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Abstract 

Background:  Grain yield is a complex trait that results from interaction between underlying phenotypic traits and 
climatic, edaphic, and biotic variables. In rice, main culm panicle node number (MCPNN; the node number on which 
the panicle is borne) and maximum node production rate (MNPR; the number of leaves that emerge per degree-day 
> 10°C) are primary phenotypic plant traits that have significant positive direct effects on yield-related traits. Degree-
days to heading (DDTH), which has a significant positive effect on grain yield, is influenced by the interaction between 
MCPNN and MNPR. The objective of this research is to assess the phenotypic variation of MCPNN, MNPR, and DDTH in 
a panel of diverse rice accessions, determine regions in the rice genome associated with these traits using genome-
wide association studies (GWAS), and identify putative candidate genes that control these traits.

Results:  Considerable variation was observed for the three traits in a 220-genotype diverse rice population. MCPNN 
ranged from 8.1 to 20.9 nodes in 2018 and from 9.9 to 21.0 nodes in 2019. MNPR ranged from 0.0097 to 0.0214 nodes/
degree day > 10°C in 2018 and from 0.0108 to 0.0193 nodes/degree-day > 10°C in 2019. DDTH ranged from 713 to 
2,345 degree-days > 10°C in 2018 and from 778 to 2,404 degree-days > 10°C in 2019.

Thirteen significant (P < 2.91 x 10-7) trait-single nucleotide polymorphism (SNP) associations were identified using 
the multilocus mixed linear model for GWAS. Significant associations between MCPNN and three SNPs in chromo-
some 2 (S02_12032235, S02_11971745, and S02_12030176) were detected with both the 2018 and best linear unbiased 
prediction (BLUP) datasets. Nine SNPs in chromosome 6 (S06_1970442, S06_2310856, S06_2550351, S06_1968653, 
S06_2296852, S06_1968680, S06_1968681, S06_1970597, and S06_1970602) were significantly associated with MNPR in 
the 2019 dataset. One SNP in chromosome 11 (S11_29358169) was significantly associated with the DDTH in the BLUP 
dataset.

Conclusions:  This study identifies SNP markers that are putatively associated with MCPNN, MNPR, and DDTH. Some 
of these SNPs were located within or near gene models, which identify possible candidate genes involved in these 
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Background
Grain yield is greatly influenced by interactions between 
underlying phenotypic traits and environmental vari-
ables. As a result, yield cannot be directly selected with 
a high degree of certainty. Selection must instead focus 
on traits that impact yield performance. In rice, tiller 
density and panicle mass-related traits, such as spikelet 
density, grain size, and grain number have been linked to 
with grain yield [1]. Genes that are associated with these 
traits have been identified, such as IPA1, MOC1, and 
FC1 for tiller number [2–4], APO1, DEP1, and Gn1a for 
grain number [5–7], GS3 for grain size [8], and WFP for 
panicle branching [9]. DNA markers for some of these 
genes have also been developed for use in trait selection 
[10, 11]. Studies have also shown that genes controlling 
heading date may influence grain yield in rice. QTLs for 
days to heading such as Ghd7, Ghd7.1, Ghd8, Hd1, qHd1, 
and RFT1 have pleiotropic effects on yield-related traits 
in rice [12–19]. Interactions between QTLs for heading 
date also affect rice yield-related traits [20, 21]. Unfortu-
nately, most measured rice phenotypic traits, including 
those mentioned above, are resultant variables that can 
be greatly impacted by several climatic, edaphic, biotic, 
and management variables. The further a resultant trait 
is from determining yield, the greater its variability and 
less its predictive value. In contrast, the closer a trait is 
to a genotype’s underlying yield response, herein referred 
to as a primary phenotypic trait, the less it is impacted by 
other variables and the greater its potential use as a selec-
tion criterion.

Process-based simulation modeling were used by our 
team to identify four primary traits that when com-
bined putatively produce an ultra-high-yielding rice 
ideotype for the Gulf Coast environment in Texas, 
United States; namely, increased node production rate, 
increased main culm panicle node, increased leaf mass, 
and increased spikelet density [22]. These findings 
were verified in a field experiment, where 10 out of 10 
rice genotypes with the combination of all four traits 
yielded more than the check cultivar, while three out 
of four genotypes that did not have all these four traits 
yielded less [23]. Using correlation and path analyses 

from field experiments, Samonte et al. [24] determined 
that main culm panicle node number (MCPNN) and 
maximum node production rate (MNPR) have signifi-
cant direct effects on degree-days to heading (DDTH), 
mass per panicle, panicle density, and stem mass at 
heading and harvest, which are traits that have direct 
effects on grain yield.

Main culm panicle node number has been identi-
fied as an important biomass component since each 
culm node produces a leaf [25]. The average number of 
leaves that appear on the main stem per unit of thermal 
time has been suggested as an important constituent 
trait that explains genotypic variation of early vigor in 
rice [26]. This statistic is the inverse of the maximum 
node production rate when calculation is restricted to 
early season node production data. Similarly, the phyl-
lochron has been used as an index in rice root and 
shoot development studies [27] and is suggested as a 
significant factor in predicting heading in rice [28]. The 
maximum phyllochron value when calculated prior to 
when node production begins to decrease as plant bio-
mass rapidly increases is equal to the maximum node 
production rate when expressed on a heat unit basis.

Genome-wide association studies (GWAS) usually 
analyze diverse populations or individuals from vari-
ous geographical locations or origins, as these have the 
advantage of capturing historical recombination events 
that occur during development [29]. Rice is an ideal 
plant species for GWAS, as its self-pollination and its 
long history of artificial selection have allowed the fix-
ing of favorable alleles with large effects, and the diverse 
environments where rice is planted has resulted in rice 
subpopulations with distinctive combinations of traits 
that are adapted to respective local environments [30].

To understand the genetic basis of primary phe-
notypic traits MCPNN and MNPR, and resultant 
variable DDTH, this study was conducted with the fol-
lowing objectives: 1). to assess the phenotypic diversity 
of these traits in a panel of diverse rice accessions; 2). to 
determine genomic regions with which these traits are 
associated; and 3). to identify candidate genes involved 
with these traits.

traits. Validation of the putative candidate genes through expression and gene editing analyses are necessary to 
confirm their roles in regulating MCPNN, MNPR, and DDTH. Identifying the underlying genetic basis for primary phe-
notypic traits MCPNN and MNPR could lead to the development of fast and efficient approaches for their estimation, 
such as marker-assisted selection and gene editing, which is essential in increasing breeding efficiency and enhanc-
ing grain yield in rice. On the other hand, DDTH is a resultant variable that is highly affected by nitrogen and water 
management, plant density, and several other factors.

Keywords:  Rice, Main culm panicle node number, Maximum node production rate, Degree days to heading, 
Genome-wide association study
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Results
Phenotypic Variation in MCPNN, MNPR, and DDTH
Wide variation was observed among the three traits 
(Table  1). MCPNN ranged from 8.1 to 20.9 nodes in 
2018 and from 9.9 to 21.0 nodes in 2019. MNPR ranged 
from 0.0097 to 0.0214 nodes/degree-day > 10°C in 2018 
and from 0.0108 to 0.0193 nodes/degree-day > 10°C in 
2019. DDTH ranged from 713 to 2,345 degree-days > 
10°C in 2018 and from 778 to 2,404 degree-days > 10°C 
in 2019. Presidio, one of the check cultivars, had an aver-
age of 14.1 nodes on the main culm, 0.0156 nodes-degree 
day-1, and heading at 1300 degree-days in 2018. In 2019, 
Presidio had an average of 14.6 nodes on the main culm, 
0.0144 nodes-degree day-1, and heading at 1384 degree-
days. Some of the rice accessions were consistently in the 
tails of the trait distributions. The accession C4-63 had 
the highest MCPNN in 2018 and 2019, while accessions 
Csornuj and Short Grain were the earliest and latest, 
respectively, in terms of DDTH in both years. Broad-
sense heritability (H2) estimates were high for MCPNN 
(0.83 in 2018 and 0.90 in 2019) and DDTH (0.99 in 2018 
and 0.98 in 2019), while MNPR had low to moderate H2 
estimates (0.20 in 2018 and 0.60 in 2019).

The three traits followed a normal or slightly posi-
tively skewed distribution (Fig.  1). Based on the BLUPs 
estimated from the two-years’ data, MCPNN and DDTH 
had a very strong, positive correlation (Pearson correla-
tion coefficient (r) = 0.85), MCPNN and MNPR had a 
moderately positive correlation (r = 0.34), and MNPR 
and DDTH had a weak positive correlation (r = 0.097) 
(Fig. 1). While frequency distribution trends for MCPNN 
and DDTH were similar in both years, MNPR had a 
slightly negatively-skewed distribution in 2018 and a 
normal distribution in 2019. Some variations in correla-
tion coefficients of the three traits were observed in 2018 
and 2019 (Supplementary Figure 1). MCPNN and MNPR 
had moderately positive correlations in 2018 (r = 0.29) 
and 2019 (r = 0.32), MCPNN and DDTH had a strong 

positive correlation in 2018 (r = 0.78) and a moderately 
positive correlation in 2019 (r = 0.34). MNPR and DDTH 
had a weak positive correlation in 2018 (r = 0.039) and a 
weak negative correlation in 2019 (r = -0.028). Analysis 
of variance (ANOVA) showed significant variation due to 
year and genotype effects for MCPNN and DDTH. For 
MNPR, significant variation due to year but no significant 
effect for genotype (P = 0.1509) was observed (Table 2). 
A response surface analysis shows both MCPNN and 
MNPR have highly significant effects (P < 0.0001) 
on DDTH [DDTH = 1475.34 + (147.92*MCPNN) - 
(148512.8*MNPR)], explaining 77.54% of the variation 
(Figure 2).

Genome‑wide Association Studies and Identification 
of Candidate Genes
GWAS was conducted in the 220 accessions with both 
genotype and phenotype data. Because there was a sig-
nificant effect of year on all three traits (Table 2), GWAS 
were conducted separately for the 2018 and 2019 data, as 
well as the BLUP estimates based on the data from both 
years. Principal component analysis (PCA) was used to 
determine population structure. The top four principal 
components (PCs) explained 56.7% of the genetic varia-
tion, wherein the first PC (38.9% of the variation) divided 
most of the indicas and japonicas into separate groups, 
while the second PC (12.0% of the variation) further sep-
arated the japonica group into temperate japonicas and 
tropical japonicas. The admixed accessions can be found 
in between these three major subgroups (Fig. 3).

Genome-wide linkage disequilibrium (LD) decay was 
estimated to be at ~150,000 bp. The results are within the 
range estimated in previous findings, ranged from close 
to 100,000 bp to over 200,000 bp [31–34].

Thirteen significant trait-SNP associations were iden-
tified (Table 3 and Figure 4). Using the genome browser 
in RAP-DB (Nipponbare IRGSP Build 5), genes or gene 
models that include or are within 100 kilobase (kb) 

Table 1  Summary statistics and broad sense heritability (H2) estimates  for main culm panicle node number (MCPNN), maximum 
node production rate (MNPR), and degree days to heading (DDTH) in 220 rice accessions evaluated at Texas A&M AgriLife Research at 
Beaumont in 2018 and 2019.

a Four outliers were removed

Trait 2018 2019

Mean Standard 
Deviation

Min Max Presidio 
(Check)

H2 Mean Standard 
Deviation

Min Max Presidio (Check) H2

MCPNN (nodes) 14.2 1.9 8.1 20.9 14.1 0.83 15.2 1.8 9.9 21.0 14.6 0.90

MNPRa (nodes/
degree-
day>10°C)

0.0164 0.0023 0.0097 0.0214 0.0156 0.20 0.0151 0.0015 0.0108 0.0193 0.0144 0.60

DDTH (degree-
day>10°C)

1,399 273 713 2,345 1,300 0.99 1,453 259 778 2,404 1,384 0.98
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pairs to the SNPs declared to have significant associa-
tions with MCPNN, MNPR, and DDTH were identified 
(Supplementary Table  2). A total of 19 candidate genes 
were found to be in LD with the three SNPs significantly 
associated with MCPNN, 101 with the nine SNPs sig-
nificantly associated with MNPR, and 21 with the SNP 
significantly-associated with DDTH.

Significant association (P < 2.91 x 10-7, after mul-
tiple testing) between MCPNN and three SNPs in 
chromosome 2 (S02_12032235, S02_11971745, and 
S02_12030176) were detected in the 2018 and BLUP 
datasets. The SNP S02_12030176 is within the Oryza 
sativa nicotianamine aminotransferase 1 (OsNAAT1) 
gene [35], in chromosome 2. The closest gene model to 
the SNP S02_11971745 is Os02g0305600, described as a 
spectrin repeat-containing protein. Nine SNPs in chro-
mosome 6 (S06_1970442, S06_2310856, S06_2550351, 
S06_1968653, S06_2296852, S06_1968680, S06_1968681, 
S06_1970597, and S06_1970602) were significantly 
associated with MNPR in the 2019 dataset. The SNP 
S06_2296852 is within the SULTR-like phosphorus 

distribution transporter (SPDT) gene, also known as 
Oryza sativa sulphate transporter 3;4 (OsSULTR3;4) 
[36, 37]. Three other SNPs associated with MNPR, 
S06_1970442, S06_1970597, and S06_1970602, are close 
to the candidate gene Os06g0137100 in the RAP-DP 
genome browser. The counterpart of Os06g0137100 in the 
MSU-RGAP genome browser [38], LOC_Os06g04560, is 
described as a kinesin motor domain-containing protein. 
In addition, candidate genes related to plant develop-
ment, cell division and elongation, as well as protein and 
carbohydrate metabolism, were located within 100,000 
bp of the identified SNPs for MCPNN and MNPR. One 
SNP in chromosome 11 (S11_29358169) was significantly 
associated with DDTH in the BLUP dataset. The closest 
candidate genes are Os11g0672300, which is described as 
being similar to a kinase domain-containing protein, and 
Os11g0672400, a calponin homology domain containing 
protein in chromosome 11.

Fig. 1  Frequency distribution and pairwise correlations of main culm panicle node number (MCPNN), maximum node production rate (MNPR), and 
degree days to heading (DDTH). The diagonal shows the histograms of the three traits. Shown below the diagonal are pairwise scatterplots. Shown 
above the diagonal are the pairwise Pearson correlation coefficients among MCPNN, MNPR, and DDTH. ***Significant at p = 0.001
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Discussion
Phenotypic Analyses
Phenotyping MCPNN and MNPR is relatively time-con-
suming, compared to the typical measuring of resultant 
variables such as plant height, days to heading, days to 
peak flowering, and other secondary traits measured in 
most rice breeding programs. However, to state measur-
ing a new trait is “time-consuming” is a value judgement 
based on a paradigm that assumes shallow phenotyping 
of large numbers of genotypes is the most efficient way 
to eliminate lines because they are suspected to result in 
poor yield performance. It might in fact be more cost-
effective to spend more time measuring traits that have a 
greater influence on yield performance and possibly even 
evaluate fewer genotypes and thereby decrease the aver-
age amount of effort required to release a higher yield-
ing genotype. A major goal of the current research is to 
identify relationships between the measured traits, and 
to develop markers to more efficiently select these traits.

There is wide variation in MCPNN, MNPR, and DDTH 
across the rice accessions. The standard deviations for 

MCPNN and MNPR are comparable to those of Samonte 
et  al. [24], while that of DDTH was higher. The ranges 
for MNPR and the inverse of development rate observed 
by Rebolledo et al. [39], were similar to the estimates we 
obtained.

Broad-sense heritability (H2) estimates for the three 
traits ranged from 0.20 for MNPR (2018) to 0.99 for 
DDTH (2019). Modifying the planting method in 2019 
(i.e., using jiffy pots and not thinning the plants before 
observation as was conducted in 2018) may have reduced 
plant stress, which may have improved estimation of 
the genotype effects, and thereby improved the H2 esti-
mates for MNPR in 2019. However, because plant den-
sity impacts plant to plant competition, not thinning the 
plants could have also contributed to the observed dif-
ferences comparing the years. The timing of N fertiliza-
tion may have also affected the heritability estimated for 
MNPR, where two splits were done in 2018 (at plant-
ing and six weeks after planting), and three splits were 
done in 2019 (at planting, two weeks after planting, and 
11 weeks after planting). Khing et al. [40] observed that 

Table 2  Analyses of variance for main culm panicle node number, maximum node production rate, and degree-days to heading of 
rice accessions grown in Texas A&M AgriLife Research at Beaumont in 2018 and 2019.

Levels of significance: *** P < 0.001, **P < 0.01, * P < 0.05, .P < 0.1

Trait: Main Culm Panicle Node Number
  Source DF Type III SS Mean Square F Value Pr > F
    Year 1 2.656059 2.656059 5.90 0.0218 *

    Block (Year) 6 5.077442 0.846240 1.88 0.1198

    Checks 4 3.778924 0.944731 2.10 0.1077

    Genotype 214 1295.081128 6.051781 13.44 <.0001 ***

    Year x Genotype 207 173.741584 0.839331 1.86 0.0261 *

    Error 28 12.608589 0.450307

    Total 461 1684.728905

Trait: Maximum Node Production Rate
  Source DF Type III SS Mean Square F Value Pr > F
    Year 1 0.00002941 0.00002941 10.84 0.0027 **

    Block (Year) 6 0.00001973 0.00000329 1.21 0.3297

    Checks 4 0.00000872 0.00000218 0.80 0.5333

    Genotype 210 0.00079188 0.00000377 1.39 0.1509

    Year x Genotype 204 0.00052008 0.00000255 0.94 0.6149

    Error 28 0.00007598 0.00000271

    Total 454 0.00190784

Trait: Degree Days to Heading
  Source DF Type III SS Mean Square F Value Pr > F
    Year 1 437981.18 437981.18 17.32 0.0003 **

    Block (Year) 6 90717.39 15119.56 0.60 0.7295

    Checks 4 132045.45 33011.36 1.31 0.2921

    Genotype 214 21341216.62 99725.31 3.94 <.0001 ***

    Year x Genotype 209 8100193.05 38756.90 1.53 0.0895 .

    Error 28 708081.06 25288.61

    Total 463 30981213.13
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phyllochrons are shortened (i.e., faster node production 
rate) with higher N rates or wider spacing. Martinez-
Eixarch et  al. [41] also reported that plant density and 
the timing of N fertilization, in combination with water 
management, affect the rate of leaf emergence. The total 
N fertilizer applied in both years were similar, hence, 
MCPNN and DDTH, which are considered as end-point 
traits, had consistently high heritability estimates.

The correlations between MCPNN, MNPR, and DDTH 
in the BLUP estimates from this study confirm the find-
ings of Samonte et  al. [24]. The pairwise correlation 
coefficients among MCPNN and MNPR (r = 0.34 in 
this study, and r = 0.35 in [24]) as well as MCPNN and 
DDTH (r = 0.85 in this study, and r = 0.86 [24]) were 
very close. The correlation between MNPR and DDTH 
was positive but low in both studies.

Fig. 2  Perspective (a) and contour (b) plots showing the relationships of main culm panicle node number (MCPNN) and maximum node 
production rate (MNPR) on degree days to heading (DDTH) based on response surface methodology. The linear model is shown below the figure.
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Samonte et al.[24] reported MCPNN and MNPR have 
significant positive and negative direct effects, respec-
tively, on DDTH based on path analysis. In this study, 
response surface regression shows both MCPNN and 
MNPR have highly significant effects on DDTH (R2 = 
0.78), and follow the same trend as reported by Samonte 
et  al. [24]. The high degree of explained variability sug-
gests the model can accurately predict DDTH relatively 
early in a genotype’s development.

Genome‑Wide Association Studies and Identification 
of Candidate Genes Related to MCPNN and MNPR
SNP-trait associations for MCPNN, MNPR, and DDTH 
were determined using the multi-locus mixed model 

approach, which included PCA for population struc-
ture and kinship matrix to minimize false associations 
and stepwise linear mixed-model regression with sig-
nificantly-associated markers as cofactors. MCPNN 
was significantly associated with three SNPs in chro-
mosome 2, which were detected in the BLUP dataset, 
which uses the data from both 2018 and 2019. In the 
individual experiments, only S02_12032235 is signifi-
cantly associated with MCPNN. In the 2019 dataset, 
while no significantly associated SNPs were detected, 
these three SNPs were in the top 20, with the peak at 
S02_12032235. The OsNAAT1 gene harbors the SNP 
S02_12030176 and is in high linkage disequilibrium 
(r2 = 0.91) with S02_12032235. OsNAAT1 plays a role 

Fig. 3  Principal component analysis of 220 diverse rice accessions used in genome-wide association studies (GWAS) for main culm panicle node 
number (MCPNN), maximum node production rate (MNPR), and degree days to heading (DDTH), showing (a) PC1 by PC2, and (b) PC2 by PC4. IR64, 
Nipponbare, and Presidio are labeled as representatives of the indica, temperate japonica (TEJ), and tropical japonica (TRJ) subgroups, respectively.
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in iron (Fe) homeostasis in rice, where it is involved in 
Fe acquisition from the soil and transport within the 
plant [35, 42]. OsNAAT1 also flanks a QTL for grain 
yield in chromosome 2 in rice [43]. The gene model 
Os02g0305600 is described as a spectrin repeat-con-
taining protein and is 983 kb from S02_11971745. 
Spectrin-like proteins have been detected in the plant 
nuclei and plasma membranes and are suggested to 
perform multiple roles, such as stability and ion trans-
port [44–46].

MNPR is significantly associated with S06_2296852, 
which lies within the SPDT (OsSULTR3;4) gene. SPDT is 
found to be highly expressed in node 1, which connects 
the panicle to the flag leaf, and serves as a switch to dis-
tribute phosphorus to the grains [37]. Three other SNPs 
significantly associated with MNPR, S06_1970442, 
S06_1970597, and S06_1970602 are in high link-
age disequilibrium (r2 = 0.73) with the gene model 
Os06g0137100. This gene model is similar to a pre-
dicted kinesin-like protein. Kinesins are microtubule 
motor proteins involved in cell division and growth. 
In rice, genes encoding kinesins confer traits related to 
plant height, grain length, and shape, and pollen partial 
sterility [47–53]. The gene model Os06g0137100 is also 
associated with grain number based on GWAS con-
ducted by Huang et al. [33].

Some of the candidate genes within 100 kb of SNPs 
(Supplementary Table  2) are significantly associ-
ated with MCPNN and MNPR and are of interest as 
these have roles in plant development, cell division and 

elongation, as well as protein and carbohydrate metabo-
lism. For instance, the gene models Os02g0305950 and 
Os06g0137400, which are close to the significantly-
associated SNPs for MCPNN and MNPR, respectively, 
are putative small auxin-up RNA (SAUR)  genes. SAUR 
genes encode auxin-responsive proteins that are primar-
ily expressed in elongating tissues, and may play a role in 
regulating cell elongation [54].

S11_29358169, a SNP significantly associated with 
DDTH in the BLUP dataset, is in linkage disequilib-
rium (r2 = 0.96) with the gene model Os11g0672300, 
which is similar to a protein kinase domain-contain-
ing protein but needs to be characterized further to 
determine its specific function. In plants, the protein 
kinase superfamily is very broad and diverse, with 
roles in metabolic signaling, stress response, cell divi-
sion regulation, and plant-specific functions, such as 
flowering [55].

Genes, QTLs, and chromosomal regions identified 
to be associated with MCPNN, MNPR, and DDTH in 
the literature were checked to determine if they overlap 
with the SNPs identified in this study. While none of the 
SNPs are co-located with reported or identified genes, 
some are close to previously reported QTL associated 
with heading date, such as Hd17, which is located at a 2.2 
Mb region in chromosome 6 [56] and qHD11.3, located 
in a 28.7 Mb region in chromosome 11 [57]. Heuer et al. 
[58] reported that ZmMADS3 in maize is involved in 
node number. In this study, there is no significant SNP-
trait association in the region where the closest homolog 

Table 3  SNPs detected by GWAS using the multilocus mixed linear model (MLMM) as significantly associated with main culm panicle 
node number (MCPNN), maximum node production rate (MNPR), and degree days to heading (DDTH).

Trait SNP Marker SNP Marker Location Dataset R2 P-value Effect

Chromosome Position
(base pairs)

MCPNN (nodes) S02_12032235 2 12,032,235 2018 0.13 1.97 x 10-7 -1.3

S02_12032235 2 12,032,235 BLUP 0.15 1.49 x 10-7 -1.1

S02_11971745 2 11,971,745 BLUP 0.15 1.29 x 10-7 1.0

S02_12030176 2 12,030,176 BLUP 0.15 1.74 x 10-7 -1.0

MNPR (nodes/ degree day > 10°C) S06_1970442 6 1,970,442 2019 0.16 1.11 x 10-7 0.0013

S06_2310856 6 2,310,856 2019 0.15 1.69 x 10-7 0.0012

S06_2550351 6 2,550,351 2019 0.15 1.78 x 10-7 0.0012

S06_1968653 6 1,968,653 2019 0.15 2.02 x 10-7 0.0012

S06_2296852 6 2,296,852 2019 0.15 2.18 x 10-7 0.0013

S06_1968680 6 1,968,680 2019 0.15 2.89 x 10-7 -0.0011

S06_1968681 6 1,968,681 2019 0.15 2.89 x 10-7 -0.0011

S06_1970597 6 1,970,597 2019 0.15 2.89 x 10-7 -0.0011

S06_1970602 6 1,970,602 2019 0.15 2.89 x 10-7 0.0011

DDTH (degree day > 10°C) S11_29358169 11 29,358,169 BLUP 0.14 1.94 x 10-7 -154
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Fig. 4  Manhattan and quantile-quantile (Q-Q) plots showing significant SNP-trait associations for (a-b) main culm panicle node number (MCPNN), 
(c) maximum node production rate (MNPR), and (d) degree days to heading (DDTH), detected using multilocus mixed linear model (MLMM). The 
red line denotes the genome-wide significance threshold (P = 2.91 x 10-7), and the blue line denotes the suggestive threshold (P = 5.83 x 10-6).
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of ZmMADS3 in rice, OsMADS15 in chromosome 7, is 
located. For MNPR, two regions in Chromosome 7 are 
significantly associated with node development rate [39], 
while QTLs for phyllochron have been mapped in chro-
mosomes 1, 2, 4, 9, 10, and 11 [59, 60]. However, these 
regions do not contain any SNPs that are significantly 
associated with MNPR in this study.

Conclusions
SNP markers significantly associated with MCPNN, 
MNPR, and DDTH were detected by association analy-
ses using the multilocus linear mixed model. The identi-
fied SNPs are located within or in LD with gene models, 
which could be potential candidate genes for these traits. 
Further validation of the candidate genes through expres-
sion and gene editing analyses are needed to confirm if 
they are the causal agents for these traits. Identifying the 
genes regulating MCPNN and MNPR could lead to the 
development of fast and efficient approaches for their 
estimation, such as marker-assisted breeding or gene 
editing. Functional markers can be designed and could be 
used to select for early-generation breeding lines possess-
ing higher MCPNN and faster MNPR. Gene editing can 
also be applied to alter the MCPNN and MNPR of a rice 
variety in order to achieve optimum yields. Understand-
ing the underlying genetic basis for MCPNN, MNPR is 
an essential step in increasing breeding efficiency for 
enhancing grain yield in rice.

Methods
Plant Materials
A total of 220 rice accessions consisting of a diverse set of 
indica and japonica cultivars, landraces, inbred lines, and 
hybrids (Supplementary Table 1) were selected for their 
variation in degree-days to heading. These were planted 
at the Texas A&M AgriLife Research Center (Beaumont) 
in 2018 and 2019.

Field Experiment Set‑up
In 2018, the entries were drill-seeded on April 19 in 
three-row plots that were 2.44 m long, with rows spaced 
0.25 m apart, using a randomized complete block design 
with 4 replications. A one-meter segment in the middle 
row of each plot was marked with flags and thinned to 15 
plants, for data collection. Urea was applied in two splits: 
108.4 kg ha-1 N at planting and 128.9 kg ha-1 N at 6 weeks 
after planting.

In 2019, the entries were sown on April 16-17 in three-
row plots that were 2.44 m long, with rows spaced 0.28 m 
apart. The slight change in row spacing for the two years 
is due to the different planters used in each year. The side 
rows of each plot were mechanically drill-seeded, and the 
middle rows were manually planted at the same time as 

the drill-seeding. The middle row of each plot was cre-
ated by digging a 2.44-m long furrow (approximately 6 
cm deep), and a strip of eighteen 5.7 cm square x 5.7 cm 
deep biodegradable Jiffy pots (Jiffy International; www.​
jiffy​group.​com) each with one seed placed in the center 
of each row. The Jiffy pots were marked with flags, while 
the ends of the middle rows were seeded with the des-
ignated entry using a manual seeder. This was done to 
eliminate thinning the plants before data collection. The 
field was flash-flooded on April 17, after the drill-seeding 
and manual planting were completed for all accessions. 
Fifteen of the 18 plants were used for data collection, 
with the remaining three plants as backup. Urea was 
applied in 3 splits for a more efficient distribution of N: 
59.4 kg N ha-1 at planting (17 April 2019), 128.9 kg N ha-1 
at two weeks after planting (23 May 2019), and 47.1 kg N 
ha-1 at 11 weeks after planting (3 July 2019).

Phenotyping for MCPNN, MNPR, and DDTH
Data collection for MNPR and MCPNN are described 
in Appendix 1. The emergence of leaves on the main 
culms of 15 plants within a designated one-meter length 
was recorded every week, starting at the third leaf stage. 
MNPR was estimated through regression of the aver-
age leaf emergence data during the 3rd to 7th leaf stages 
with cumulative degree-days > 10℃ from planting, with 
degree-day accumulation estimated from ambient tem-
perature recorded within 0.4 km of the research site. In 
2018, MNPR was estimated using leaf count data start-
ing at two weeks after thinning to minimize the effects of 
stress caused by thinning, while in 2019, thinning was not 
necessary because the plants were already spaced with 
the use of the Jiffy pots. Leaf counting was continued 
until heading, where MCPNN was estimated as the num-
ber of leaves on the main culm plus one for its panicle 
[24]. Days to 50% heading for each entry was estimated 
to occur when 50% of the panicles have exerted from till-
ers and used to estimate degree-days from sowing to 50% 
heading.

Phenotypic Data Analyses
The combined analysis of both years of data was con-
ducted using SAS Version 9.4 (SAS 2016) for Windows. 
Fixed and random effects were estimated using PROC 
MIXED in SAS software, and these were used to esti-
mate best linear unbiased predictions (BLUPs) in R ver-
sion 3.6.1 [61]. Analyses of variance and broad-sense 
heritability for the measured variables for each year were 
estimated using the ’augmentedRCBD’ package [62] in R, 
with Pearson’s pairwise correlation coefficients also cal-
culated using R. The relationships between MCPNN and 
MNPR and the response variable DDTH was estimated 
using the ’rsm’ package [63] in R.

http://www.jiffygroup.com
http://www.jiffygroup.com
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Marker Data
DNA was extracted from leaf tissues of 220 rice acces-
sions (Supplementary Table  1), collected from the field 
at the Texas A&M AgriLife Research Center (Beaumont) 
in July 2018. Extraction was performed using standard 
protocol for leaf tissue with the Thermo Fisher Scien-
tific KingFisher Flex (Thermo Fisher Scientific, Waltham, 
MA, USA). The DNA samples were sent to the Texas 
A&M AgriLife Genomics and Bioinformatics Service 
(TxGen) at College Station for genotyping-by-sequencing 
(GBS), with 1X coverage. The reference genome used was 
Oryza sativa ssp. japonica cultivar Nipponbare, Interna-
tional Rice Genome Sequencing Project (IRGSP) Build 5 
[38]. The raw genotype data was filtered, selecting single 
nucleotide polymorphisms (SNPs) having less than 50% 
missing data and minimum allele frequency (MAF) >5%. 
After initial filtering, imputation was conducted using 
BEAGLE V4.0 [64] in 1,075,302 SNP markers. The gen-
otype data was filtered a second time after imputation 
using TASSEL 5.2.61 [65], and 854,832 SNPs were used in 
the analyses after removing SNPs with less than 5% MAF 
and more than 5% missing data. Four genotypes were 
eliminated from the analysis as outliers due to the ratio 
of 2018 to 2019 MNPR rates being greater than the 75th 
quartile or less than the 25th quartile by more than 1.5 x 
(75th quartile - 25th quartile) [66].

Genome‑wide Association Studies
GWAS for MCPNN, MNPR, and DDTH were conducted 
using the phenotype data for 2018 and 2019 separately, as 
well as the BLUPs estimated from data collected in both 
years. Factors that may cause false trait-SNP associations 
(i.e., population structure (Q) and genetic relatedness 
(K)) were controlled using principal component analysis 
(PCA) and kinship matrix, respectively. The most prob-
able number of subpopulations was determined by plot-
ting the number of principal components (PC) against 
the variance explained by the PCs, and the optimum 
number of PCs was selected when the decrease in vari-
ance has reached a plateau. In this study, the total num-
ber of PCs used to account for population structure was 
four. The VanRaden kinship algorithm [67] was used to 
construct a kinship matrix. Both PCA and kinship matri-
ces were generated using the R package Genomic Asso-
ciation and Prediction Integrated Tool (GAPIT), Version 
3 [68, 69]. Linkage disequilibrium decay was used to 
estimate the appropriate resolution for association map-
ping, with a sliding window of 50 markers calculated 
using TASSEL 5.2.61. Mean r2 was then computed every 
10,000 base pairs (bp), with linkage disequilibrium decay 
determined as the distance in bp wherein the average r2 
decreased to half its maximum value.

Association analyses were conducted using the multilo-
cus mixed model (MLMM) [70] implemented in GAPIT 
Version 3. MLMM uses stepwise linear mixed-model 
regression that includes significantly associated markers 
as cofactors, with Q and K to account for false positives. 
Multiple testing was accounted for using the statisti-
cal program ’simpleM’ [71, 72] implemented in R, which 
calculates the number of independent tests (Meff_G). 
The Meff_G was used to compute for the multiple test-
ing threshold in a similar way as the Bonferroni correc-
tion method in which the significant threshold (α= 0.05) 
was divided by the Meff_G or P = α/ Meff_G. For this study, 
the multiple testing threshold to declare significant asso-
ciation was set to P = 2.91 x 10-7. Manhattan and quan-
tile-quantile (Q-Q) plots were constructed using the R 
package ’qqman’ [73]. Identification of genes that contain 
the significant SNPs was achieved using the Nipponbare 
IRGSP Build 5 genome browser (https://​rapdb.​dna.​affrc.​
go.​jp/​viewer/​gbrow​se/​build5/) in the Rice Annotation 
Project Database (RAP-DB) [74] and Michigan State Uni-
versity (MSU) Rice Genome Annotation Project (RGAP) 
genome browser (http://​rice.​plant​biolo​gy.​msu.​edu/​cgi-​
bin/​gbrow​se/​rice/) [38].
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