectrometer makes modeling the 
behavior of the 3 μm band hard with different models and input parameters being proposed (Farrell et al., 2015; 
Jones et al., 2018; Tucker et al., 2019). Therefore, passive observations of the 3 μm band are currently not able to 
constrain the processes that govern the source, retention, or transportation of total water (OH + H2O) measured 
by the 3 μm band on the lunar surface.

Currently, passive observations of the 3 μm band can only be carried out during the lunar day so there is no 
information about the behavior of total water on the lunar nightside or within areas of permanent shadow due to 
the lack of illumination. This leaves large data gaps in constraining the current lunar hydration cycle. Observing 
the behavior of total water during the lunar night and in permanently shadowed regions (PSRs) is important 
for understanding the processes governing hydration on the lunar surface and for future exploration and in-situ 
resource utilization.

In contrast to passive reflectance spectroscopy, active laser (or lidar) reflectance measurements of the lunar 
surface bypass the need for a natural illumination source and do not require precise knowledge of the temperature 
or emissivity of the surface. Orbital lidar observations at 3 μm of the lunar surface can be performed regardless 
of temperature, location, time of day, or illumination conditions (Lucey et al., 2014; Mazarico et al., 2011; Smith 
et al., 2010). Single-wavelength lidars with lasers emitting at 1.06 μm have identified regions with anomalous 
albedos at the northern pole of Mercury corresponding to regions of buried and exposed ice (Deutsch et al., 2017) 
and provided evidence supporting polar surface ice within lunar PSRs (Fisher et al., 2017; Lucey et al., 2014; 
Zuber et al., 2012). Soon the Lunar Flashlight technology demonstration will carry a multiband reflectometer 
emitting at four wavelengths between 1 and 2 μm (Cohen et al., 2020) to measure ISRU-relevant quantities of 
water ice in select regions.

Active reflectance measurements constraining the 3 μm band would provide more conclusive measurements of 
the diurnal, latitudinal, and compositional variation of the 3 µm hydration signature. These measurements will 
capture the full diurnal cycle with none of the illumination restrictions of passive approaches. For example, 
active reflectance observations of strong diurnal and latitudinal trends would support the hypothesis of molecular 
water moving along temperature gradients on the surface (Hendrix et al., 2019; Honniball et al., 2020; Sunshine 
et al., 2009). An absent diurnal but strong latitudinal trend would support the hypothesis that the 3 μm band is 
due to the formation and destruction of metastable hydroxyl from the migration of solar wind hydrogen (Farrell 
et al., 2015; Starukhina, 2006; Tucker et al., 2019) which has not been shown to cause a temperature-dependent 
variation in the 3 μm band (McLain et al., 2021; Schaible & Baragiola, 2014). A weak latitudinal trend with 
hydration present at greater than 50 ppm at all times of day and latitudes would match modeling results for 
water formation via recombination desorption (Jones et  al.,  2018). Active reflectance observations will also 
provide first of its kind measurements of the 3 μm band on the nightside and across the terminators, which would 
enable discrimination of temperature-dependent migration mechanisms. For example, modeling by Schorghofer 
et al. (2017) showed that thermally-driven migration of water molecules results in surface concentration peaking 
around the dawn terminator. This measurement capability would uniquely fill data gaps from current and planned 
instrumentation and directly address the present ambiguities between hypotheses related to the diurnal and lati-
tudinal variation of the 3 μm band.

We investigated the suitability of this measurement concept by simulating lunar surface reflectance spectra in the 
lidar (zero-phase) geometry with precisely controlled 3 μm hydration bands. We then use a four-wavelength lidar 
model to measure the surface hydration using a least-squares spectral unmixing method. We simulated total water 
(H2O + OH) abundances between 0 and 500 ppm corresponding to the levels measured between 100 and 383 K 
from recent ground-based observations of the 3 μm band depth on the sunlit surface (Honniball et al., 2020). This 
range was used to cover possible total water abundances that may be found on the lunar surface, but our spectral 
measurement results are not dependent on specific diurnal or latitudinal trends.
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2. Methods
2.1. Spectral Data Sets

Hydroxyl groups and water molecules exhibit vibrational absorption features near 3  μm associated with the 
symmetric stretch of the O-H bond. The bonding environment (bond strength and length) determines the precise 
vibrational frequency at which the absorption occurs. However, the ability to accurately constrain the physical 
and chemical state of the O-H and speciation (OH vs. H2O) from the 3  μm feature alone is not clear (Dyar 
et al., 2010) with the combined OH + H2O abundance referred to as “total water.” Total water may refer to struc-
tural OH, OH or H2O within glasses, adsorbed H2O, and surficial OH (terminal hydroxyl), all of which exhibit 
3 μm absorption bands.

We simulated lunar surface reflectance spectra from 1 to 4 μm under varying levels of hydration by using a Monte 
Carlo method to generate intimate single scattering albedo mixtures using laboratory reflectance data of Apollo 
samples from the NASA Reflectance Experiment Laboratory (RELAB) at Brown University and reflectance 
data from step-wise heating experiments of water-bearing mid-ocean-ridge basalt (MORB) glasses (S. Li, 2016; 
Shimizu et al., 2016).

We introduced varying levels of hydration to the reflectance simulations using hydrated MORB glass spectra. 
We chose the hydrated MORB glasses based on their water content range, their visual homogeneity, and having 
as little alteration as possible (S. Li, 2016). Crucially, the absolute water content was measured independently 
by secondary-ion mass spectrometry (SIMS) (Shimizu et al., 2016), enabling us to verify the accuracy of our 
spectroscopic water retrieval. The MORB glasses were heated in a step-wise fashion to remove water allowing 
for a correlation between the strength of the 3 μm band and water content from SIMS measurements (S. Li & 
Milliken, 2017). These hydrated MORB glasses have been used to estimate the abundance of water in the lunar 
3  μm band of remote sensing datasets (Honniball et  al.,  2020; S. Li & Milliken,  2017). The Supplementary 
Material contains spectral comparisons and accompanying discussion of the hydrated MORB glasses used here 
to the 3 μm band shape from lunar remote sensing data from the InfraRed Telescope Facility (IRTF, Figure S1 
in Supporting Information S1) and from M 3 (Figure S2 in Supporting Information S1). The shape of the MORB 
3 μm band can also be compared to the hydroxyl feature in laboratory spectra of proton-irradiated Apollo soils 
(Ichimura et al., 2012; McLain et al., 2021). Ubiquitous (but unquantified) adsorbed surface water is present in 
the laboratory reference spectra of Apollo samples we used (Figure S3 in Supporting Information S1) due to the 
high reactivity of lunar soil samples, with similar band shape to the hydrated MORB glasses. Based on these 
comparisons and its prior use in interpreting lunar remote sensing datasets we believe that the MORB glass 
spectra represents the best quantitative method of introducing hydration signatures into our spectral mixtures.

In our simulations we separated highlands and mare datasets to test the effects of terrain type on the multispectral 
reflectance retrieval. For both the highlands and mare datasets, each spectrum was generated from a random 
mixture of mature and immature Apollo sample spectra, an Apollo pyroxene spectrum, and a MORB spectrum. 
Representative mature and immature mare sample spectra were selected from Taylor et al. (2001), and mature and 
immature highlands sample spectra were selected from Taylor et al. (2010). The mature mare sample had 15.7% 
pyroxene abundance and the immature mare sample had 20.5% pyroxene abundance in the 20–45 μm size fraction 
(Taylor et al., 2001). The mature highlands sample had 5.1% and pyroxene abundance and the immature high-
lands sample had 7.4% pyroxene abundance in the 20–45 μm size fraction (Taylor et al., 2010). We also included 
varying amounts of additional pyroxene in the mixtures to test whether its presence affects the 3 μm band depth 
determination. Pyroxenes exhibit an absorption band that can extend from 1.4 to 2.6 μm corresponding to a 
crystal field transition in Fe 2+ (Burns, 1993; Cloutis, 2002; Sunshine & Pieters, 1993). This broad absorption 
may coincide with the onset edge of the hydration band, affecting the continuum from which the band depth is 
determined. The list of Apollo soil samples, spectra labels, and abundance ranges for the mixtures are given in 
Table 1. The abundance ranges for the glass and overall pyroxene were chosen to mimic the heterogeneity of the 
lunar surface based on data from Lunar Sourcebook (Table 5.1, Papike et al., 1991).

Finally, we endeavored to test our multispectral lidar retrieval method on a mixture containing a non-MORB 
glass, also with precisely known water content, to assess how differences in the 3 μm band shape affected the 
retrieval. For this we used RELAB spectra of orange and yellow synthetic lunar glasses. These glasses have the 
same bulk chemical composition as green and orange glasses found in Apollo samples. Importantly, the water 
abundance in the glasses was measured via SIMS by Wetzel and co-authors (Wetzel et al., 2015), which allows 
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us to use it to create spectral mixtures with a known total water amount. The orange synthetic lunar glass had 
a total water content of 390 ppm, and the yellow synthetic lunar glass had a total water content of 305 ppm as 
measured by SIMS.

2.2. Removal of Terrestrial Water Signature From Endmember Spectra

The Apollo soil spectra from the RELAB database all exhibited various absorption features between 2.6 and 4 μm 
indicating the presence of unquantified hydration and organic doublets near 3.5 μm, both likely from a terrestrial 
source. Our goal was to introduce only a quantified hydration signature to compare with the retrieved value, 
which meant we must first remove this unknown signature from the endmember spectra. We performed a linear 
fit of the reflectance data for the five Apollo samples using anchor points at 2.6 and 4.0 μm, then substituted 
the linear fit into the endmember spectrum to remove the absorption feature (Figure S3 in Supporting Informa-
tion S1). This is analogous to the lunar continuum removal process used to isolate and determine the 3 μm band 
depth of spectra from the EPOXI instrument on Deep Impact (Sunshine et al., 2009). Finally, the endmember 
spectra were interpolated to a uniform 5-nm spectral sampling from 1 to 4 μm. The reflectance spectra of the 
endmembers are shown in Figure 1.

Endmember Sample/Spectrum label Grain size Minimum abundance Maximum abundance

Mature highlands 62231/LR-CMP-098 20–45 µm 0.2 1 a

Immature highlands 61221/LR-CMP-106 20–45 µm 0.0 0.25

Mature mare 70181/LR-CMP-023 20–44 µm 0.2 1 a

Immature mare 71061/LR-CMP-026 20–44 µm 0.0 0.25

Pyroxene 15555/LR-CMP-168 0–125 µm 0.0 0.25

Hydrated glass MORB D38A 63–75 µm 0.0 0.3

Synthetic lunar orange glass OGV-5/RM-REM-140-A 0–45 µm 0.0 0.3

Synthetic lunar yellow glass YG-5/RM-REM-139-A 0–45 µm 0.0 0.3

Note. The main simulations used mixtures of the top six endmembers. Additional limited simulations were performed using 
the synthetic lunar glasses.
 aAmounts were determined last to ensure the endmember abundances summed to 1 for each mixture.

Table 1 
Information on Endmember Spectra Used to Generate Intimate Mixtures

Figure 1. Processed endmember laboratory reflectance spectra. Each spectrum was processed to remove hydration and 
organic contamination features as described in the text. (a) Regolith and pyroxene spectra as described in Table 1. (b) 
Laboratory MORB glass reflectance spectra used to simulate surface hydration in the reflectance simulations. The raw 
MORB spectra were normalized to each other at a wavelength 2.6 μm.
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2.3. Interpolation of MORB Glass Spectra

We used four MORB glass spectra with SIMS-measured water content of 
1,522, 762, 176, and 22 ppm (Figure  1b). All four spectra were obtained 
after heating to 600°C or above, which ensured the removal of surface-bound 
water (Dyar et al., 2010). Our simulated total water range was 0–500 ppm, 
with glass abundances between 0 and 0.3. Thus, finer resolution steps in 
hydration were needed compared to the experimental step-heating spectra. 
We generated synthetic MORB glass spectra at steps of 1 ppm total water 
from 0 to 1,666 ppm via linear interpolation of the step-heating data. At each 
wavelength from 2.65 to 4 μm, the SSA values for each of the four experi-
mental spectra were used to calculate the effective single-particle absorp-
tion thickness (ESPAT) value (1-SSA/SSA) for that wavelength. The ESPAT 
values at each wavelength were fit linearly using the total water abundance 
as the independent variable (Figure S7 in Supporting Information S1). This 
gave us an analytical expression with total water abundance as the input and 
SSA as a function of wavelength as the output enabling us to create MORB 
glass SSA spectra with a near-continuous range of water content, which we 
used to precisely introduce hydration to the overall spectral mixture. A subset 
of the interpolated MORB glass spectra is shown in Figure 2.

We used these interpolated MORB glass spectra to vary the total water abun-
dance in our simulations. In each mixture both the amount of glass in the 

mixture (ranging from 0 to 0.3) as well as the amount of hydration in the glass (ranging from 0 to 1,666 ppm) 
were randomly varied via a Monte Carlo method. The overall range of input total water in the simulations was 
0–500 ppm, which covers the range of lunar total water ranges observed remotely with the IRTF by Honniball 
et al. (2020) and is within the range observed with M 3 by S. Li and Milliken (2017).

2.4. Spectral Mixing and Reflectance Spectrum Generation

One thousand mare spectral mixtures and 1,000 highlands spectral mixtures were generated using a Monte Carlo 
method based on the endmember fractional ranges given in Table 1. We used a Monte Carlo method to assess the 
accuracy of the multispectral lidar method as they enabled us to test a wider range of spectral shapes and assess 
the effects of the measurement SNR and pyroxene abundance. To create the spectral mixtures, each endmember 
reflectance spectrum was first converted to single-scattering albedo (SSA) using the methods of Hapke (2012) 
and least-squares minimization. The reflectance of the endmember spectra measured in the laboratory (which 
Hapke calls the radiance coefficient, but will be referred to as reflectance here) is related to the SSA in the Hapke 
model by (Lucey, 1998):

𝑅𝑅 =
𝜔𝜔

4

𝜇𝜇0

(𝜇𝜇 + 𝜇𝜇0)
{(1 + 𝐵𝐵)𝑃𝑃 +𝐻𝐻(𝜔𝜔)𝐻𝐻0(𝜔𝜔) − 1} (1)

where R is the bidirectional reflectance, ω is the SSA, and μ and μ0 are the cosines of the emission and 
incident angles, respectively. P is the scattering phase function which we set at 0.15 for anisotropic scatter-
ing based on the modeled mean particle phase function for lunar soil (Goguen et  al.,  2010). H and H0 are 
the Ambartsumian-Chandrasekhar H function, which we computed the H functions using the approximation 
from equation 8.57 from Hapke (2012). B is the backscattering function which describes the opposition effect 
(Hapke, 1986) and is approximated by:

𝐵𝐵 =
1

1 +

(

1

ℎ

)

𝑡𝑡𝑡𝑡𝑡𝑡

(

𝑔𝑔

2

) (2)

where g is the phase angle and h is the angular width parameter and can be described by:

ℎ = −3
8
�� (1 − �) (3)

Figure 2. A Subset of interpolated MORB single scattering albedo spectra. 
The interpolated spectra correspond to total water values of (from low to 
high): 0, 150, 300, 450, 600, 750, 900, 1,050, 1,200 ppm, and 1,350, and 
1,500  ppm.
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where 𝐴𝐴 𝐴𝐴 is the filling factor and set to 0.41 for the lunar regolith (Bowell et al., 1989). All the endmember spectra 
were measured with a viewing geometry of μ = 0, μ0 = 30, and g = 30.

We then mixed the endmember SSA spectra using randomized mass fractions within the bounds described in 
Table 1 to simulate an intimate mixture of particles and determine the average SSA:

𝜔𝜔𝐴𝐴𝐴𝐴𝐴𝐴 =

∑

𝑖𝑖

𝑀𝑀𝑖𝑖𝜔𝜔𝑖𝑖

𝜌𝜌𝑖𝑖𝑑𝑑𝑖𝑖

∑

𝑖𝑖

𝑀𝑀𝑖𝑖

𝜌𝜌𝑖𝑖𝑑𝑑𝑖𝑖

 (4)

where i denotes the ith endmember, Mi is the mass fraction, ωi is the endmember SSA, ρi is the endmember 
density, and di is the endmember mean grain diameter. For each spectral endmember, we used the average value 
of the grain size range listed in the RELAB database, which can be found in Table 1. We used a density of 1.8 g/
cm 3 for the highlands and mare regolith (McKay et al., 1991), a density of 3.2 g/cm 3 for the pyroxene (Chai 
et al., 1997), and a density of 2.8 g/cm 3 for the MORB glass (Almeev et al., 2008). Once the average SSA was 
determined at each wavelength, we used the Hapke radiative transfer model in an inverse fashion to generate 
bidirectional reflectance spectra of the mixtures at zero phase to simulate the lidar reflectance. With this change 
in viewing geometry, we modified the scattering phase function, P, to 1.5 based on models of lunar surface scat-
tering properties (Goguen et al., 2010) and normal albedo measurements of mare and highlands regions from the 
lunar orbiter laser altimeter (LOLA) (Lucey et al., 2014). A subset of 200 of the 2,000 total spectral mixtures are 
shown in Figure 3.

2.5. Lidar Wavelengths and Simulated Measurement Error

Passive spectrometers have difficulties with removal of the thermal emission signature and accounting for effects 
of observation geometry near the terminators that may introduce error in the total water abundance measurement, 
even with continuous spectral sampling. The benefits of an active reflectance measurement, mainly the fixed, 
zero-phase viewing geometry and ability to remove the effects of surface temperature, necessitate a spectral 
illumination source. Wideband illumination sources such as tungsten filament lamps and supercontinuum lasers 
may be suitable for short-range measurements (tens of meters), but orbital measurements will need to rely on 
discrete laser wavelengths to achieve a suitable signal-to-noise ratio at a realistic mass and power. Surface reflec-
tance from a lidar is determined by measuring the transmitted laser energy, return laser energy, and range to the 
target along with fixed instrument parameters (see the Supporting Information for further details). Determin-
ing  the total water abundance from the 3 μm band has generally been done using the ESPAT function, which 
relates the single scattering albedo at the band minimum and lunar continuum to the total water abundance for a 
given grain size (Hapke, 2012; Honniball et al., 2020; S. Li & Milliken, 2017). In the ESPAT method, the wave-
lengths that define the continuum and band minimum are not fixed but are chosen based on a convex-hull method.

Figure 3. Subset of lidar reflectance spectra (zero-phase reflectance) using the spectral mixing methods described here. Each 
frame shows 200 individual spectra. (a) Spectra using mare endmembers. (b) Spectra using highlands endmembers. The blue 
lines denote the lidar wavelengths chosen for this study.
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We chose four lidar wavelengths at which to measure the zero-phase surface reflectance, distributing the wave-
lengths based on our desire to constrain the 3 μm band depth and shape. We selected lidar wavelengths at 1.50 μm, 
2.65 μm, 2.80 μm, and 3.10 μm. The wavelengths at 1.50 and 2.65 μm constrain the lunar continuum, while those 
at 2.80 and 3.10 μm constrain the OH band depth and shape to enable a more accurate retrieval of the total 
water content. By rationing the two wavelengths within the absorption band we can determine where the deepest 
portion of the band lies. From Figure 1, the band minimum of the hydroxyl absorption occurs at 2.80 μm and 
thus offers the highest contrast between the 3 μm total water feature and the lunar continuum. Although this work 
is aimed at total water signatures across the lunar surface, these wavelengths would also offer high reflectance 
contrast in polar regions with surface water ice, for which the highest k-value (imaginary component of the index 
of refraction) occurs at 3.10 μm (Warren & Brandt, 2008). We note these are not necessarily the only viable 
wavelengths for measuring surface hydration with a multispectral lidar, and we intend to study the optimization 
of these wavelengths in the future. Upcoming missions to the lunar surface will perform chemical, spectroscopic, 
and mineralogical studies to increase our knowledge of the form and content of lunar hydration that will all help 
to refine the number and placement of multispectral lidar wavelengths.

The reflectance measurement precision at each lidar wavelength depends on the ability to accurately measure 
the transmitted laser pulse energy and the return pulse energy from the lidar. From these measurements (and 
the range to the surface) the lidar equation is used to retrieve the surface reflectance (Cohen et al., 2020; Lucey 
et al., 2014; Sun, 2017). The contribution of signal from thermal emission and solar reflectance was assumed to 
be removed using the continuous signal that is present between laser pulses when no laser illumination is pres-
ent. For these simulations we developed a multispectral lidar performance model (see supplementary material) 
to determine a realistic signal-to-noise ratio with which reflectance uncertainty can be added to the synthetic 
spectra. From our model, we conservatively estimated an SNR of 250 for each lidar wavelength under sunlit 
conditions from a 50 km orbit with a 25-cm diameter receiver telescope, 100 μJ output pulse energy per wave-
length, and assuming a 1-s integration time (Figure S11 in Supporting Information S1). The laser and detector 
performance have been demonstrated for this wavelength regime using optical parametric oscillator-based lasers 
(Cremons et al., 2020; S. X. Li et al., 2017), and a sensitive HgCdTe APD detector (Abshire et al., 2018; Hubbs 
et al., 2018; Sun et al., 2019). We do not intend to limit the lidar system or subsystem architecture here, but to 
ensure the simulations include reasonable measurement conditions for an orbital multispectral lidar. The results 
section includes simulations of total water retrieval error as a function of measurement SNR, as well as the effect 
of differing lighting conditions on instrument performance.

We simulated the lidar measurement precision by adding randomly distributed Gaussian noise to the reflectance 
spectra. The noise was zero-mean with a variance equal to the noiseless reflectance divided by the SNR. We 
justify the assumption of zero-mean noise because the sources of bias (the detector dark noise and solar/thermal 
background photons) are measured between laser pulses and removed from the return pulse energy measurement. 
Reflectance spectra in the lidar geometry for mixtures using mare and highlands soils with noise added are 
shown in Figure 3. A total of 1,000 mare spectra and 1,000 highlands spectra were generated using the methods 
described above.

2.6. Spectral Unmixing Using Non-Negative Linear Regression

We used a non-negative linear least-squares algorithm to solve for the total water abundance from the four lidar 
measurements of the noisy reflectance spectra. Our method is based on those of Mustard and Pieters (1987), 
and S. Li and Li (2011), who applied a linear-least squares algorithm on reflectance spectra to retrieve mineral 
endmember abundances. For an intimate mixture as we have modeled here, the abundance of each endmember is 
non-linear in reflectance, so the four reflectance values at the lidar wavelengths were first converted back to SSA 
using the Hapke model of radiative transfer with the parameters given above. We used four endmember spectra to 
solve for each four-wavelength spectrum. Two of the four endmembers were from the MORB glass step-heating 
experiment: the 1,522 ppm and 22 ppm experimental spectra (Figure 1b). The 1,522 and 22 ppm spectra were 
chosen as they represent the two extremes of the 3 μm band shapes in the mixtures. The other two endmembers 
were the mature mare spectrum (70181/LR-CMP-023), and the immature highlands (61221/LRCMP-106). These 
regolith spectra were chosen because they represent the extrema with respect to the highest and lowest spectral 
slopes for the lunar continuum (Figure 1a). The same four endmember spectra were used for all simulations.

The system of linear equations to be solved is given by:
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 (5)

where SSA λiM is the single-scattering albedo at the ith wavelength from the noisy spectrum, SSACj,λi is the 
SSA of the jth endmember at the ith wavelength, and ACj is the abundance of the jth endmember. Following the 
least-squares fitting, the retrieved abundances of the MORB endmembers were multiplied by the total water in 
each endmember (i.e., 1,522 ppm and 22 ppm). This resulted in a measured total water abundance for each spec-
trum, which was then compared to the input total water abundance for each mixture.

3. Results
3.1. Representative Spectral Unmixing Results and Total Water Retrievals

Figure 4 shows the results of the spectral unmixing technique described above for two of the 2,000 simulated 
spectra. We remind the reader that the four lidar SSA values denoted by the blue dots in Figures 4a and 4b were 
the only values used to solve for the abundances of each of the endmember spectra. Multiplying the lidar-derived 
endmember abundances by their respective SSA spectra gives the green spectra in Figure 4. As expected, the 
least squares algorithm minimizes the residual SSA near the lidar wavelengths. This can be seen in the residual 
spectrum (Figures 4c and 4d) generated by subtracting the noisy simulated spectrum from the retrieved spectrum. 
The lowest residuals are near the measurement wavelengths. Error in the total water abundance retrieval is visible 
from the small absorption feature in the residual spectra near 2.8 μm.

The results showing the derived and input abundances for the spectra in Figure 4 are shown in Table 2. This high-
lands simulation had a randomly chosen input glass fraction of 0.27 and a randomly selected interpolated MORB 

Figure 4. Representative results of spectral unmixing using least-squares regression. (a) The input spectrum is from the highlands simulations. (b) The input spectrum 
is from the mare simulations. The green line is the retrieved spectrum generated by multiplying the retrieved endmember abundances by the endmember SSAs. Only 
the reflectance values at the four blue points were used in the retrieval process. (c) and (d) Residuals from the spectral unmixing results determined by subtracting the 
mixture SSA spectrum (calculated from the noisy reflectance spectrum) from the retrieved spectrum in (a) and (b), respectively.
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spectrum with 581 ppm total water (0.27 × 581 ppm = 156 ppm input abundance). The least-squares algorithm 
was tasked with fitting this spectral mixture using the two MORB endmember spectra (1,522 ppm and 22 ppm), 
as well as the mature mare spectrum and immature highlands spectrum. The line shape of the input MORB spec-
trum (581 ppm) is about 1/3 of the way between the two endmembers (22 and 1,522 ppm), and the least-squares 
algorithm resulted in a 1:2 mixture of the two MORB endmembers (0.06 of the 1,522 ppm endmember and 0.12 
of the 22 ppm endmember). The total water error for this example, defined as the measured total water abundance 
minus the input total water abundance was −37 ppm.

The mare simulation had a glass fraction of 0.25 and an interpolated MORB spectrum selection with 1,548 ppm 
total water. Here, the least-squares algorithm mixed in much more of the high-water content MORB spectrum, as 
1,548 ppm is closer to 1,522 than it is to 22 ppm, and the shape of the 3 μm feature was better fit with the closest 
endmember. For the mare simulation here, the total water error was −81 ppm.

The abundances of the other endmembers (regolith spectra and pyroxene) were not retrieved with high accuracy, 
though this is expected based on the placement of the lidar wavelengths and the similar spectral shape of the 
regolith endmembers. The regolith spectra are primarily used to fit the overall spectral magnitude (the continuum 
albedo) and the continuum spectral slope. Similarly, there is no constraint on the abundances summing to 1, 
such that a low abundance of immature mare and a high abundance of mature mare may appear equally valid to 
the least-squares algorithm based on their spectral similarity. However, the least-squares algorithm was able to 
correctly identify the soil as primarily mare or highlands in nature.

3.2. Total Water Retrieval as a Function of Temperature for Mare Mixtures

The total water retrieval results for the mare mixtures are shown in Figure 5. Input abundance is defined above 
as the glass fraction multiplied by the total water abundance in the randomly chosen synthetic MORB spectrum. 
Retrieved total water was calculated from the least-squares endmember abundances using the following formula:

𝐴𝐴𝑇𝑇𝑇𝑇𝑇 𝑇[𝑝𝑝𝑝𝑝𝑝𝑝] = (𝐴𝐴1522 ⋅ 1522) + (𝐴𝐴22 ⋅ 22) (6)

where AT.W. is the retrieved total water abundance in parts per million, A1522 is the least-squares abundance of the 
1,522 ppm MORB endmember, and A22 is the least-squares abundance of the 22 ppm MORB endmember. The 
mare multispectral lidar simulations exhibited a mean error of −38 ppm and a standard deviation of 52 ppm. This 
mean error represents a deviation from the desired one-to-one relationship between input abundance and retrieved 
abundance and a statistical underestimation of the total water content. The root mean square error (RMSE) for 
the mare simulations was 65 ppm. Figure 5b shows a histogram of the total water error, defined as the retrieved 
total water minus the input total water. The mean error can be observed by the peak in the histogram at a value 
slightly less than 0 ppm total water error.

Endmember

Highlands simulation Mare simulation

Input abundance Least-squares abundance Input abundance Least-squares abundance

Glass Abundance (Interpolated 
Hydration Spectrum)

0.27 (581 ppm spectrum) 0.06 (1,522 ppm endmember) 0.25 (1,548 ppm) 0.17 (1,522 ppm endmember)

0.12 (22 ppm endmember) 0.03 (22 ppm endmember)

Mature mare 0 0.15 0.48 0.40

Immature mare 0 Not retrieved 0.20 Not retrieved

Mature highlands 0.40 Not retrieved 0 Not retrieved

Immature highlands 0.18 0.31 0 0.03

Pyroxene 0.15 Not retrieved 0.06 Not retrieved

Total Water Abundance 156 ppm 119 ppm 390 ppm 309 ppm

Total Water Error −37 ppm −81 ppm

Note. The input glass abundance and interpolated hydration spectrum (see Figure 2) were independently and randomly selected for each simulation.

Table 2 
Summary of Spectral Unmixing Results for the Spectra in Figure 4
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3.3. Total Water Retrieval as a Function of Temperature for Highlands Mixtures

The results for the highlands simulations are shown in Figure  6 using the same conventions as Figure  5. In 
general, the highlands results were similar to the mare simulations, though slightly more accurate. The mean 
error and standard deviation were −39 and 38 ppm, respectively. The RMSE of the highlands simulations was 
55 ppm compared to 65 ppm for the mare simulations. The statistics for the mare and highlands simulations are 
given in Table 3.

3.4. Effects of SNR on Total Water Error

We tested a range of SNR values for the entire set of simulated spectra (1,000 mare and 1,000 highlands spec-
tra) to quantify the standard deviation of the retrieval under different noise conditions. These simulations were 
run using the same spectral mixtures as the data presented in Figures 5 and 6, with the only difference being 
the noise-addition process. For each SNR, noisy-spectra were re-generated from the mixture SSA spectra using 
different magnitudes for the Gaussian-distributed reflectance error. We then performed the total water retrievals 
in the same manner as the prior simulations. The standard deviations for the range of SNRs tested are given 
in Table 4. Figure 7 shows a graphical representation of the total water error standard deviation as a function 
of SNR. The standard deviation decreased as a function of increasing SNR following a power-law curve with 
an exponent of −0.37 for the mare simulations and −0.34 for the highland simulations. In an ideal case where 

Figure 5. (a) Results for all 1000 mare simulations. Each dot denotes a single retrieval. The black dotted line denotes a slope 
of 1. (b) Histogram of total water error. The histogram bin width is 5 ppm.

Figure 6. (a) Results for all 1,000 highlands simulations following the conventions of Figure 5. (b) Histogram of total water 
error following the conventions of Figure 5.
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the total water abundance error was only due to random error in the band 
depth measurement, the exponent is expected to be −0.5 (Gardner, 1982) (see 
Equation S1 in Supporting Information S1).

We hypothesize these slightly lower exponents are due to the correlated 
nature of the four reflectance measurements in determining the total water 
abundance, such that errors in any one measurement (either the baseline or 
the 3 μm band) will negatively affect the other wavelength measurements. 
Not all four wavelengths are expected to affect the error uniformly; we expect 
that errors in the 2.65 and 2.8 μm measurements affect the total water error 
more than the 1.5 and 3.1 μm measurements, though further simulations are 

needed to test this sensitivity, along with the sensitivity to the precise laser wavelengths themselves. Overall, 
the performance as a function of SNR followed the expected power law behavior and suggests that engineering 
efforts to increase the measurement SNR beyond ∼300 will have diminishing returns on reducing the overall 
measurement uncertainty.

The relationship between SNR and retrieval precision is also useful for estimating the performance under night 
or shadowed conditions. From the SNR model results shown in Figure S11 in Supporting Information S1, the 
shadowed terrain SNR for this design is >300 at all lidar wavelengths. From the equations shown in Figure 7, 
this corresponds to slight improved performance with a standard deviation of 38 ppm for the Highlands case and 
48 ppm for the Mare case. Thus, the performance of this instrument will depend more strongly on the absolute 
regolith reflectance than on the illumination state of the surface, as detector dark noise, not reflected solar light, 
is the limiting noise source.

3.5. Effects of Pyroxene on Retrievals and Band Depth

We chose to add between 0% and 25% of pyroxene to the spectral mixtures to test the effects of pyroxene abun-
dance on the multispectral lidar total water retrieval. This includes determining whether the larger error observed 
in the mare mixtures was related to the higher pyroxene abundance in the mare mixtures. For our simulations the 
pyroxene abundance had a small effect on the errors in the retrieval. In general, the total water error became more 
negative (i.e., the underestimation of total water was greater) in a linear fashion as pyroxene abundance went 
up, though it was a minor effect. The magnitude of the effect was 0.6 ppm per percent pyroxene. The effect of 
pyroxene was more pronounced in trials where the continuum lidar wavelength was shifted shorter in wavelength 
toward the 2 μm pyroxene band. We performed a second set of lidar retrievals on the 2,000 simulated spectra 
using a 2.5 μm lidar wavelength instead of 2.65 μm and observed the overall total water abundance accuracy and 
precision went down and a stronger pyroxene trend was observed (−2 ppm per percent pyroxene).

To explore the impact of this effect on band depth in general (not specific to the four-wavelength lidar retrievals) 
we created new spectral mixtures using the methods of Sections 2.4 through 2.6 with a fixed amount of MORB 
glass (0.3) and a fixed interpolated MORB spectrum (1,000 ppm), but randomly varied amounts of pyroxene 
and regolith spectra. Our intent was to isolate the effect of pyroxene abundance on the band depth for both 

mare and highlands terrain. We then processed the lidar reflectance spectra 
to determine the 3 μm band depth. Here we define band depth for the lidar 
as the difference between a linear continuum with anchor points at 2.5 or 
2.65 and 3.5 μm and the measured reflectance at 2.8 μm. This ensures a band 
depth of zero when no hydration is present based on our method of using 
a linear fit to remove terrestrial water from the endmember spectra. This 
band depth was calculated for the 2,000 new spectral mixtures (Figure 8). We 
observed clear linear trends of measured band depth as pyroxene abundance 
increased, however, the slope of the trend changed depending on where the 
continuum was anchored. When 2.5 μm was used as a continuum reference, 
the band depth decreased as a function of increasing pyroxene abundance as 
the 2 μm pyroxene band edge pulled down the continuum reflectance. Using 
2.65  μm as a continuum anchor, the band depth increased with pyroxene 
abundance as the local maximum in the pyroxene spectrum raised the contin-
uum reflectance.

Mixture type
Total water mean 

error
Total water error 

standard deviation
Total water 

RMSE

Mare −38 ppm 52 ppm 65 ppm

Highlands −39 ppm 38 ppm 55 ppm

Table 3 
Summary of Total Water Retrieval Results for Mare and Highlands 
Simulations

SNR Mare total water error standard deviation
Highlands total water 

error standard deviation

10 170 122

50 100 63

100 63 50

250 52 38

500 40 35

1000 38 32

Table 4 
Summary of Total Water Retrieval Results at Various SNRs for a Subset 
(200) of the Spectral Mixtures
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For both continuum wavelengths the highlands simulations showed a larger 
effect of pyroxene abundance on band depth, which aligns with previous 
studies showing the OH band depth is greater in brighter host material 
(Starukhina & Shkuratov, 2010). A similar linear trend to what we observe 
in our simulations was reported by McCord et al. (2011), who compared the 
2  μm pyroxene and 2.8  μm hydration band depths from M 3 observations. 
They cautioned the strength of the correlation is dependent on how the band 
strengths are measured and continua defined, which our simulation results 
here reinforce.

We conclude band depth effects due to pyroxene shown in Figure 8 are due 
to two effects. First, the spectral collocation of the OH absorption feature and 
the local reflectance maximum of the pyroxene (see Figure  1a) decreases 
(i.e., fills in) the 3 μm band. Second, the 2 μm pyroxene absorption modifies 
the lunar continuum used to compute the band depth from which the total 
water abundance is calculated. We chose 1.5 and 2.65 μm as the continuum 
lidar wavelengths to purposely avoid the pyroxene crystal field transition near 
2 μm and its effects on the continuum fit. We note these effects are relevant 
not only for multispectral lidar measurements but also for measurements of 
the 3 μm band depth and continuum using passive methods. Careful labo-
ratory reflectance studies of the 3 μm hydration band in pyroxene-bearing 
mixtures would be valuable in interpreting current and future remote sensing 
datasets.

3.6. Synthetic Lunar Glass Mixture Results

The hydrated synthetic lunar glass mixtures (1,000 of both orange and yellow glass) were generated in the same 
way as the mixtures using MORB glass, including the abundance ranges, other endmembers (regolith and pyrox-
ene), and radiative transfer methods. The only difference was that the amount of water in the synthetic glasses 
was constant and only the glass abundance was used to vary the total water amount in the mixture. The retrievals 
were also conducted in the same fashion as the MORB mixtures, including the measurement SNR (250), four 
lidar wavelengths, and the four endmember spectra used in the least-squares algorithm: the 1,522 ppm and 22 
ppm MORB glass spectra, immature mare spectrum, and mature highlands spectrum. The results of the synthetic 
lunar glass simulations are shown in Figure 9.

The synthetic glass mixture results show that the multispectral lidar retrieval method using the two experimen-
tal MORB endmember spectra to fit the 3 μm feature performs similarly for the interpolated MORB glass and 

Figure 7. Total water standard deviation as a function of SNR. The purple 
squares denote the standard deviations from the highlands simulations and 
the green squares denote the standard deviations from the mare simulations. 
The black crosses denote the values for the histograms and scatter plots in the 
prior sections for SNR = 250. The dotted lines are best-fit power laws with the 
formulae shown.

Figure 8. Band depth at 2.8 μm as a function of pyroxene abundance (pyroxene in regolith endmembers + added pyroxene 
in mixture) using different continuum wavelengths. Every mixture shown here contained 300 ppm total water abundance. 
Random noise was added to each spectrum to simulate the multispectral lidar SNR. Each point corresponds to a separate 
spectrum and the solid lines denote a linear fit to the data.
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synthetic glass mixtures. Both glass mixtures had a negative mean error, with the orange glass mean error (−31 
ppm) being closer to the MORB results (−38 ppm) given in Table 3, and the yellow glass mean error (−14 ppm) 
being lower than the MORB results. The standard deviation for the glass mixture retrievals were very close to one 
another and the MORB results.

4. Discussion
The highlands simulations exhibited a lower standard deviation for the total water error than the mare simula-
tions, and this trend held over the entire range of SNRs tested. The higher total water sensitivity for highlands 
spectra is a direct consequence of the non-linearity of mixing single scattering albedos. A brighter surface host 
material (highlands) manifests a stronger absolute reflectance band depth for a given total water abundance than 
darker surface material (mare). This effect was similarly demonstrated by Starukhina and Shkuratov (2010) in 
their 3 μm band modeling efforts related to theories of solar wind proton implantation. McCord et al.  (2011) 
also identified a trend in their M 3 data of stronger 3 μm absorptions in more feldspathic material, however, it is 
not clear whether this is a chemical/mineralogical effect or an optical effect of the higher albedo of highlands 
regions, as observed here. We demonstrate this effect in Figure 10, where a subset of the highlands and mare 
simulations with the same total water abundance exhibit differing band depths. All the spectral mixtures shown 
in Figure 10 have a total water abundance between 245 and 255 ppm, for which the band depth may be expected 
to be constant. However, the highlands spectra have a clearly stronger 3 μm band (Figure 10b), demonstrating this 
albedo effect (Lucey et al., 2021). Because of the non-linearity of reflectance with respect to SSA, this effect is 
not present in SSA (Figure 10c). Since the retrieval error arises from band depth measurement error, a stronger 

Figure 9. Synthetic lunar glass mixture retrieval results. (a) Retrieved total water abundance as a function of input total water abundance for mixtures including 
synthetic orange glass following the conventions of Figures 5 and 6. (b) Histogram of total water error for the synthetic orange glass simulations. μ denotes the 
mean error and σ denotes the standard deviation for the simulations. (c) Retrieval results for the synthetic yellow glass mixtures following the conventions of (a). (d) 
Histogram of total water error for the synthetic yellow glass mixtures.
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band depth results in a more sensitive measurement for the highlands simulations and a lower standard deviation 
for the simulations as a whole.

We found that the mean errors are all negative with a magnitude of between 14 ppm (yellow glass simulations) 
and 39 ppm (highlands simulations). We note that this is a statistical mean error over the 2,000 simulations, not a 
fixed error that applies uniformly to each retrieval. It does however indicate that there is a systematic error involved 
with our fitting methodology. The origin of this systematic error can be understood by looking at the total water 
errors plotted as a function of which interpolated MORB spectrum (see Figure 2) was mixed in to model the 3 μm 
absorption. This is shown in Figure 11a. Here it can be seen the largest negative errors were associated with higher 
values for the interpolated MORB spectrum used. In Figure 10b, we show a comparison of the interpolated MORB 
spectra used to generate the simulated spectra (black lines) to the experimental MORB spectra used for the retrieval 
(colored points). Figure 10c shows the residuals taken from subtracting the interpolated MORB spectra from the 
laboratory spectra. Evident from the residuals is a small band depth mismatch between the interpolated spectra 
(which assumes a perfect linear relationship between SSA and total water content) and the realistically non-linear 
experimental spectra from laboratory measurements (see Figure S7 in Supporting Information S1). Specifically, 
for the 1,522 ppm spectrum, the interpolated band shape is slightly shallower than the experimental band shape 
(negative residual). This band shape mismatch resulted in the least-squares algorithm fitting slightly too little of 
the laboratory 1,522 ppm endmember to the mixture and underestimating the total water content systematically.

This band shape mismatch is not an issue unique to our simulations but is always present to some extent when 
using library or laboratory spectra (or relationships generated from them such as linear ESPAT relationships) to 

Figure 10. (a) Simulated mare and highlands noiseless spectra with total water abundances between 245 and 255 ppm. These lidar reflectance spectra are a subset of 
36 of the 2000 simulated spectra. (b) Spectra from (a) after continuum removal using a convex-hull method. (c) Single scattering albedo spectra from which reflectance 
spectra in (a) and (b) were generated using Equation 1.
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fit remote sensing datasets (passively or actively obtained). In our case the “laboratory” spectra are the experi-
mental MORB spectra, and the “remote sensing” spectra are the spectral mixtures using the interpolated MORB 
spectra (Figure 11b). This same phenomenon of band shape mismatch was observed with the synthetic lunar 
orange and yellow glass mixtures, where the differences between the MORB spectra used for fitting and the 
synthetic glass spectra used to create the mixture led to systematic errors in the retrievals on the order of 10s of 
ppm. The orange glass simulations exhibited a larger mean error than the yellow glass simulations, which is due 
to the band shapes of the synthetic glasses (Figure S8 in Supporting Information S1). The orange glass has a band 
minimum closer to 2.85 μm, while the yellow glass band minimum is near 2.8 μm, giving a better match to the 
MORB glass band minimum used for the retrieval.

We tested whether this systematic error was a function of the band shape difference (as described above) or the 
use of only these four wavelengths for the retrieval. We performed new retrievals on the orange and yellow glass 
spectra using the entire wavelength range between 1 and 4 μm for the least squares fitting procedure (approxi-
mating a passively obtained spectrum at 5 nm wavelength sampling). From these tests we found the band shape 
difference to be the primary cause of the systematic error. For the orange glass simulations, the mean error was 
still −53 ppm when using the entire wavelength range, the exact same as for the four-wavelength method. For the 
yellow glass simulations, the mean error was 0 ppm, an improvement of 11 ppm over the four-wavelength method.

When only considering the reflectance values at the lidar wavelengths the mare and highlands mixtures are quite 
similar in overall spectral shape, with the main differences coming from the absolute reflectance. The mean errors 

Figure 11. (a) Total water error as a function of input glass abundance and the interpolated MORB spectrum (Figure 2) used for each mixture. Each point corresponds 
to one spectrum/simulation. (b) Comparison of interpolated MORB spectra (obtained from a linear ESPAT fit) and laboratory MORB spectra at the same total water 
content for each. The total water content for each laboratory spectrum is given in the legend. (c) Residuals from (b) obtained from subtracting the interpolated MORB 
spectra from the laboratory MORB spectra for each experimental total water value.
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and standard deviations for the two sets of simulations were very similar, differing by less than 5 ppm for the 
mean error and less than 15 ppm for the standard deviation. To convert the lidar measurement precision to band 
depth, we used the largest standard deviation of the retrieval error (52 ppm for the mare simulations) and created 
a new set of spectral mixtures all with 52 ppm total water (see supplementary material for details). Measured band 
depth depends on both the albedo of the regolith (as discussed above and shown in Figure 10) and how the contin-
uum is defined. From these simulations 52 ppm of total water corresponded to a relative 2.8 μm band depth to a 
precision of 0.62% in lidar reflectance (Figure S10 in Supporting Information S1). Comparing this precision with 
the precision of passive spectrometer results is not straightforward, and even direct comparison between varying 
precision metrics present in the literature (ESPAT, band depth, integrated band depth, abundance) is difficult. 
However, this precision is generally in line with or slightly better than the band depth precision reported from 
M 3 results (S. Li & Milliken, 2017; McCord et al., 2011) and the ground-based IRTF (Honniball et al., 2020).

With the largest error of 52 ppm for the mare simulations, variations in the 3 μm band can be distinguished using 
this four wavelength lidar system. Taking the conservative side of recent observations, Honniball et al. (2020) 
report latitudinal and time of day variations of at least 100–200 ppm total water. Measurements with a lidar 
system as described here with a maximum error of 52 ppm would be able to distinguish these diurnal and latitude 
variations and make the first measurements of night-side hydration. If variations of any magnitude are observed, 
it refutes models and processes that lead to no variation of hydration on the lunar surface. This magnitude of error 
is also suitable to test the models of Jones et al. (2018) and Tucker et al. (2019) that show 60–100 ppm variations 
of total water with latitude or lunar local time. S. Li and Milliken (2017) performed analysis of M 3 data showing 
diurnal trends of several hundred ppm, which would be easily observable by this technique. Finally, Sunshine 
et al. (2009) observed changes in the 2.8 μm band depth of 3%–5%, which is achievable by our approach which 
can measure to sub-1% band depth precision. The distribution of total water on the surface of the Moon is of high 
importance when distinguishing between different formation, transport, and retention models. With a maximum 
error of 52 ppm, a lidar system can map the distribution of total water as a function of latitude and time of day 
to about the same precision as M 3 without any need to correct for surface temperature or observing geometry.

5. Conclusions
We have performed reflectance simulations for a multispectral lidar operating in the 3 μm band with the goal 
of assessing its ability to measure diurnal and latitudinal hydration variations on the lunar surface. We created 
spectral mixtures of highlands and mare soils and used hydrated MORB glass spectra to controllably introduce 
a total water signature similar to that observed from orbital and ground-based spectrometers. We then used a 
least-squares algorithm to solve for the endmember spectra and the total water abundance in each spectrum. The 
simulation results indicate that a four-wavelength multispectral lidar with laser wavelengths at 1.5 μm, 2.65 μm, 
2.80 μm, and 3.1 μm could measure the hydration signature with a mean error between −10 and −39 ppm and a 
standard deviation of 52 ppm or less. Simulations of mixtures using hydrated synthetic lunar glasses confirmed 
that the mean error from the retrievals was a result of band shape mismatch between the observed and retrieved 
spectra and was not a result of using only four lidar wavelengths to sample the spectrum. The results from the 
synthetic lunar glass simulations suggest that measuring at multiple points within the 3 μm band helped reduce 
errors due to band shape mismatch. This 52-ppm precision, combined with the ability to measure over the entire 
diurnal cycle and at all locations with a fixed viewing geometry, suggests multispectral lidar observations in this 
wavelength regime would provide a valuable new remote sensing dataset. Constraining lunar hydration over the 
entire diurnal cycle at all latitudes would elucidate mechanisms of OH/H2O generation, migration, and destruc-
tion crucial to understanding the lunar volatile cycle in the past, present, and future.

Data Availability Statement
The endmember reflectance spectra for the Apollo samples are available at the Keck/NASA Reflectance Exper-
iment Laboratory managed by Brown University and hosted by the Planetary Data System Geosciences Node 
(https://pds-speclib.rsl.wustl.edu/). The specific spectra can be found by performing a keyword search and check-
ing the box for “Include Specimen ID in search.” The mature highlands spectrum can be found by searching for 
keyword “62231” and selecting the search result “LR-CMP-098.” The immature highlands spectrum can be found 
by searching for keyword “61221” and selecting the search result “LR-CMP-106.” The mature mare spectrum can 
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be found by searching for keyword “70181” and selecting the search result “LR-CMP-023.” The immature mare 
spectrum can be found by searching for keyword “71061” and selecting the search result “LR-CMP-026.” The 
pyroxene spectrum can be found by searching for keyword “15555” and selecting the search result “LR-CMP-168.” 
The synthetic orange and yellow glass spectra can be found by searching for keywords “OGV-5” and “YG-5,” 
respectively. The MORB glass reflectance spectra included in this paper are from Li (2016); Li and Milliken (2017) 
and Shimizu et al. (2016). The MATLAB code and endmember spectra (regolith and MORB) used to perform the 
simulations and analysis in this work are available at: https://doi.org/10.5281/zenodo.6025377 (Cremons, 2022).
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