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Reconfigurable Architecture for 
Multi-lead ECG Signal Compression 
with High-frequency Noise 
Reduction
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Electrocardiogram (ECG) is a record of the heart’s electrical activity over a specified period, and it is the 
most popular noninvasive diagnostic test to identify several cardiac diseases. It is an integral part of a 
typical eHealth system, where the ECG signals are often needed to be compressed for long term data 
recording and remote transmission. Reconfigurable architecture offers high-speed parallel computation 
unit, particularly the Field Programmable Gate Array (FPGA) along with adaptable software features. 
Hence, this type of design is suitable for multi-channel signal processing units like ECGs, which usually 
require precise real-time computation. This paper presents a reconfigurable signal processing unit 
which is implemented in ZedBoard- a development board for Xilinx Zynq −7000 SoC. The compression 
algorithm is based on Fast Fourier Transformation. The implemented system can work in real-time and 
achieve a maximum 90% compression rate without any significant signal distortion (i.e., less than 9% 
normalized percentage of root-mean-square deviation). This compression rate is 5% higher than the 
state-of-the-art hardware implementation. Additionally, this algorithm has an inherent capability of 
high-frequency noise reduction, which makes it unique in this field. The confirmatory analysis is done 
using six databases from the PhysioNet databank to compare and validate the effectiveness of the 
proposed system.

The integrated use of information technology and electronic communication in the health sector is recognized as 
an eHealth system1. It is a technical platform that comprises diagnostic tools and microcomputer units. eHealth 
is especially a vital resource for the health care of the people from remote regions and developing countries as 
it helps the patients to consult specialist physicians using telecommunications. Even in developed countries, 
electronic health records are being kept for follow-up treatment. Therefore, electronic communication and data 
recording are the fundamental system components of an eHealth system.

Cardiovascular disease (CVD) is a generic term to indicate the disorders related to heart and blood vessels. 
According to the World Health Organization (WHO) CVDs are responsible for 31% of all worldwide deaths, 
taking approximately 18 million lives per year2. Regular monitoring of a patient’s heart condition is the primary 
requirement for diagnosing the underlying cardiac diseases. A record of the electrical potential of heart muscle 
depolarization over a specified time is called the Electrocardiogram (ECG or EKG), and this is measured by 
placing multiple electrode pads (sensors3–5) on specified places of the chest. These electrodes are connected to an 
ECG machine for the signal processing and recording. The electrocardiogram is the most popular noninvasive 
diagnostic test to determine cardiac health6. It had been used as a diagnostic test in clinical medicine for more 
than 70 years7. At present, ECG is one of the routine tests for any complete medical evaluation, and it is an indis-
pensable part of a modern eHealth system8. It should be noted that, while recording ECG, the measurement is 
done by determining the potential difference between predefined locations on the body surface. This generates 
distinct ECG vectors known as the ‘leads’. Common clinical standard uses a 12-lead ECG system for assessing a 
patient’s cardiac health9.

As a part of an eHealth system, ECG signal requires to be transmitted to a distant location for telediagnosis 
and stored for future treatment reference. Thus the necessity of ECG signal compression arises. Compression 
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helps to reduce the required bandwidth for data transmission. It also saves space for storing the ECG data. This 
paper presents the design and implementation of an FPGA based reconfigurable system for ECG compression.

Various noises affect ECG signal during the data accusation10 and transmission process11. The high-frequency 
noise is one of the primary reasons for ECG signal distortion12, and it mostly contains the powerline interference 
(50–60 Hz) and the electromyographic (EMG) noise (100–500 Hz)13. One of the added benefits of the proposed 
system is its built-in capability of high-frequency noise cancellation. Consequently, additional high-frequency 
noise filtering mechanism in the eHealth system will be redundant and the overall system complexity will be 
reduced.

The FPGA is essentially an integrated circuit (IC) which can be reconfigured for any assigned task, hence the 
name ‘reconfigurable computing’14. It is widely used for ASIC (Application Specific Integrated Circuit) prototyp-
ing and hardware verification15. Because of the unique capability of parallel computation16, FPGAs are signifi-
cantly faster in the applications where simultaneous computation is needed for multiple processes17. In a typical 
electrophysiological monitoring unit, data accusation is often made by collecting signals from multiple channels. 
As mentioned earlier, a clinical ECG has a 12 lead standard. This means while processing the data it needs 12 
concurrent signal processing. Therefore, FPGA is used as the computation unit in the proposed architecture.

The fundamental focus of an effective ECG compression is efficient transmission and data storage without los-
ing critical diagnostic information. Many methods are found in the literature for the compression of the ECG sig-
nal. Based on the techniques, they can be classified as follows: (i) time domain compression, (ii) transform domain 
compression, (iii) compression by parameter extraction, and (iv) hybrid method. The original time-domain 
ECG signal features are scrutinized, and redundant data points are discarded in the time domain compression 
method18. As no significant data conversion or transformation is needed in this method, this scheme offers rel-
atively fast processing19. The second compression method is the transform domain compression, and it operates 
by converting the original signal to frequency20 or spatiotemporal21 signal. In this method, the signal is processed 
and compressed after the transformation. Consequently, it takes longer processing time than the first method, 
though this method is capable of more efficient compression. Compression by parameter extraction is the third 
ECG compression method. This scheme requires a complex feature extraction from the given signal. Various 
learning methods are applied to determine the parameter characteristics, which are then used to compress the 
original signal and conserved thereafter for decompression8,22. Some contemporary feature extraction techniques 
include supervised dictionary learning23, object detection24,25, background information retrieval26,27, and deep 
learning28. Hybrid compression method combines the particulars from time-domain, transform-domain, and 
parameter extraction methods to create an efficient compression scheme29,30. The last two methods involve more 
computation than the first two methods. Hence, they require more processing time and resources.

Nonetheless, most of the above researches are mainly concentrated on the software level31,32. This paper is 
more focused on the system level implementation of a real-time ECG compression algorithm. Therefore, a fast 
signal processing method with low hardware resource requirement is perceived while conceiving the appropriate 
ECG compression algorithm. The proposed system employs a transform domain compression method based on 
Fast Fourier Transformation (FFT) technique. This system is hardware implemented and demonstrates a signif-
icant improvement in compression efficiency without any vital signal deformation. Moreover, it has a built-in 
high-frequency noise cancellation ability, which makes it unique from the other implemented systems. A compar-
ative study of the proposed system with the other methods is presented in the “Result Analysis” section.

Methodology
The Fast Fourier Transform is a highly optimized form of the Discrete Fourier Transform (DFT), which takes a 
sequence of sampled data in the time domain and computes the frequency component of that data sequence. DFT 
is defined by the folllowing equation33:
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Here, each of the single frequency components, X k( ) is calculated by considering each of the time domain sam-
ples, x n( ). Hence, N2 addition and multiplication is needed to compute N  number of samples. To recover the time 
domain components from frequency samples IDFT (Inverse DFT) is used, and it is defined33 by:
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Again, Eq. (2) requires N2 addition and multiplication to process N  number of samples in spatio-temporal 
domain. This large number of mathematical operation often creates a computational burden. Hence, FFT and 
IFFT (Inverse FFT) algorithms are developed34. FFT reduces the calculation complexity of DFT by factorizing its 
matrix into sparse arrays in which the majority of the elements are zero35. For N number of points the required 
number of complex multiplication in the DFT is N2, whereas in the similar case, only N log N( /2) 2  complex multi-
plication is needed in the FFT algorithm33. As an example, if 128 number of point is considered, DFT and FFT 
involve 16,384 and 448 complex multiplication respectively. Thus, FFT improves the computational speed by a 
factor of 36.6 in this case34.

Using the FPGA as the signal processing hardware gives the unique capability to decompose the complete 
multichannel architecture into a series of structurally identical single channel core units.

Consequently, a composition of these elementary segments becomes the complete multichannel system as 
shown in Figs. 1 and 2. The concept of parallel computation in the FPGA can also be understood from this figure. 
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Twelve signals from the ECG signal accusation unit are fed into the FPGA based signal processing core, and these 
signals are simultaneously processed to produce the desired real-time outputs.

The proposed compression algorithm works in three steps. At first, the original time domain ECG signal is 
subjected to FFT for transforming it into the frequency domain. Next, the first level compression is done utilizing 
the ‘symmetric property’ of this frequency response. Finally, additional compression is performed by discarding 
the high-frequency noise components. Figure 3 demonstrates a simple block diagram to clarify the compression 
steps.

A bit accurate MATLAB program is developed, and a standard ECG signal from the MIT-BIH Normal Sinus 
Rhythm Database (collected from the PhysioBank36 record: 16265, sampling frequency 128 Hz) is used to demon-
strate the proposed method. As mentioned earlier, for simplicity, this primary model is designed for a single 
channel ECG compression and decompression. The complete multichannel scheme is implemented in hardware 
and described in the section ‘FPGA Implementation’. Figure 4 shows an epoch of a single channel signal from the 
aforementioned ECG, displaying a time window of 1 second.

As mentioned earlier, the sampling frequency is 128 Hz. Therefore, this epoch of 1 second corresponds to 128 
data samples in the time domain. As the first step of compression, FFT is used to transform this time domain 
signal to the frequency domain. Here, 128-point FFT is applied to the signal of Fig. 4, and the outcome is 128 
complex samples in the frequency domain. This frequency response in absolute value is shown in Fig. 5.

It is mathematically established that applying FFT to a real signal results in a symmetric complex signal (with 
the real and imaginary parts)37. Since the input ECG is a real signal, the FFT output is a complex one, and as 
expected, it is symmetric in nature. The data in frequency domain sample number 65 through 128 are redundant 
to store in the memory because they can be regenerated by simply mirroring the rest of the data. Therefore, the 
first level of compression is performed by discarding half of the FFT data.

At this point, it should be noted that the ECG frequency components are dominant in the lower frequency 
range (<30 Hz)38. Here, the sampling frequency is 128 Hz. Nyquist theorem dictates that the input signal can rep-
resent up to half of its sampling frequency33. Hence, the input signal can have frequency components up to 64 Hz. 
In this case, 128-point FFT is applied; hence it has a 0–64 Hz band, which is conveniently represented by the 
respective sample numbers. Therefore, for the second level of compression, data of the sample number 33 through 
64 are dropped, as they are essentially the high-frequency (33–64 Hz) noise components. Thus the essential lower 
frequency components (0–32 Hz) prevail while the high-frequency (HF) noises (>32 Hz) are discarded in the 
compressed signal. These two-level compression are shown in Figs. 6 and 7 respectively.

Figure 1.  Core units.

Figure 2.  Complete multichannel system architecture.

Figure 3.  Compression Steps.
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To explain the compression ratio, let us take the above example in consideration. Here, the input time domain 
signal has 128 real number. At first, consider this numbers in an input bin A. The FFT output is 128 complex 
numbers. Putting the real and imaginary number in the separate bins will result in 2 bins B and C with 128 

Figure 4.  Time-domain ECG of a normal sinus rhythm.

Figure 5.  Frequency-domain (128-point FFT) output.

Figure 6.  FFT output of the ECG signal.
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number in each of them, totaling 256 numbers in the memory. This means the resultant memory size is, in fact, 
taking double space compared to the input. However, after the first level of compression, the size of the bin B and 
C will be half, as these bins will now contain 64 numbers each. At this point the total output memory contains 128 
numbers, which is the same as the input bin. Finally, the second level of compression is executed by dropping the 
high-frequency noise signals. This process will further size down bin B and C. Now, these bins hold 32 numbers 
each. Therefore, the final output bins will contain 64 numbers in total. The compression ratio (CR) is defined by39,

=
−

×CR size of the input stream size of the output stream
size of the input stream

(%) 100
(3)

For this particular example, the size of the input and output stream is 128 and 64 respectively. In this case, the 
compression ratio is 50%. However, CR can be easily adjusted by modifying how much high-frequency compo-
nents is to be discarded.

The decompression algorithm is somewhat a reverse technique of the compression method. Figure 8 demon-
strates a simplified block diagram of the decompression process. Taking the compressed ECG signal from the 
preceding example, the main objective of decompression is to recover the data of the frequency sample num-
ber 33 through 128. As mentioned earlier, the discarded data of the sample number 33 through 64 are actually 
high-frequency noise components. Therefore, as the first step of decompression, the data corresponding the sam-
ple number 33 through 64 are substituted by zeros to ensure the HF noise reduction. The second step is mirror-
ing the frequency components of sample number 1 through 64 to regenerate the data of the sample number 65 
through 128. Finally, the frequency domain decompressed signal is transformed into the time domain using the 
IFFT. Figures 9 and 10 show the decompression process and the restored time-domain ECG signal.

FPGA Implementation
ZedBoard is an optimum cost-effective development board manufactured by Digilent. This board employs Xilinx 
Artix-7 FPGAs coupled with a dual-core ARM Cortex-A9 processor, which is specially optimized for digital 
signal processing (DSP) applications40. ZedBoard is used as the processing unit for implementing the proposed 
scheme in hardware level.

System Generator is one of the design tools for the implementation of DSP algorithms in Xilinx devices, and it 
is used to program the ZedBorad in this research. System Generator works as a toolbox for Simulink, a graphical 
programming environment of MATLAB. A simple diagram of the practical hardware design is shown in Fig. 11 
and the screenshot of the practical system generator design is illustrated in Fig. 12.

It should be noted that this core processing unit consists of both compression (blue shaded portion of the 
Figs. 11 and 12) and decompression (green shaded portion of the Figs. 11 and 12) unit. If necessary, the practical 
arrangement in the eHealth system can be designed either as a compression unit (for transmission system) or as 
a decompression unit (for reception system).

The compression unit is composed of three subunits— one FFT module and two compression subunits. The 
input ECG signal is fed into the FFT unit, and it returns two FFT outputs as real and imaginary numbers. These 
real and imaginary parts are compressed in the following units. The output of these compression units are the 
desired compressed signal which can be stored or transmitted for farther use. In the design, these compressed 

Figure 7.  Compressed ECG in frequency domain.

Figure 8.  Decompression Steps.
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signals are used as the input of the decompression unit. Here, the decompression unit is also comprised of three 
subunits. Two of them are for decompressing the compressed frequency-domain ECG signal. The final subunit is 
the IFFT module, which converts the decompressed frequency-domain ECG signal to the desired time-domain 
ECG as the output. Figure 13 shows signals of different processing stages in the Xilinx Waveform Viewer.

Table 1 shows the hardware resources required in the implementation of a single channel ECG processing 
unit (i.e. the core unit) on Zedboard. This ECG processing unit comprises both compression and decompression 
subsystems. Comparing the number of used resources with the available resources on Zedboard, it is possible to 
identify the plausible maximum number of core unit implementation on a single Zedboard. Here, the core unit 
utilizes 34% of the available DSPs, featuring the largest percentage of available resource consumption. Hence, 
two ECG processing units (including both compression and decompression subsystems) can be implemented on 
one Zedboard. Consequently, six Zedboards will be required for the implementation of a twelve channel system 
with compression-decompression capability. However, for an eHealth transmission or recording system, only 

Figure 9.  ECG decompression in frequency domain.

Figure 10.  IFFT to retrieve the temporal ECG.

Figure 11.  Block diagram of the System Generator unit.
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the capability of compression is adequate. In this case, a twelve channel ECG compression unit can be built using 
only one Zedboard. To built an eHealth reception or restoring system, only decompression ability is required. 
Therefore, four Zedboards will be needed to design a twelve channel ECG reconstruction unit.

In this research, the prototype uses Zedboard for hardware implementation. This development board is a 
low-cost option with a relatively low-end FPGA as the processing unit. Though employing this board offers a 
budget development prospect, this is also one of the limitations of the implemented system. The high-end boards 
provide advanced FPGAs with more hardware resources. Therefore, the processing unit can accommodate more 
core units than the proposed prototype. Furthermore, complex algorithms can be adopted if adequate hardware 
resources become available. This constitutes a scope for future development.

Result Analysis
As mentioned earlier, the proposed system compresses the ECG signal in the frequency domain. This compres-
sion is done in two vital steps: discarding the symmetric data and removing the high-frequency components. The 
reconstruction of the discarded symmetric data does not involve any data loss as it can be done by simple data 
mirroring. However, as the high-frequency components are considered as noises and permanently discarded dur-
ing the compression process, the restored ECG signal does not inherit the high-frequency components. Though 

Figure 12.  Screenshot of the practical System Generator unit.

Figure 13.  Different signals in the Xilinx Waveform Viewer: (a) ECG input, (b) real part of the ECG in 
frequency-domain, (c) imaginary part of the ECG in frequency-domain, (d) compressed real part of the ECG 
in frequency-domain, (e) compressed imaginary part of the ECG in frequency-domain, (f) decompressed real 
part of the ECG in frequency-domain, (g) decompressed imaginary part of the ECG in frequency-domain, (h) 
decompressed FPGA ECG output in time-domain.

Resource ↓

Unit

Compression Decompression Common Total Available

BRAMs 1 2 0 3 140

DSPs 9 66 0 75 220

LUTs 2480 3172 113 5765 53200

Registers 2915 4108 8 7031 106400

Table 1.  System resource utilization.
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this process attributes as a low pass noise filter, the removal of high-frequency components makes the decom-
pressed ECG somewhat different from the original signal.

For a preliminary graphical comparison, the raw input and the recovered output ECG are superimposed in 
the Fig. 14. It can be readily comprehended from a thorough visual inspection that, these two ECG traces are 
practically indistinguishable. As the ECG compression should aim to maximize compression efficiency without 
the deterioration of the signal quality, both the compression efficiency and the signal quality are evaluated while 
analyzing the performance of the proposed system.

Compression efficiency indicates how much the processed data is compressed compared to the raw data. The 
most common parameter to evaluate the compression efficiency is to measure the “Compression Ratio (CR)”39. 
CR is defined by Eq. (3) in the “Methedology” section which can be rewritten in the form of Eq. (4) for further 
discussion.

=



 −






×CR size of the output stream
size of the input stream

(%) 1 100
(4)

It should be noted that in some literature, CR is also mentioned as the Data-volume Saving (DS) as it essen-
tially indicates the percentage of data being saved by the compression41.

It goes without saying that the quality of the reconstructed ECG signal must be satisfactory to avoid misdiag-
nosis. There are several parameters to assess the quality of the decompressed ECG. Among them, the “Percentage 
Root mean square Difference (PRD)” is the most common and the “Normalized version of Percentage Root mean 
square Difference (PRDN)” is the most accurate39. PRD and PRDN are defined by the Eqs (5) and (6) respectively.
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Here, x n( ) is the original signal, x n( ) is the reconstructed signal and x n( ) is the mean of the original signal. 
According to39,42 and43, if the value of PRDN is less than 9% then the quality of the reconstructed signals are con-
sidered as “very good”.

The acceptable ECG sampling frequency range for legitimate clinical use is 100–1000 Hz44. Therefore, to cover 
this frequency range, six databases are used to assess the performance of the proposed system. These datasets are 
downloaded from the PhysioBank36 and presented in the Table 2 with relevant references.

The compression ratio of the processed ECG can be controlled by simply adjusting how much high-frequency 
components to be discarded. However, dropping too much data will, of course, distort the resultant signal from 
the original one. Figure 15 shows the relationship between the Compression Ratio and the Normalized Percentage 
Root mean square Difference for various sampling frequency.

As expected, a higher percentage of CR gives a higher rate of PRDN. This case is more severe for the lower 
sampling frequency but much less prevailing for the higher one. This phenomenon can be explained by using the 
Nyquist theorem as mentioned in the “Methodology” section. The ECG signals with higher sampling frequency 
inherently possess greater high-frequency noise components in it. Hence, it is possible to discard much of these 
noisy data during the compression stage without declining the signal quality. Actually, this property is suitable 
for practical applications; as for similar signals, a lower sampling frequency already consumes fewer data. As the 
signals with higher sampling frequency occupy more data, it makes sense to compress it with greater compression 
efficiency. Figure 15 also indicates the 9% PRDN line, which is the boundary condition for being a “very good” 

Figure 14.  Superimposed input and output ECG traces.
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compressed signal. Considering this 9% PRDN as the higher limit of signal distortion we can find out the maxi-
mum allowable compression ratio for different sampling frequency as shown in Fig. 16.

At this point, it should be noted that, though discarding high-frequency components distorts the compressed 
signal from the original one, it acts as a high-frequency noise reduction process. This is an added benefit of 
the proposed compression system. Using FPGAs for hardware implementation plays another vital role in this 
research. As a reconfigurable device, the same FPGA units can be easily configured for different compression ratio 
for different sampling frequency when required. This indeed makes the eHealth system more flexible for global 
implementation.

To conclude the result analysis a comparative study between the proposed system and the previous works is 
presented in Table 3. In spite of being the most critical quality measurement parameter, PRDN is not specified in 
some of the papers. However, PRD is measured for all cases. Therefore, PRD is also included as a quality meas-
urement parameter for this study. For this table the performance of the proposed system is measured for 720 Hz 
sampling frequency using ANSI/AAMI EC13 Test database.

A few of the previous works (and20,29,30,45) can compress the ECG at a higher rate than the proposed one. 
However, their signal quality is less than the new system, and these works are not implemented at the hardware 
level. Among the hardware implemented works, the proposed method has the highest compression ratio (at 

Database Name Sampling Frequency, FS Reference

MIT-BIH NSR Database 128 Hz Goldberger et al.36

European ST-T Database 250 Hz Taddei et al.46

MIT-BIH Arrhythmia Database 360 Hz Moody et al.47

MAC ECG Database 500 Hz Behravan et al.48

ANSI/AAMI EC13 Test Waveforms 720 Hz AAMI49

ECG DMMLD Database 1000 Hz Johannesen et al.50

Table 2.  Used databases for the performance evaluation.

Figure 15.  CR vs. PRDN for different sampling frequency.

Figure 16.  Maximum allowable CR (%) for different sampling frequency.
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least 5% improvement) while maintaining the accepted PRDN limit. It is the only implemented system which 
can reduce noises from the ECG while compressing it. The overall signal quality is actually improved during the 
compression process as the high-frequency noise is reduced. This makes the new system unique. The higher data 
volume savings with better signal quality ensures economical telemedicine and electronic health record system. 
Therefore, the proposed system is more suitable for upper-level applications like eHealth systems.

Conclusion
This paper presents a novel reconfigurable system architecture for electrocardiographic signal compression. To 
the best of our knowledge, this is the first hardware implemented ECG compression system which can reduce the 
embedded high-frequency noise from the original signal while compressing it. This unique feature enhances the 
overall ECG signal quality for further diagnosis. Because of its high compression performance and superior signal 
quality, this system is ideal for the incorporation with a contemporary eHealth care system. Furthermore, similar 
methods and system designs can be utilized for compressing other signals, especially the signals with distinct 
frequency dependence. The FPGA design can be used for prototyping a dedicated application specific integrated 
circuit in the future. This will make the system suitable for wearable wireless ECG monitoring systems.

Data availability
The datasets analyzed during the current study are available in the PhysioBank repository, www.physionet.org/
physiobank/.
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