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eMethods 1. Details of Our Data Annotation Procedure 

In this study, two expert pathologists from the Department of Pathology and Laboratory 

Medicine at DHMC annotated each whole-slide image by drawing the smallest rectangular 

bounding boxes around characteristic lesions of each class in each image using Aperio 

ImageScope software and its Rectangle Tool. The marked ROIs are then extracted as cropped 

images in JPEG format. 

The bounding box annotation is suitable in this study because this method is able to 

capture the histology patterns without well-defined boundaries, which is suitable for the 

diagnosis of Barrett’s Esophagus based on continuous pathologic patterns. In addition, it reduces 

the annotation cost on our pathologists. In terms of the costs vs. benefits, a polygon-based 

annotation is suitable for dense predictions (e.g., a segmentation task), while a bounding box 

annotation is less demanding and is widely used for classification tasks due to its convenience 

and robustness. 
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eMethods 2. Details of Our Attention-Based Deep Learning Architecture 

 
Grid-based Feature Extraction 

To extract features on a high-resolution image through a CNN, we first divide the input image into smaller 

tiles with no overlap (Figure 1a), and then apply a CNN-based feature extraction on each tile (i.e., grid cell) of an 

r×c grid, with a k feature vector extracted from each cell, resulting in the formation of a structured grid-based feature 

map U of size k×r×c (Figure 1b). This feature map U is a high-level feature expression of a high-resolution image 

while preserving the geometric relationships of local features. While the grid-based approach is robust even if full 

view of a lesion is not in a grid cell due to training with tissue-level geometric augmentation (e.g., random rotation 

and translation), the granularity of analysis can be further controlled by using overlapping tiles at a higher 

computational cost. Whereas existing methodology makes a crop prediction solely based on a crop and later 

aggregates prediction results of crops to build a whole image prediction, our feature structure enables us to directly 

analyze the whole image through an attention mechanism, which we present in the next subsection below. 

In the implementation of CNN architecture for feature extraction, we use the residual neural network 

(ResNet) architecture,1 one of the state-of-the-art CNN models with high performance on the ImageNet Large Scale 

Visual Recognition Competition (ILSVRC) as well as many medical image classification tasks.2-4 Among several 

variants of ResNet models, we choose the pre-activation ResNet-18 model.5 This model achieves a good trade-off 

between performance and GPU memory usage, which is vital for processing high-resolution images. By removing 

the final fully-connected layer before the global pooling layer, the network produces a 512-feature vector (k=512) as 

output for a tile input. 

 
Attention-based Classification 

After feature extraction, attention modules are applied to the feature map with their weights determining 

the importance or value of each tile in diagnostic relevancy (Figure 1c). The importance of each tile is estimated 

based on features extracted from the tile and its neighboring tiles because the adjoining areas of ROIs can also 

present informative characteristics. We compute a set of values, 𝑉 ∈ 𝑅𝑟×𝑐, for a grid. To implement this local 

valuation function in a deep learning framework while maintaining the robustness for an arbitrary size of grid input, 

we utilize 3D convolutional filters of size k×d×d, where 𝑘 corresponds to the size of features and 𝑑 denotes the 

height and width of the kernels. In this framework, applying a 3D convolution kernel to a feature map U generates a 

grid of value estimation 𝑉. We normalize 𝑉 by applying a softmax function to build an attention map 𝛼, where 𝑖 and 

𝑗 are row and column indices: 
 

𝛼(𝑉)𝑖,𝑗 =
𝑒
𝑉𝑖.𝑗

∑ ∑ 𝑒𝑉ℎ.𝑤𝒄
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𝒓
ℎ=1

 ( 1 ) 

 

This attention map shows the relative importance of each tile and thus we compute a whole-slide global feature 

vector using the attention map. Specifically, by treating the attention map 𝛼 as feature weights, the n-th components 

of the final feature vector 𝑧 are computed as follows: 

 

𝑧𝑛 = ∑ ∑ 𝜎(𝑉)ℎ,𝑤 ∙ 𝑈𝑛,ℎ,𝑤
𝑐
𝑤=1

𝑟
ℎ=1  ( 2 ) 

 

The feature vector 𝑧 is subsequently used for whole-slide classification through fully connected layers and a non-

linear activation function, allowing for classification of the entire whole-slide image by optimizing for a label. 

Moreover, the use of multiple attention modules in our framework can potentially capture more local 

patterns for classification, increasing the capacity and robustness of the network, especially for medical images of 

high resolution. As such, we simultaneously apply 𝑚 3D filters that generate 𝑚 attention maps and individually 

populate 𝑚 feature vectors. All feature vectors are concatenated to form a single vector, which is fed to the fully 

connected classifier. 
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eFigure 1. Typical Examples of a Whole-Slide Image and Class-Associated Patches 

 
(a) A typical whole-slide image in our dataset. This particular slide contains three separate tissues and is 
of size 9,440 × 15,340 pixels. (b) Samples from each histology class in our dataset. 
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eFigure 2. Additional Examples of Visualized Attention Maps Attending to 

Adenocarcinoma Class Features 
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eTable. Class Distribution of Images in Our Dataset 

 
 

Number (%) 

Diagnosis Training Validation Test 

Normal 115 (56.1%) 22 (43.1%) 58 (47.2%) 

BE-no-dysplasia 37 (18.0%) 13 (25.5%) 30 (24.4%) 

BE-with-dysplasia 23 (11.2%) 9 (17.6%) 14 (11.4%) 

Adenocarcinoma 30 (14.6%) 7 (13.7%) 21 (17.1%) 
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