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Supersymmetry has been shown to provide a systematic and effective framework for generating classes of
isospectral optical structures featuring perfectly-phase-matched modes, with the exception of one
(fundamental) mode which can be removed. More recently, this approach has been extended to
non-Hermitian scenarios characterized by spatially-modulated distributions of optical loss and gain, in
order to allow the removal of higher-order modes as well. In this paper, we apply this approach to the design
of non-Hermitian optical couplers with higher-order mode-selection functionalities, with potential
applications to mode-division multiplexing in optical links. In particular, we highlight the critical role of the
coupling between non-Hermitian optical waveguides, which generally induces a phase transition to a
complex eigenspectrum, thereby hindering the targeted mode-selection functionality. With the specific
example of an optical coupler that selects the second-order mode of a given waveguide, we illustrate the
aforementioned limitations and propose possible strategies to overcome them, bearing in mind the practical
feasibility of the gain levels required.

T
hough seemingly unrelated, classical optics and quantum mechanics exhibit profound formal analogies1

essentially stemming from the isomorphism between the Helmholtz equation (governing the vector com-
ponents of a monochromatic electromagnetic field) and the time-independent Schrödinger equation

(describing the wavefunction of a massive particle). Since the early development of quantum theories, these
analogies have allowed to share concepts and methods developed in each of the two disciplines, with great mutual
benefits in terms of physical understanding and cross-fertilization of ideas. A remarkable example is the ‘‘photo-
nic crystal’’ concept which, translating to photonics certain paradigms and tools originally developed in quantum
physics, has enabled unprecedented control of the light flow2. In the opposite direction, there is a mounting
interest in translating some recent developments in the field of optical metamaterials to the design of novel
quantum electron devices3.

Recently, new levels of sophistication have been added to the above analogies through the intriguing concepts
of ‘‘supersymmetry’’ (SUSY) and ‘‘parity-time’’ (PT ) symmetry.

More specifically, the SUSY concept was originally exploited to relate fermions and bosons in string models,
and has been subsequently applied to many disciplines, including quantum mechanics, cosmology, as well as
disordered and chaotic systems (see Ref. 4 for an introduction and review). In nonrelativistic quantum mechanics,
SUSY schemes have been exploited to relate and/or systematically generate classes of Hamiltonians that share the
same eigenspectra (with the possible exception of the ground states). More recently, these concepts have been
translated to optics5 in order to synthesize novel effects and devices, with intriguing applications to quantum
cascade lasers6, selective mode filtering7,8 and multiplexing9, and transformation-optics10, as well as photonic
crystals characterized by ‘‘invisible defects’’11 and ‘‘one-way invisibility’’12.

On the other hand, the PT -symmetry concept was originally introduced as a possible extension of quantum
mechanics (see Ref. 13 for an introduction and review). In spite of the conventional axioms, it was shown that
non-Hermitian Hamiltonians characterized by complex potentials such that V(2x) 5 V*(x) (with x and *
denoting a spatial coordinate and the complex conjugate, respectively) could exhibit entirely real eigenspectra.
However, beyond some non-Hermiticity threshold in the potential, an abrupt phase transition from a real
eigenspectrum (i.e., ‘‘exact’’, or ‘‘unbroken’’ phase) to a complex eigenspectrum (i.e., ‘‘broken’’ phase) may occur,
which is typically referred to as spontaneous symmetry breaking13. Although the physical validity of such exten-
sion of quantum mechanics is an as yet unsettled issue and has recently been challenged14, the PT -symmetry
concept has inspired a wealth of studies in the field of non-Hermitian optics, plasmonics and metamaterials15–31,
aimed at exploring the complex interplay of spatially-modulated optical loss and gain in order to achieve
anomalous and otherwise unattainable light-matter interaction effects, including beam switching, unidirectional
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invisibility, and coherent perfect absorption. Quite remarkably, cer-
tain interesting effects may also be attained via mere loss modulation,
in completely passive configurations16,22,29. Also of interest are certain
circuit-based implementations32,33, which rely on amplifiers to pro-
vide the required gain. Finally, worth of mention is also a recentPT -
symmetry-based description of optical instabilities in moving
media34.

Interestingly, the SUSY and PT -symmetry concepts have also
been exploited jointly8,11,12. Of particular interest for what follows
is the study by Miri et al.8, where PT -symmetric (and, more in
general, non-Hermitian) refractive-index profiles were used in con-
junction with SUSY schemes in order to selectively remove certain
guided modes in optical waveguides. In particular, starting from a
PT -symmetric waveguide in the unbroken phase (i.e., with a real
eigenspectrum), a PT -symmetric SUSY partner waveguide was
designed so as to exhibit the same eigenvalue spectrum (and, hence,
an unbroken phase) apart from a selected mode. It was suggested that
this complex extension might relax certain inherent limitations of
standard (Hermitian) SUSY schemes7, thereby allowing the removal
of higher-order guided modes.

These ideas may find disrupting applications to mode division
multiplexing approaches, which offer a new dimension to increase
the capacity of optical links via the capability to manipulate the
multiplicity of modes that can propagate in optical waveguides.
The key feature in such schemes is an efficient mode (de)multiplex-
ing through a judiciously identification of appropriate procedures for
selectively populating and extracting specific modes in an integrated
fashion. Originally put forward in connection with optical fibers35,36,
these schemes have proven especially convenient in connection with
photonic networks-on-chip, since planar optical waveguides can be
fabricated precisely within the chip to accurately control the pro-
pagation of guided modes. Within this framework, multiplexers
based on weakly guiding asymmetrical Y- and Y - junctions37–40, as
well as multimode interferometers41, have been suggested.

Against this background, here we explore the application of SUSY-
inspired schemes8 to the design of non-Hermitian optical couplers
with higher-order mode selection functionalities. Our idea is
schematically illustrated in Fig. 1. Starting from a PT -symmetric
waveguide, and following the approach in Ref. 8, we design a
SUSY-partner waveguide so that the two sets of modes are perfectly

phase-matched with the exception of a higher-order mode (the sec-
ond, in Fig. 1) of the original waveguide. By placing these waveguides
in close proximity, the phase-matched modes periodically exchange
power (via their exponential tails) between the two structures, and
they may be eliminated by suitably inserting a slight loss unbalance in
the SUSY-partner waveguide. After a certain distance, this would
result in the original waveguide supporting only the mode (n 5 2,
in Fig. 1) that had no counterpart in the SUSY partner waveguide.

It is important to stress that our results are not a direct con-
sequence of the study in Ref. 8, which only proposes a scheme for
finding a SUSY-partner of aPT -symmetric waveguide, but does not
consider the actual coupling between the two structures. Our study
here addresses for the first time the coupling between two non-
identical PT -symmetric waveguides, which turns out to play a cru-
cial role in the targeted mode-selection functionality. In particular,
via a numerical analysis, we show that, even if the two isolated wave-
guides are in the unbroken phase (i.e., exhibit real eigenspectra), their
coupling generally induces a spontaneous symmetry breaking, i.e., a
transition to a complex eigenspectrum. Therefore, straightforward
application of the framework in Ref. 8 would not generally yield the
desired mode-selection functionality. We show that these limitations
can be overcome by resorting to more general (modified-SUSY)
classes of isospectral partner waveguides.

Results
Review of SUSY formalism. For the sake of the reader, we compactly
review the essentials of the SUSY formalism that are instrumental for
our subsequent derivations, referring to Refs. 7, 8 for more details. As
schematically illustrated in Fig. 1, we start considering a PT -
symmetric optical waveguide described by a one-dimensional
relative permittivity profile

e1 xð Þ~ebzDe1 xð Þ, ð1Þ

with eb denoting a real-valued constant background value, and De1 a
complex-valued variation satisfying the symmetry condition

De1 {xð Þ~De�1 xð Þ: ð2Þ

Assuming a transverse-electric (TE) polarization (i.e., y-directed
electric field) with exp(2ivt) time-harmonic dependence, and

Figure 1 | Schematic of a SUSY-inspired non-Hermitian mode-selection system (the structures are assumed to be invariant in the y and z directions).
Starting from a PT -symmetric waveguide in the unbroken phase (i.e., real eigenspectrum, with three propagating modes in this example), a SUSY-

partner waveguide is constructed, whose modes are perfectly phase-matched with the original ones with the exception of one modal order (n 5 2 of the

original waveguide, in this example) that is removed [cf. Eqs. (12) and (13)]. By placing in close proximity the two waveguides, the phase-matched modes

couple periodically between the two waveguides, and can be filtered out via a slight loss unbalance in the SUSY-partner waveguide. As a result, the original

waveguide supports only the n 5 2 mode.
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capitalizing on the translational invariance, the electric field
pertaining to a guided mode can be factorized as42

W1 x,zð Þ~U1 xð Þexp ib1zð Þ, ð3Þ

where b1 is the modal propagation constant, and the dependence on
the transverse variable is governed by the Helmholtz equation

d2

dx2
zk2

0e xð Þ{b2
1

� �
U1 xð Þ~0, ð4Þ

where k0 5 v/c0 5 2p/l0 denotes the vacuum wavenumber (with c0

and l0 denoting the corresponding wavespeed and wavelength,
respectively). As in Ref. 8, we assume an unbroken PT -symmetry
(i.e., real eigenspectrum), so that regularity-at-infinity conditions are
in order. The eigenproblem in Eq. (4) can be compactly recast in an
operator form analogous to that utilized in quantum mechanics7,

H1U1~{V1U1, ð5Þ

where

H1~{
d2

dX2
{V1 Xð Þ ð6Þ

is a Hamiltonian operator,

V1 Xð Þ~k2
0w2De1 Xð Þ ð7Þ

plays the role of a PT -symmetric potential, and

V1~ b2
1{k2

0eb
� �

w2 ð8Þ

is the (real-valued) eigenvalue, with X ; x/w denoting a
dimensionless coordinate scaled with respect to a characteristic
dimension w (e.g., the core width) of the waveguide. Following
Miri et al.8, we aim at constructing a SUSY-partner Hamiltonian,

H2~{
d2

dX2
{V2 Xð Þ, ð9Þ

whose eigenvalue spectrum coincides with that in Eq. (6) with the
exception of one modal order, say j, which is removed. It can be
shown (see Ref. 8 for details) that the corresponding potential V2 is
related to the original one in Eq. (7) as follows

V2 Xð Þ~V1 Xð Þ{2
dW jð Þ

dX
Xð Þ, ð10Þ

where W(j) is the ‘‘superpotential’’ associated with the modal order
that needs to be removed,

W jð Þ Xð Þ~{
d

dX
log U jð Þ

1 Xð Þ
h i

, ð11Þ

with U jð Þ
1 denoting the corresponding eigenfunction. Here an

henceforth, the subscripts 1,2 are used to indicate the original and
SUSY-partner configurations, respectively, while the superscript (n)

denotes the n-th modal order pertaining to either configuration. The
eigenspectra of the two configurations are related by8

V
nð Þ

1 ~V
nð Þ

2 ,U nð Þ
2 ~AU nð Þ

1 ,U nð Þ
1 ~BU nð Þ

2 ,nvj, ð12Þ

V
nð Þ

1 ~V
n{1ð Þ

2 ,U n{1ð Þ
2 ~AU nz1ð Þ

1 ,U nz1ð Þ
1 ~BU nð Þ

2 ,nwj, ð13Þ

where

A~
d

dX
zW jð Þ Xð Þ, B~{

d
dX

zW jð Þ Xð Þ: ð14Þ

It can be readily verified8 that the resulting SUSY-partner
Hamiltonian is associated with a PT -symmetric waveguide in the
unbroken phase (i.e., with real eigenspectrum), whose relative
permittivity variation immediately follows from the potential in
Eq. (10),

De2 Xð Þ~ V2 Xð Þ
k2

0w2
: ð15Þ

It is important to stress that the non-Hermitian assumption is
instrumental for achieving the removal of higher-order modes. For
real-valued permittivity profiles (and, hence, potentials), the
logarithmic derivative in Eq. (11) would diverge in the presence of
nodal points (which always appear in higher-order modes), thereby
restricting the applicability of the method to the (nodeless)
fundamental mode only.

Example of mode-selection functionality. Particularizing the above
procedure to our scenario in Fig. 1, we start considering a PT -
symmetric waveguide with step-index profile, as shown in Figs. 2a
and 2b. For such profile, the guided modes can be analytically
expressed in terms of complex-argument trigonometric functions,
yielding a dispersion equation that generally needs to be solved in the
complex plane in order to compute the propagation constants (see
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Figure 2 | (a), (b) Real and imaginary parts, respectively, of the relative-permittivity variation profile De1 [cf. Eq. (1)] pertaining to the original

waveguide. Loss and gain regions are highlighted with different shadings. (c) Intensity profiles (vertically offset for clarity) of the corresponding three

guided modes (with propagation constants given in Table 1), for w 5 2l0.
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Supplementary Information for details). In our specific example,
geometric and constitutive parameters are chosen so that the
waveguide supports three guided modes, all in the unbroken phase
(i.e., real-valued propagation constants), labeled as n 5 1, 2, 3, in
decreasing order of their propagation constants. The intensity
profiles of the modal fields are shown in Fig. 2c (note the absence
of nodal points), and the corresponding propagation constants are
given in Table 1; the phase distributions (not shown for brevity)
exhibit odd symmetry, in accord with the unbroken PT -symmetry
character.

Particularly critical is the choice of the loss/gain level: on one hand,
it should be sufficiently low, so as not to dramatically affect the mode
orthogonality, and to maintain all the modes in the unbroken phase.
On the other hand, an exceedingly small level of non-Hermiticity in
the original waveguide may result in a superpotential [cf. Eq. (11)]
with singularities very close to the real axis, and hence unfeasibly
high levels of gain in the SUSY-partner waveguide. In our studies
below, for simplicity of illustration, we assume eb 5 1, Re(De1) 5 0.1
and jIm(De1)j 5 0.015. While this choice does not directly corre-
spond to a specific material, it allows to illustrate the basic phenom-
enology in terms of moderately-sized structures (and hence
computationally affordable numerical simulations). Nonetheless,
we also discuss the implications of different, more realistic choices
of material parameters.

In order to construct a SUSY-partner waveguide with the same
eigenvalue spectrum but without the n 5 2 eigenvalue, we compute
the superpotential W(2) [cf. Eq. (11)] and, via Eqs. (10) and (15), we
finally obtain the PT -symmetric profile De2 shown in Figs. 3a and
3b. As expected, such structure supports only two modes, whose
intensity profiles and propagation constants readily follow from
Eqs. (12) and (13), and are given in Fig. 3c and Table 1, respectively.

As it can be observed, there is no counterpart of the original n 5 2
modal order.

Paralleling the Hermitian case7, one would intuitively expect that,
by placing the original waveguide and its SUSY-partner in close
proximity, the phase-matched modes would periodically couple
between the two structures, and could be filtered out by introducing
a slight loss unbalance in the SUSY-partner waveguide, as schem-
atically illustrated in Fig. 1. In what follows, we show that this intu-
itive picture is generally not valid, and that there are certain critical
issues that need to be addressed.

Modeling aspects. In the Hermitian case7, the coupling between the
original and SUSY-partner waveguides may be effectively modeled
via the coupled-mode theory (CMT)43, a variational-based semi-
analytical description of the compound structure in terms of the
modes of the isolated waveguides. The standard CMT formulation
is known to fail in the presence of loss and gain, and has been
extended (by judiciously choosing the Lagrangian density and
inner product) to globally PT -symmetric scenarios in the
unbroken phase44. However, to the best of our knowledge, there is
no CMT extension that is known to work in the presence of more
general non-Hermitian scenario like ours, which only exhibits local
PT -symmetry (as the two waveguides are both PT -symmetric, but
different). We are therefore led to study our structures numerically,
via the finite-element-based commercial software COMSOL
Multiphysics (see the Methods section below for more details).

Coupling-induced spontaneous symmetry breaking. We start
considering the compound structure described by the profile

Dec Xð Þ~De1 XzDð ÞzDe2 X{Dð Þ, ð16Þ

i.e., the juxtaposition of the original and SUSY-partner waveguides,
with the normalized distance parameter D controlling their coupling.
Such structure supports five ‘‘supermodes’’, with generally complex-
valued propagation constants. The intensity profiles of the modal
fields, for w 5 2l0 and D 5 1.02, are shown in Fig. 4 (labeled with
index m), and the corresponding propagation constants are given in
Table 2. In particular, the supermodes of order m 5 1 and m 5 2
exhibit complex-conjugate propagation constants, whereas the
remaining ones essentially exhibit real-valued propagation
constants (i.e., imaginary parts that are below our estimated
accuracy threshold). Moreover, by comparison with Table 1 and
with Figs. 2c and 3c, we observe that the supermodes of order m 5
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Figure 3 | (a), (b) Real and imaginary parts, respectively, of the relative-permittivity variation profile De2 pertaining to the SUSY-partner waveguide

[cf. Eq. (15)]. (c) Intensity profiles (vertically offset for clarity) of the corresponding two guided modes (with propagation constants given in Table 1), for
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Table 1 | Scaled propagation constants b(n)/k0 pertaining to the
guided modes of the original waveguide and its SUSY-partner,
for w 5 2l0. Here and henceforth, eb 5 1 is assumed

Mode order b
nð Þ

1

.
k0 b

nð Þ
2

.
k0

n 5 1 1.041 1.041
n 5 2 1.033 1.009
n 5 3 1.009 -
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1 and m 5 2 are essentially hybridizations of the n 5 1 modal orders
of the two separate waveguides, with practically identical (real part
of) the propagation constants, and with shapes that resemble the
combination of these two modes. On the other hand, the
supermode of order m 5 3 resembles in shape and propagation
constant the n 5 2 modal order of the original waveguide, which is
missing in the SUSY-partner waveguide, whereas the supermodes of
order m 5 4 and m 5 5 are essentially hybridizations of the highest-
order modes of the two separate waveguides (n 5 3 in the original,
and n 5 2 in the SUSY-partner).

The above results indicate that, although the two isolated wave-
guides exhibit unbrokenPT -symmetry, the compound structure [cf.
Eq. (16)] undergoes a spontaneous symmetry breaking as an effect of
the coupling. Figure 5 illustrates this effect by showing the imaginary
parts of the propagation constants pertaining to the supermodes of
order m 5 1 and m 5 2, as a function of the coupling distance D and
the non-Hermiticity parameter jIm(De1)j of the original waveguide.
As expected, the imaginary parts asymptotically vanish for large
values of the coupling distance (i.e., weakly-interacting waveguides),
but are always nonzero and oppositely-signed for finite values of D
and jIm(De1)j. This implies that the desired mode-selection func-
tionality cannot be attained with this configuration, as the exponen-
tial amplification of the m 5 1 supermode would eventually
dominate over the coupling effects (see Supplementary Informa-
tion for more details).

Modified-SUSY isospectral partners. The above results indicate
that the coupling between two non-Hermitian optical structures
generally results in a complex eigenspectrum which may hinder
the targeted mode-selection functionality. Nonetheless, this does
not necessarily imply that the underlying idea is doomed to failure.
In fact, we can show that these limitations can be overcome by
generalizing the approach and via judicious exploitation of the
available degrees of freedom. First, we note that the SUSY
transformation in Eq. (10) is only a particular case of a more
general class of Darboux-type transformations45, and that more
general PT -symmetric profiles (e.g., with more than one gain/loss
oscillation) for the original waveguide may be considered. It is
therefore possible to generate classes of alternative isospectral
(apart from a selected mode) partner waveguides whose coupling
effects might be compatible with the desired functionality. In an
even simpler fashion, maintaining the partner structures in the
above example, new isospectral pairs can be easily generated by
applying simple spatial transformations to the profiles. The
possibly simplest example is perhaps a scaling of the transverse
coordinate. For instance, by letting j . 0 a constant, real-valued
scaling factor, it can be readily verified that the modified partner
profiles

De+1j Xð Þ~j2De1 +jXð Þ, De+2j Xð Þ~j2De2 +jXð Þ ð17Þ

exhibit real-valued eigenspectra, with isospectral properties which
differ from those in Eqs. (12) and (13) by a coordinate-scaling. In
general, these profiles are no longer SUSY partners in the
conventional form, and they will be referred to as ‘‘modified-
SUSY’’ isospectral partners. Interestingly, negative values of the
scaling factor are also meaningful and, in view of the PT -
symmetry condition [cf. Eq. (1)], correspond to complex con-
jugation, i.e., spatial inversion of the loss and gain regions; this
introduces a further important degree of freedom. From different
combinations of the above profiles, we can generate new, more
general classes of non-Hermitian couplers. A particularly inte-
resting example is given by the modified compound profile

Dem Xð Þ~Dez
1j Xz

D
j

� �
zDe{

2j X{
D
j

� �

~j2 De1 jXzDð ÞzDe�2 jX{Dð Þ
� 	

,

ð18Þ

for which a negative scaling (i.e., with complex conjugation) is
applied to the SUSY-partner profile. Via a numerical study of the
corresponding supermodes as a function of the scaling parameter, it
can be observed that the intensity distributions are qualitatively
similar to scaled versions of those in Fig. 4 (see Supplementary

Table 2 | Scaled propagation constants (real and imaginary parts)
b(m)/k0 pertaining to the guided supermodes of the compound
profile in Eq. (16), for w 5 2l0 and D 5 1.02. The missing
imaginary parts denote computed values below the numerical
accuracy threshold (,1026)

Supermode order Re [b(m)]/k0 Im [b(m)]/k0

m 5 1 1.041 27.92 3 1024

m 5 2 1.041 7.92 3 1024

m 5 3 1.033 -
m 5 4 1.011 -
m 5 5 1.004 -
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pertaining to the supermodes of order m 5 1 (empty markers) and m 5 2

(full markers) of the compound profile in Eq. (16), for w 5 2l0, (a) as a

function of the normalized distance D (for | Im(De1) | 5 0.015), and (b) as a

function of the non-Hermiticity parameter | Im(De1) | (for D 5 1.02).
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Information for details), while the propagation constants exhibit a
behavior that is markedly different from those in Table 2 and Fig. 5.
This is illustrated in Fig. 6, which shows the real and imaginary parts
of the supermode propagation constants for the scaling parameter
varying within the interval 0.5 # j # 1.5, and for D 5 1.02 and
jIm (De1)j5 0.015. While the real parts only exhibit mild variations,
the supermodes of order m 5 1, m 5 2 and m 5 5 now exhibit
Im[b(m)] . 0 (i.e., exponential attenuation), and the supermodes of
order m 5 3 and m 5 4 exhibit Im[b(m)] , 0 (i.e., exponential
amplification). These conditions are much more favorable for our
targeted mode-selection functionality, as all the undesired super-
modes are exponentially decaying, with the exception of the m 5 4
order (whose amplification is, however, smaller than that associated
with the desired m 5 3 supermode). Interestingly, such conditions
are met irrespective of the value of j, which implies that they
inherently stem from the spatial rearrangement of the gain and
loss region (i.e., complex conjugation) in the SUSY-related partner
waveguide. In fact, it can be verified that the remaining (three)
different combinations of the profiles in Eqs. (17) yield con-
figurations that are comparable with (or worse than) the original
compound profile in Eq. (16).

For more quantitative assessments, we focus on the particular case
of Eq. (18) with j 5 1,

Dem1 Xð Þ~De1 XzDð ÞzDe�2 X{Dð Þ, ð19Þ

which differs from the original in Eq. (16) only by complex-conjuga-
tion of the SUSY-partner profile. For this configuration, henceforth
referred to as SUSY*-based, Fig. 7 illustrates the behavior of the
imaginary parts of the propagation constants as a function of the
coupling distance and the non-Hermiticity parameter, from which
observe that the desirable sign inversion in Im [b(1)] only occurs
beyond a critical non-Hermiticity threshold. It this regime, it can
be shown (see Supplementary Information for details) that, by intro-
ducing a slight loss unbalance in (with n . 0) in the SUSY*-partner
waveguide only, it is possible to drive all supermodes in the expo-
nential-attenuation (i.e., Im[b(m)] . 0) regime, with the exception of
the desired m 5 3 supermode which may instead exhibit exponential
amplification (i.e., Im[b(3)] , 0).

To better understand these effects, Fig. 8 shows a finite-element-
computed intensity field map, and three representative transverse
cuts, pertaining to the SUSY*-based compound structure in Eq.
(19) (assuming w 5 2l0, D 5 1.02, jIm (De1)j 5 0.015, and n 5
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Figure 6 | (a), (b) Real and imaginary parts, respectively, of the scaled propagation constants b(m)/k0 pertaining to the supermodes of order m 5 1 (empty

markers) and m 5 2 (full markers) of the modified compound profile in Eq. (18), as a function of the scaling parameter j, for w 5 2l0, D 5 1.02 and
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(empty markers) and m 5 5 (full markers).
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0.0032) excited with a linear combination of the three modes of the
original waveguide (cf. Fig. 2c), with coefficients chosen so that the
total power density is equally distributed among the modes.
Essentially, the power associated with the n 5 1 and n 5 3 original
modes periodically oscillates between the two waveguides, with beat
lengths that can be roughly estimated (see Supplementary
Information for details) as LB , 335l0 and LB , 70l0, respectively.
Since this power couples substantially with the m 5 1, 2 and m 5 4, 5
supermodes, respectively, it also decays exponentially. Conversely,
the power associated with the n 5 2 original mode does not couple to
the SUSY* partner waveguide, and experiences an exponential amp-
lification. As a result, in qualitatively good accord with our theor-
etical estimate, the input field distribution (Fig. 8b) is gradually
transformed so that at distances comparable with the beat-length
LB , 335l0 it starts resembling the desired n 5 2 modal order
(Fig. 8c). For larger distances (cf. Fig. 8d), only the modal-order n
5 2 effectively survives in the original waveguide, thereby attaining

the desired mode-selection functionality schematically illustrated in
Fig. 1.

Discussion
To sum up, we have addressed the design of SUSY-inspired non-
Hermitian optical couplers with mode-selection functionalities. Our
results highlight the crucial role played by the coupling effects. Such
effects, not considered in previous studies, need to be taken into
account at the design stage since they generally induce a transition
to a complex eigenspectrum which may hinder the targeted function-
ality. With specific reference to a few-mode scenario, we have shown
that this phenomenon may be controlled to a certain extent by
resorting to modified-SUSY partner profiles characterized by suit-
able spatial scaling and/or rearrangement of the gain and loss
regions. For more complicated configurations requiring the selection
of a particularly high-order mode, and hence the tailoring of the
complex propagation constant of larger sets of supermodes, further
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degrees of freedom may be obtained via more complexPT -symmet-
ric profiles as well as more general transformations45. Within this
framework, of particular interest also appear some recently intro-
duced architectures based on optical coupled networks amenable to a
discretized Hamiltonian formulation9. For these structures, it was
hinted in a recent study9 that the selection of higher-order modes
might be in principle addressed without resorting to loss and gain,
although no direct evidence was provided.

Finally, we stress that the specific profiles and parameters in the
our case-study are essentially chosen in order to facilitate the illus-
tration of the physical aspects and phenomena, in line with the main
scope of this prototype theoretical study. This implies that the struc-
ture is not optimized having in mind fabrication-related implica-
tions. Nevertheless, we highlight that the required gain values (a
few thousand cm21 at near infrared wavelengths, in our example)
are in line with the values reported in the literature for semi-
conductor-based devices46,47. To give an idea, power gain coefficients
of 2000–2600 cm21 and of 6.8 ? 104 cm21 have been reported for
InGaAs single and double quantum well laser structures48 and for a
layer of self assembled quantum dots49, respectively. This suggests
that currently available semiconductor-based gain media may be a
viable route for near-infrared implementations. In this case, assum-
ing a more realistic choice b~11 for the background relative per-

mittivity, we can roughly estimate that the dominant beat-length
would be LB , 1100l0.

Alternatively, we could also reduce the (complex) contrast, so as to
tradeoff lower levels of gain with longer structures. For instance, by
reducing the contrast of an order of magnitude, say, De1 5 0.01 6

i0.0015, the dominant beat-length would be LB , 1800l0, and the
required (maximum) power gain coefficient would decrease to levels
,102 cm21, which are compatible with media made of polymeric
matrix and glasses doped with quantum dots or other dopants50–52.
In all cases, and more likely in this latter scenario, tailoring the spatial
concentration of gain ions/dopants can be envisaged as a feasible way
to engineer the required gain profiles along the waveguide transverse
section53.

Methods
All numerical simulations in our analysis rely on the finite-element-based commer-
cial software package COMSOL Multiphysics.

More specifically, for the study of the supermodes of the compound structures
[cf. Eqs. (16), (18) and (19)], we utilize the PDE module to numerically solve the
corresponding one-dimensional eigenvalue problems [cf. Eqs. (5)–(8)]. In these
simulations, we consider a computational domain of width as large as 60l0,
discretized with steps of 0.002l0, and terminated with Neumann-type boundary
conditions.

For the study of the propagation of a given multimode input profile (cf. Fig. 8), we
utilize the RF module. In this case, we consider a 12l0 3 700l0 computational

Figure 8 | SUSY*-based compound profile in Eq. (19), with w 5 2l0, D 5 1.02, | Im(De1) | 5 0.015, and a slight loss unbalance (n 5 0.0032) in the
SUSY*-partner waveguide. (a) Field-intensity map (in false-color scale) assuming the structure excited by a linear combination of the three guided

modes of the original waveguide, with coefficients chosen so that the total power density is equally distributed among the modes. (b), (c), (d) x-cuts

(continuous curves) for z 5 0 (input profile), z 5 335l0, and z 5 700l0, respectively. As a reference, also shown (dashed curves) in panels (c) and (d) is the

normalized intensity profile of the targeted n 5 2 mode of the original waveguide.
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domain, discretized with a maximum mesh-element size of 0.12 l0, and terminated by
an ad-hoc perfectly-matched layer.
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