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Background. Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with bad prognosis. The association
between GC and cuprotosis-related genes has not been reported. Methods. The clinical and RNA expression of patients with
GC were downloaded from TCGA database. The CIBERSORT package was used to quantify the abundance of specific cell
types. Using the Cox regression analysis, we conducted a prognostic nomogram model based on cuprotosis-related differential
genes in GC. We evaluated the prognostic power of this model using the Kaplan-Meier (K-M) survival curve analysis, decision
curve analysis (DCA), and receiver operating characteristic (ROC) curve analysis. Results. The plasma cells, monocytes, and
mast cells in GC tissue were significantly less than those in adjacent tissue (p < 0:05), while T cell CD4 memory activated
macrophage M0, macrophage M1, and macrophages in GC tissue. The number of M2 was significantly more than that in the
adjacent tissue (p < 0:05). Additionally, GC patients in the test group, the training group, and all the sample groups had
shorter survival time with the increase of the risk factor (p < 0:05). The nomogram of GC based on cuprotosis prognosis-
related genes was conducted. The AUC of the nomogram to predict 1-, 3-, and 5-year survival rate was 0.618, 0.618, and 0.625,
respectively. Conclusion. A novel cuprotosis-related gene signature impacts on the prognosis of GC. Our research provides new
insights and potential targets for studying the link between GC and cuprotosis point, thereby providing new insights into
understanding the molecular mechanism of GC.

1. Introduction

Gastric cancer (GC) is the main cancer of the gastrointesti-
nal tract. According to relevant statistics, GC has become
the fifth most common cancer in the world and the third
leading cause of cancer-related death and has become one
of the major global health problems [1–3]. GC account for
approximately 95% of GC. According to anatomical loca-
tion, GC can be divided into cardia/proximal and noncar-
dia/distal; according to tissue type, it can be divided into

intestinal type and diffuse type [4]. The early symptoms of
GC are not obvious, resulting in a low diagnostic detection
rate. Once found, it is often in the middle and late stages,
resulting in a poor prognosis [5]. Therefore, it is necessary
to seek effective early diagnosis and accurate prognosis pre-
diction of GC.

Copper is an indispensable trace element involved in
various biological processes. Recent studies have shown that
copper levels in serum and tumor tissue are significantly ele-
vated in cancer patients compared to healthy individuals [6,
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7]. The concept of cuprotosis, proposed in 2022, occurs
through the direct binding of copper to fatty acylated com-
ponents of the tricarboxylic acid (TCA) cycle, leading to
fatty acylated protein aggregation and subsequent loss of
iron-sulfur cluster proteins; these result in proteotoxic stress
and ultimately cell death [8]. And so far, no one has studied
the relationship between cuprotosis and GC.

The tumor microenvironment (TME) has been con-
firmed to be closely related to the occurrence, growth, and
metastasis of GC [9], and the tumor microenvironment is
conducive to promoting GC immune and antitumor therapy
[10]. The relationship between TME and GC still needs fur-
ther exploration.

However, a comprehensive analysis of associated prog-
nosis, tumor immune microenvironment, and immunother-
apy based on cuprotosis has not yet been performed. In our
study, based on the TCGA database and CIBERSORT, we
performed immune infiltration correlation analysis in GC,
screened cuprotosis-related differentially expressed genes,
and constructed a cuprotosis prognostic model and its risk
factor analysis. Prognostic features can effectively predict
the prognosis of GC patients. At the same time, relevant
functional analysis, immune microenvironment and
immune-related function analysis, immune escape, immu-
notherapy, and screening of potential drugs were carried
out. Our research provides new insights and potential targets
for studying the link between GC and cuprotosis point,
thereby providing new insights into understanding the
molecular mechanism of GC.

2. Method

2.1. Screening of STAD Transcriptome Expression Matrix.
The TCGA (https://portal.gdc.cancer.gov/) website was used
to download clinical and transcriptomic expression data
related to GC, and R software was used to sort, summarize
and summarize the clinical data, and further obtain its
expression matrix. And we used the Perl script to screen
out the expression matrix of mRNA and remove the expres-
sion data of noncoding RNA.

2.2. Analysis of Immune Infiltration of GC. Using the
CIBERSORT package to deconvolute the STAD expression
matrix data obtained above, the cellular composition of
complex tissues can be estimated based on normalized gene
expression data, which can quantify the abundance of spe-
cific cell types. And get the STAD-related infiltrating
immune cell expression matrix, and use the immune sorting
Perl script to sort immune cells, in the GEO (gene expres-
sion omnibus) database (https://www.ncbi.nlm.nih.gov/geo/
) to download the gene chip data related to GC, and the
screening conditions are (1) GC, (2) human, and (3) GC tis-
sue and adjacent tissue. Background correction, normaliza-
tion, and expression value calculations were performed on
the microarray data using the limma R package in R, and
the CIBERSORT package was used to estimate the cellular
composition of GC and adjacent tissue. The composition
of immune cells in each sample was further analyzed using
the CIBERSORT package, and histograms were drawn. A

heatmap of immune cell distribution was drawn using the
pheatmap package. Then, the corrplot package was used to
analyze the interaction between immune cell populations
in GC and to plot the coexpression of immune cell infiltra-
tion in GC. Finally, the vioplot package was used to analyze
the expression of each immune cell in GC tissue and adja-
cent tissue and further draw the violin diagram of immune
cell expression.

2.3. Establishment of Cuproptosis-Related Gene Expression
Matrix in GC. The STADmRNA expressionmatrix obtained
in the previous stagewas combinedwith the expressionmatrix
of the currently known 19 cuprotosis genes, and the correla-
tionheatmapwasdrawnusing the limmapackage, and the dif-
ferential expression between the two groups was calculated
according to and using the limma package. In mRNAs, set p
value < 0.05, and the expression change range ≥ 1:50 times ðj
log 2FCj ≥ 0:58Þ is the criterion for screening differential
genes, where log 2FC ≥ 0:58 means mRNA expression is
upregulated and log 2FC ≤ −0:58 means mRNA expression
is downregulated. Finally, the differentially expressedmRNAs
related to cuprotosis between the STADgroup and the control
groupwere obtained, that is, the STADdifferentially expressed
genes (DEGs). The heatmap package was used to draw heat-
maps and cluster analysis of the filtered DEGs, and the p value
in the differentiated data was converted to -log10, and the
-log10 (p value) was grouped according to log2FC (upregu-
latedDEGgroup, downregulatedDEGgroup, andDEGgroup
with no statistical significance) and imported the processed
data into R to draw a volcano plot.

2.4. Construction of a Cuprotosis Prognostic Model for GC
and Analysis of Risk Factors. The standardized STAD
cuprotosis-related expression data was merged with the clin-
ical data of GC, and R language packages such as survivor,
caret, glmnet, survminer, and survivorROC were used to
perform univariate and multivariate Cox prognostic survival
analysis of GC differential genes, dig out the key cuprotosis
genes closely related to the prognosis of GC, and draw its
survival curve. In addition, 443 cases were randomly divided
into a test group (Test) and a training group (Train), and the
survival package was called to perform risk-survival analysis
on the combined data in the early stage, and the risk-survival
curve and ROC curve were drawn, the training group
(Train), and the survival state graph of all samples. The sur-
vival package was called again to carry out clinical statistical
analysis and risk prognosis analysis on the general clinical
data of GC. The univariate and multivariate independent
prognostic analysis was used to mine the risk factors related
to GC, and the univariate and multivariate independent
prognostic analysis forest diagram was drawn, C-index
curve, nomogram, and further survival, survminer package
for model validation of clinical grouping.

2.5. Principal Component Analysis and GO and KEGG
Enrichment Analyses of Cuproptosis-Related Genes in GC.
The scatterplot3d package was used to carry out principal
component analysis of GC cuproptosis-related genes and
GC-related risk genes, and the clusterProfilerGO.R package
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and Perl language in R language (https://www.r-project.org/)
software were used to analyze GC. The cuprotosis-related
differential genes of cancer were subjected to GO analysis,
respectively. GO analysis is mainly used to describe the func-
tion of gene products, including Cellular Component (CC),
Molecular Function (MF), and Biological Process (BP). The
clusterProfilerKEGG.R package was used for KEGG pathway
enrichment analysis, and the enrichment degree of core path-
ways was analyzed according to the enrichment factor value,
and the potential biological function and signaling pathway
mechanism of GC were explored.

2.6. Immune-Related Function Analysis of Cuprotosis-
Related Risk Genes in GC, Immune Escape, and
Immunotherapy. limma, GSVA, GSEABase, pheatmap, and
reshape2 packages were used to analyze the immune-
related functions of risk genes related to cuprotosis in GC,
in order to achieve precise treatment. In addition, the limma
and ggpubr packages were used to conduct immune escape
and immunotherapy-related analysis on the previously con-
structed GC cuprotosis-related prognostic model, in order to
evaluate the effectiveness of immunotherapy for GC
cuprotosis-related risk genes.

2.7. Tumor Mutation Burden (TMB) Analysis of Cuprotosis-
Related Risk Genes in GC. The expression files of cuprotosis-
related risk genes were constructed, the TMB files were
downloaded from the database, and the correlation between
core genes and TMB was tested by using the function, and
the correlation, coefficient, and p value were calculated. In
addition, the survival and survminer packages were used to
analyze the correlation between cuprotosis-related risk genes
and GC tumor mutation burden, and the correlation, coeffi-
cient, and p value were calculated.

2.8. Relative Expression of Core Target Genes. Download the
expression matrix data of GC in TCGA, including the
transcriptome expression matrix file in STAD (stomach
adenocarcinoma), and use the ggpubr package to analyze
the relative expression of the core targets in the STAD
expression data based on the core targets screened in the
previous stage, and plot the relative expression box plots
of core targets.

2.9. Single-Gene GSEA Enrichment Analysis. Using limma
(http://org.Hs.eg.db), clusterProfiler, and enrichplot pack-
ages to carry out GO and KEGG enrichment analyses of core
genes, respectively, download the GO/KEGG annotation files
of whole transcriptome genes from GSEA official website,
and analyze the cellular components (Cellular Component,
CC), molecular function (Molecular Function, MF), and bio-
logical process (Biological Process, BP) and KEGG pathway
enrichment analysis. The enrichment degree of core path-
ways was analyzed according to the enrichment factor values,
and the potential biological functions and signaling pathway
mechanisms of core genes in GC were explored.

2.10. Potential Drug Screening. According to the preliminary
screening of GC cuprotosis-related risk genes, the CPG2016
drug database was used to screen the therapeutic effects of

these genes, and the limma, ggpubr, pRRophetic, and ggplot2
packages were run to evaluate effective drugs for GC
cuprotosis-related risk gene therapy.

2.11. Statistical Analysis. All the statistical analyses and
drawings in this study used R (version 4.2.1) or GraphPad
Prism (version 8.3.0). A t-test was used to analyze differences
between continuous variable. Fisher’s exact test or chi-square
test was employed for comparisons of categorical variables.
Log-rank test was used to estimate the differences among
K-M survival curves. p < 0:05 was considered significant.

3. Results

3.1. Analysis of Immune Infiltration of GC. The obtained
STAD expression matrix data was used for background cor-
rection, normalization, and expression value calculation of
the chip data using the limma R package in R, and the
CIBERSORT package was used to calculate the immune cell
composition of GC and adjacent tissue. And further use the
CIBERSORT package to analyze the composition of immune
cells in each sample, and draw a histogram, as shown in
Figure 1(a). The pheatmap package was used to draw a heat-
map of immune cell distribution in Figure 1(b). Then, the
corrplot package was used to analyze the interaction
between immune cell populations in GC, and the coexpres-
sion map of immune cell infiltration in GC was drawn, as
shown in Figure 1(c). Finally, use the vioplot package to ana-
lyze the expression of each immune cell in GC tissue and
adjacent tissue, and further draw the violin diagram of
immune cell expression, as shown in Figure 1(d). From
Figure 1(d), the resting numbers of plasma cells, monocytes,
and mast cells in GC tissue were significantly less than those
in adjacent tissue (p < 0:05), while T cell CD4 memory acti-
vated macrophage M0, macrophage M1, and macrophages
in GC tissue. The number of M2 was significantly more than
that in the adjacent tissue (p < 0:05), while the number of
other immune cells had no significant difference between
the two groups (p > 0:05).

3.2. Differentially Expressed Genes Related to Cuprotosis in
GC. Use the TCGA (https://portal.gdc.cancer.gov/) website
to download the clinical and transcriptome expression data
related to GC and obtain 407 transcriptome-related data sets
and 443 clinically related data sets according to the preset
screening conditions data set, use R software to organize
and summarize clinical data, and further obtain its
cuprotosis-related expression matrix. According to the p
value < 0.05, the expression change range ≥ 1:5 times
(jlog 2 FCj ≥ 0:58) was the criterion for screening differen-
tially expressed genes, and 7 differentially expressed mRNAs
were screened in the data set, including 2 upregulated
mRNAs and 5 downregulated mRNAs, including DBT,
PDHB, CDKN2A, GLS, MTF1, NFE2L2, DLST, and draw
STAD cuproptosis-related gene expression matrix heatmap
in Figure 2(a), wherein red represents upregulated gene
expression and blue represents downregulated gene expres-
sion. The p value after the difference analysis was converted
to -log10, and the -log10 (p value) was grouped according to
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Figure 1: Continued.
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log2 FC (upregulated DEG group, downregulated DEG
group, and insignificant DEG group) and imported the proc-
essed data into R plot the volcano in Figure 2(b).

3.3. Construction of a Cuprotosis Prognostic Model for GC
and Analysis of Risk Factors. 443 clinical cases were ran-
domly divided into a test group (Test) and a training group
(Train), and the clinical statistical analysis of the general
clinical data of the two groups found that there was no sig-
nificant difference in age, gender, and tumor stage between
the two groups (p > 0:05); the two groups of data are compa-
rable in Table 1. The Cox survival prognostic model was
constructed, respectively, and it was found that the three
groups of GC patients in the test group (Test), the training
group (Train), and all the sample groups had shorter sur-
vival time with the increase of the risk factor (p < 0:05), as
shown in Figures 3(a)–3(c). The analysis of progression-
free survival showed that the survival time of GC in the
high-risk group was significantly shorter than that in the
low-risk group (p < 0:05), as shown in Figure 3(d). And

through univariate and multivariate regression independent
prognostic analysis, it was found that tumor stage and risk
factor were risk factors for GC, as shown in Figures 3(e)
and 3(f). In addition, the survival status of the test group
(Test), the training group (Train), and all samples was ana-
lyzed, and it was found that with the increase of the risk fac-
tor, the death rate of GC patients increased, as shown in
Figures 3(g)–3(o). In addition, by constructing 1-year, 3-
year, and 5-year ROC curves, it was found that the area
under the three groups of curves, AUC, was greater than
0.6, as shown in Figure 3(p). In addition, by constructing
the ROC curve of GC risk factors, it was found that the area
under the curve AUC of the cuprotosis risk gene was the
largest and was greater than 0.6, as shown in Figure 3(q); it
indicated that the established survival prognosis model had
better sensitivity. In addition, by constructing a C-index
curve, it was found that both cuprotosis risk genes and
tumor stage are important indicators for evaluating the
prognosis of GC, as shown in Figure 3(r). Finally, by con-
structing a nomogram of the GC cuprotosis prognosis
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Figure 1: Analysis of immune cell infiltration. (a) Histogram of immune cell distribution in GC. (b) Heatmap of immune cell distribution in
GC. (c) Heatmap of immune cell interaction in GC. (d) Violin plot of the relative content of immune cells in GC.
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model, it was found that the 1-year survival rate was 0.827,
the 3-year survival rate was 0.545, and the 5-year survival
rate was 0.425 (p < 0:05), as shown in Figure 3(s).

3.4. Principal Component Analysis and GO and KEGG
Enrichment Analyses of Cuproptosis-Related Genes in GC.
The scatterplot3d package was used to perform principal
component analysis on cuproptosis-related genes and GC-
related risk genes in GC. The PCA diagrams are shown in
Figures 4(a) and 4(b). Using the Bioconductor package and
clusterProfiler package in R language, GO and KEGG path-
way enrichment analyses of 7 differentially expressed genes
related to cuprotosis in GC were carried out. The results
showed that GO analysis of seven potential target genes
showed that their biological processes were mainly enriched
in cellular amino acid catabolic process, tricarboxylic acid
cycle, and acetyl-CoA metabolic process, the cellular compo-
nents were mainly enriched in dihydrolipoyl dehydrogenase
complex, oxidoreductase complex, and tricarboxylic acid
cycle enzyme complex, and the molecular functions are
mainly enriched in transferase activity, transferring acyl
groups other than amino-acyl groups, transferase activity,
transferring acyl groups, and RNA polymerase II-specific

DNA-binding transcription factor binding in Figures 5(a)–
5(f). KEGG pathway enrichment analysis found that it is
mainly concentrated in citrate cycle (TCA cycle), central car-
bon metabolism in cancer, carbon metabolism, hepatocellu-
lar carcinoma, and arginine biosynthesis in Figures 5(g)
and 5(h).

3.5. Immune-Related Function Analysis of Cuprotosis-
Related Risk Genes in GC, Immune Escape, and
Immunotherapy. Using limma, GSVA, GSEABase, pheat-
map, and reshape2 packages to analyze the immune-
related functions of cuprotosis-related risk genes in GC, it
was found that the immune functions of GC were mainly
concentrated in APC coinhibition, APC costimulation,
CCR, checkpoint, cytolytic activity, HLA, inflammation-pro-
moting, MHC class I, parainflammation, T cell coinhibition,
T cell costimulation, type I IFN reponse, type II IFN
reponse, etc. The relevant heatmap is shown in Figure 6(a).

3.6. Tumor Mutation Burden (TMB) Analysis of Cuprotosis-
Related Risk Genes in GC. Import the STAD expression data
and TMB file into R, and use the function to calculate the
correlation between GC cuprotosis-related risk genes and

Table 1: General clinical data of the two groups of patients.

Covariates Type Total Test Train p value

Age ≤65 163 (43.94%) 84 (45.41%) 79 (42.47%) 0.7438

Age >65 205 (55.26%) 101 (54.59%) 104 (55.91%)

Age Unknown 3 (0.81%) 0 (0%) 3 (1.61%)

Gender Female 133 (35.85%) 71 (38.38%) 62 (33.33%) 0.3655

Gender Male 238 (64.15%) 114 (61.62%) 124 (66.67%)

Grade G1 10 (2.7%) 4 (2.16%) 6 (3.23%) 0.7102

Grade G2 134 (36.12%) 65 (35.14%) 69(37.1%)

Grade G3 218 (58.76%) 112 (60.54%) 106 (56.99%)

Grade Unknown 9 (2.43%) 4 (2.16%) 5 (2.69%)

Stage Stage I 50 (13.48%) 24 (12.97%) 26 (13.98%) 0.7072

Stage Stage II 111 (29.92%) 52 (28.11%) 59 (31.72%)

Stage Stage III 149 (40.16%) 80 (43.24%) 69 (37.1%)

Stage Stage IV 38 (10.24%) 20 (10.81%) 18 (9.68%)

Stage Unknown 23 (6.2%) 9 (4.86%) 14 (7.53%)

T T1 18 (4.85%) 7 (3.78%) 11 (5.91%) 0.7283

T T2 78 (21.02%) 38 (20.54%) 40 (21.51%)

T T3 167 (45.01%) 83 (44.86%) 84 (45.16%)

T T4 100 (26.95%) 53 (28.65%) 47 (25.27%)

T Unknown 8 (2.16%) 4 (2.16%) 4 (2.15%)

M M0 328 (88.41%) 165 (89.19%) 163 (87.63%) 0.689

M M1 25 (6.74%) 11 (5.95%) 14 (7.53%)

M Unknown 18 (4.85%) 9 (4.86%) 9 (4.84%)

N N0 108 (29.11%) 50 (27.03%) 58 (31.18%) 0.2444

N N1 97 (26.15%) 45 (24.32%) 52 (27.96%)

N N2 74 (19.95%) 40 (21.62%) 34 (18.28%)

N N3 74 (19.95%) 44 (23.78%) 30 (16.13%)

N Unknown 18 (4.85%) 6 (3.24%) 12 (6.45%)
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STAF tumor mutation load, and draw waterfall charts for
high- and low-risk groups according to the correlation
results, as shown in Figures 7(a) and 7(b). The possibility
of tumor mutation burden in the low-risk group was greater
than that in the high-risk group, and the difference analysis
of tumor mutation burden showed that the tumor mutation
burden in the low-risk group was significantly higher than
that in the high-risk group (p < 0:05), as shown in
Figure 7(c). In addition, survival analysis of the tumor muta-
tion burden of risk genes related to cuprotosis in GC showed

that the survival probability of the high tumor mutation bur-
den group was significantly longer than that of the low
tumor mutation burden group over time (p < 0:05) in
Figure 7(d). In addition, combining the characteristics of
tumor mutation burden and risk gene factors related to
cuprotosis, it was found that the high tumor mutation bur-
den combined with low-risk group had the highest probabil-
ity of survival, while the low tumor mutation burden
combined with high-risk group had the lowest probability
of survival, as shown in Figure 7(d).
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Figure 4: PCA distribution map. (a) PCA map of cuproptosis-related genes. (b) PCA map of GC-related risk genes.
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Figure 5: Enrichment analysis. (a) BP enrichment bubble map. (b) BP enrichment arc map. (c) CC enrichment bubble map. (d) CC
enrichment arc map. (e) MF enrichment bubble map. (f) MF enrichment arc diagram. (g) KEGG enrichment bubble diagram. (h) KEGG
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3.7. Relative Expression of Core Target Genes. The core
cuprotosis risk genes NFE2L2, NLRP3, SLC31A1, and GCSH
were obtained through differential expression analysis and
survival prognosis analysis in the early stage. We further stud-
ied the relative expression of core cuprotosis risk genes

NFE2L2, NLRP3, SLC31A1, and GCSH in GC STAD. Down-
load the relevant expression data of STAD from TCGA, and
analyze the relative expression levels of NFE2L2, NLRP3,
SLC31A1, and GCSH genes through the ggpubr package,
and draw a box expression map, as shown in Figures 8(a)–
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Figure 6: Analysis of immune function. (a) Heatmap analysis of immune-related functions. (b) Immune escape and immunotherapy of GC-
related risk genes.
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8(d). The results showed that NFE2L2 was lowly expressed in
STAD tumor tissue (p < 0:001), while SLC31A1 and GCSH
genes were highly expressed in STAD tumor tissue (p < 0:01
), and there was no significant difference in the expression of
NLRP3 between the two groups (p > 0:05).

3.8. Single-Gene GSEA Enrichment Analysis. The GO/KEGG
annotation files and STAD tumor data files downloaded
from the GSEA official website were read into R, and the
enrichment analysis operation was performed to obtain the
following: the GO of gene NFE2L2 in STAD is enriched in
chromatin remodeling, DNA packaging, and protein DNA
complex subunit organization function in Figure 9(a). The
GO of gene NLRP3 in STAD is enriched in activation of
immune response, adaptive immune response based on
somatic recombination of immune receptors built from
immunoglobulin superfamily domains, and alpha beta T cell

activation functions in Figure 9(b). In addition, the GO of
gene SLC31A1 in STAD is enriched in chromatin assembly
or disassembly, epidermal cell differentiation, and inflamma-
tory response to antigenic stimulus in Figure 9(c). And the
gene GCSH is enriched in the GO of STAD in ribosome bio-
genesis, meiotic cell cycle, and intermediate filament cyto-
skeleton function in Figure 9(d). Finally, it was found that
the gene NFE2L2 in the KEGG of STAD is enriched in olfac-
tory transduction, circadian rhythm mammal, and graft ver-
sus host disease signaling pathway, as shown in Figure 9(e).
The gene NLRP3 is enriched in the KEGG of STAD in the
antigen processing and presentation, cytokine-cytokine
receptor interaction, and cytosolic DNA sensing signaling
pathway, as shown in Figure 9(f). In addition, gene
SLC31A1 is enriched in olfactory transduction, cytosolic
DNA sensing pathway, and regulation of autophagy signal-
ing pathway in KEGG of STAD in Figure 9(g). The gene
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GCSH in the KEGG of STAD is enriched in olfactory trans-
duction, arrhythmogenic right ventricular cardiomyopathy
(ARVC), and hematopoietic cell lineage signaling pathway,
as shown in Figure 9(h).

3.9. Potential Drug Screening. According to the preliminary
screening ofGCcuprotosis-related risk genes, for the therapeu-
tic effect of these genes, the CPG2016 drug database was used
for screening, and the limma, ggpubr, pRRophetic, and ggplot2
packages were run to evaluate effective drugs for GC
cuprotosis-related risk gene therapy. Discover AR-42, axitinib,
belinostat, BEZ235, BMS345541, bortezomib, CAY10603,
CP466722, CUDC-101, cytarabine, elesclomol, GSK429286A,
HG-6-64-1, JW-7-24-1, MG-132, and MLN4924. Such drugs
have good potential clinical efficacy on GC cuprotosis-related
risk genes, as shown in Figures 10(a)–10(p).

4. Discussion

In this study, we obtained 407 transcriptome-related data
sets and 443 clinically-related data sets through TCGA,

explored the expression characteristics of 7 cuprotosis-
related genes in GC, and constructed a prognostic model
and its risk factors by constructing a prognostic model.
Analysis, functional enrichment analysis, immune-related
function analysis, and tumor mutational burden (TMB)
analysis have confirmed for the first time that cuprotosis-
related genes are related to the occurrence, development,
and prognosis of GC.

Immunoregulatory factors and immune cells play
important roles in the pathogenesis of GC [11, 12]. We first
performed immune infiltration analysis of GC through the
CIBERSORT package, an efficient analysis tool for gene
expression consisting of 547 genes [13], which can charac-
terize immune cell subtypes and accurately quantify differ-
ent immune cell composition [14]. We found that the
number of plasma cells, monocytes, and mast cells resting
in GC tissue was significantly less than that in adjacent tis-
sue, while the number of T cell CD4 memory activated mac-
rophage M0, macrophage M1, and macrophage M2 which
was significantly higher than that in adjacent tissue. It has
been confirmed that GC is related to the regulation of
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immune infiltration, and previous studies have also shown
that immune infiltrating cells are closely related to the occur-
rence and development of GC [15, 16].

R software was used to organize and summarize the
clinical data set of GC obtained by TCGA and further
obtain its cuprotosis-related expression matrix. According
to p value < 0.05, the expression change range is ≥1.5 times
(jlog 2 FCj ≥ 0:58), and a total of 7 cuprotosis-related differ-
entially expressed genes (DBT, PDHB, CDKN2A, GLS,
MTF1, NFE2L2, and DLST) were screened. Previous studies
have found that PDHB is known to be closely related to colo-
rectal cancer, renal cancer, and other malignant diseases [17,
18]. The expression of CDKN2A in small intestine adenocar-
cinoma is significantly different from that in colorectal can-
cer, but the expression of CDKN2A in GC is significantly

different. Differential changes in expression have not been
observed [19], while Tong et al. found that GLS is highly
expressed in pancreatic ductal adenocarcinoma (PDAC)
and demonstrated that SUCLA2-coupled regulated GLS
succinylation can counteract oxidative stress in tumor cells
[20]. In determining the targeted therapeutic potential of
doxycycline in a cohort of GC patients, it was found that doxy-
cycline activates MTF1-mediated transcription and inhibits
histones, proteasome genes, fibroblast growth factors, and
other oncogenic factors. The transcription of MTF1 and GC
was further confirmed [21]. Previous studies have reported
that NFE2L2 is highly expressed in GC and has anti-
inflammatory and antioxidant effects [22–24], while DLST
has been studied in neuroblastoma, breast cancer, and other
tumor diseases [25, 26], and GC-related studies are rare.
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We also randomly divided 443 clinical cases into a test
group (Test) and a training group (Train) to construct a
GC cuprotosis prognosis model and analyze its risk factors.

The results confirmed that both cuprotosis risk genes
and tumor stage are important indicators for evaluating
the prognosis of GC. At the same time, the related functional
analysis of cuprotosis differential genes was carried out, and
it was found that their pathways were mainly enriched in the
TCA cycle and carbon metabolism in cancer. Gong et al. also
found that the TCA cycle may be related to the pathogenesis
of GC through GSEA enrichment analysis [27]. In addition,
we also analyzed the immune-related functions of GC
cuprotosis-related risk genes and confirmed that precise
immunotherapy for GC cuprotosis-related risk genes can
achieve the curative effect of GC. Tumor mutation burden
(TMB) analysis of cuprotosis-related risk genes in GC
showed that the high tumor mutation burden combined
with low-risk group had the highest probability of survival,
while the low tumor mutation burden combined with
high-risk group had the lowest survival probability.

The core cuprotosis risk genes NFE2L2, NLRP3,
SLC31A1, and GCSH were obtained through differential
expression analysis and survival prognosis analysis in the
early stage. We further studied the relative expression of core
cuprotosis risk genes NFE2L2, NLRP3, SLC31A1, and
GCSH in GC STAD and confirmed that NFE2L2 has low
expression in STAD tumor tissue, while SLC31A1 and
GCSH genes were highly expressed in STAD tumor tissue.
There was no significant difference in the expression of
NLRP3 between the two groups. At the same time, single-
gene GSEA enrichment analysis was used to study the core
cuprotosis risk genes in STAD tumor tissue. We performed
gene enrichment analysis on STAD samples. SLC31A1 has
been confirmed to be associated with various diseases such
as lung cancer, ovarian cancer, and pancreatic cancer
[28–30], but it has not been studied in GC. It has also been
reported that GCSH is associated with the incidence of
breast cancer, colorectal cancer, and papillary thyroid cancer
[31–33]. No research has been conducted on the relationship
between GCSH and GC. The research on NLRP3 and GC
has been widely reported. Excessive inflammation driven
by the NLRP3 inflammasome can promote GC progression
[34]. Finally, we also obtained the risk genes related to
cuprotosis in GC according to the previous screening and
found AR-42, axitinib, belinostat, BEZ235, BMS345541, bor-
tezomib, CAY10603, CP466722, CUDC-101, cytarabine, and
elesclomol. Drugs such as GSK429286A, HG-6-64-1, JW-7-
24-1, MG-132, and MLN4924 have good potential clinical
effects on GC cuprotosis-related risk genes, which will help
us to further study and explore treatment options for GC.

Our study still has limitations. First, although the expres-
sion of differentially expressed genes of cuprotosis in GC
screened by TCGA proved that these genes are associated
with the prognosis of the disease, a data set with a suffi-
ciently large sample size and more complete clinical prog-
nostic information is still needed for future research.
Second, given that the predictions were established and val-
idated by leveraging data from public databases, further bio-
logical evidence is required for validation in addition to the

statistical evidence we provided. Finally, the specific mecha-
nism of GC-related cuprotosis differential genes in the
tumor immune process is still unclear, and further research
is needed.

Data Availability

Data are available upon request from the authors. The data
that support the findings of this study are available from
the corresponding author (Kai Zhang), upon reasonable
request.

Conflicts of Interest

The authors declare that there is no conflict of interest.

Acknowledgments

This work is supported by the Fundamental Research
Funds for Medical and Health Science and Technology
Innovation Project of Shandong Academy of Medical Sci-
ences and Shandong Province Medical and Health Science
and Technology Development Plan Project (Project No.
202103030059).

References

[1] L. A. Torre, R. L. Siegel, E. M. Ward, and A. Jemal, “Global
cancer incidence and mortality rates and trends-an update,”
Cancer Epidemiology, Biomarkers & Prevention, vol. 25,
no. 1, pp. 16–27, 2016.

[2] A. Etemadi, S. Safiri, S. G. Sepanlou et al., “The global, regional,
and national burden of stomach cancer in 195 countries, 1990-
2017: a systematic analysis for the global burden of disease
study 2017,” The Lancet Gastroenterology & Hepatology,
vol. 5, no. 1, pp. 42–54, 2020.

[3] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in
185 countries,” CA: a Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

[4] J. Ma, H. Shen, L. Kapesa, and S. Zeng, “Lauren classification
and individualized chemotherapy in gastric cancer,” Oncology
Letters, vol. 11, no. 5, pp. 2959–2964, 2016.

[5] H. Zhang, R. Li, Y. Cao et al., “Poor clinical outcomes and
immunoevasive contexture in intratumoral IL-10-producing
macrophages enriched gastric cancer patients,” Annals of Sur-
gery, vol. 275, no. 4, pp. e626–e635, 2022.

[6] S. Blockhuys, E. Celauro, C. Hildesjö et al., “Defining the
human copper proteome and analysis of its expression varia-
tion in cancers,” Metallomics, vol. 9, no. 2, pp. 112–123, 2017.

[7] E. J. Ge, A. I. Bush, A. Casini et al., “Connecting copper and
cancer: from transition metal signalling to metalloplasia,”
Nature Reviews Cancer, vol. 22, no. 2, pp. 102–113, 2022.

[8] P. Tsvetkov, S. Coy, B. Petrova et al., “Copper induces cell
death by targeting lipoylated TCA cycle proteins,” Science,
vol. 375, no. 6586, pp. 1254–1261, 2022.

[9] A. Rojas, P. Araya, I. Gonzalez, and E. Morales, “Gastric tumor
microenvironment,” Advances in Experimental Medicine and
Biology, vol. 1226, pp. 23–35, 2020.

34 Journal of Immunology Research



[10] D. Zeng, W. Jiani, H. Luo, Y. Li, and J. Xiao, “Tumor microen-
vironment evaluation promotes precise checkpoint immuno-
therapy of advanced gastric cancer,” Journal for
Immunotherapy of Cancer, vol. 9, no. 8, article e002467, 2021.

[11] L. Ji, W. Qian, L. Gui et al., “Blockade of β-catenin-induced
CCL28 suppresses gastric cancer progression via inhibition
of Treg cell infiltration,” Cancer Research, vol. 80, no. 10,
pp. 2004–2016, 2020.

[12] E. D. Thompson, M. Zahurak, A. Murphy et al., “Patterns of
PD-L1 expression and CD8 T cell infiltration in gastric adeno-
carcinomas and associated immune stroma,” Gut, vol. 66,
no. 5, pp. 794–801, 2017.

[13] A. M. Newman, C. B. Steen, C. L. Liu et al., “Determining cell
type abundance and expression from bulk tissues with digital
cytometry,” Nature Biotechnology, vol. 37, no. 7, pp. 773–
782, 2019.

[14] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enumer-
ation of cell subsets from tissue expression profiles,” Nature
Methods, vol. 12, no. 5, pp. 453–457, 2015.

[15] N. Kemi, N. Hiltunen, J. P. Väyrynen et al., “Immune cell infil-
trate and prognosis in gastric cancer,” Cancers (Basel), vol. 12,
no. 12, article 3604, 2020.

[16] M. Wang, Z. Li, Y. Peng et al., “Identification of immune cells
and mRNA associated with prognosis of gastric cancer,” BMC
Cancer, vol. 20, 2020.

[17] Y. Zhu, G. Wu, W. Yan, H. Zhan, and P. Sun, “miR-146b-5p
regulates cell growth, invasion, and metabolism by targeting
PDHB in colorectal cancer,” American Journal of Cancer
Research, vol. 7, no. 5, pp. 1136–1150, 2017.

[18] Z. Bian, R. Fan, and L. Xie, “A novel cuproptosis-related prog-
nostic gene signature and validation of differential expression
in clear cell renal cell carcinoma,” Genes (Basel), vol. 13,
no. 5, p. 851, 2022.

[19] A. B. Schrock, C. E. Devoe, R. McWilliams et al., “Genomic
profiling of small-bowel adenocarcinoma,” Oncologia, vol. 3,
no. 11, pp. 1546–1553, 2017.

[20] Y. Tong, D. Guo, S.-H. Lin et al., “SUCLA2-coupled regulation
of GLS succinylation and activity counteracts oxidative stress
in tumor cells,” vol. 81, no. 11, pp. 2303–2316.e8, 2021.

[21] J. Pandian, P. Panneerpandian, H. J. Devanandan et al., “Iden-
tification of the targeted therapeutic potential of doxycycline
for a subset of gastric cancer patients,” Annals of the New York
Academy of Sciences, vol. 1467, no. 1, pp. 94–111, 2020.

[22] H.-B. Wang, C.-J. Zhou, S.-Z. Song et al., “Evaluation of Nrf 2
and IGF-1 expression in benign, premalignant and malignant
gastric lesions,” Pathology, Research and Practice, vol. 207,
no. 3, pp. 169–173, 2011.

[23] M.-Y. Song, D.-Y. Lee, and E.-H. Kim, “Anti-inflammatory
and anti-oxidative effect of Korean propolis on helicobacter
pylori-induced gastric damage in vitro,” Journal of Microbiol-
ogy, vol. 58, no. 10, pp. 878–885, 2020.

[24] L. Wen, S. Yang, P. Li et al., “iASPP-mediated ROS inhibition
drives 5-Fu resistance dependent on Nrf2 antioxidative signal-
ing pathway in gastric adenocarcinoma,” Digestive Diseases
and Sciences, vol. 65, no. 10, pp. 2873–2883, 2020.

[25] N. M. Anderson, X. Qin, J. M. Finan et al., “Metabolic enzyme
DLST promotes tumor aggression and reveals a vulnerability
to OXPHOS inhibition in high-risk neuroblastoma,” Cancer
Research, vol. 81, no. 17, pp. 4417–4430, 2021.

[26] N. Shen, S. Korm, T. Karantanos et al., “DLST-dependence
dictates metabolic heterogeneity in TCA-cycle usage among

triple-negative breast cancer,” Communications Biology,
vol. 4, no. 1, article 1289, 2021.

[27] Y. Gong, S. Wu, S. Dong et al., “Development of a prognostic
metabolic signature in stomach adenocarcinoma,” Clinical &
Translational Oncology, vol. 24, no. 8, pp. 1615–1630, 2022.

[28] L. Wang, C. Sun, X. Li et al., “A pharmacogenetics study of
platinum-based chemotherapy in lung cancer:ABCG2poly-
morphism and its genetic interaction withSLC31A1are associ-
ated with response and survival,” Journal of Cancer, vol. 12,
no. 5, pp. 1270–1283, 2021.

[29] G. Wu, H. Peng, M. Tang et al., “ZNF711 down-regulation
promotes CISPLATIN resistance in epithelial ovarian cancer
via interacting with JHDM2A and suppressing SLC31A1
expression,” eBioMedicine, vol. 71, article 103558, 2021.

[30] Y. Ze, R. Zhou, Y. Zhao et al., “Blockage of SLC31A1-
dependent copper absorption increases pancreatic cancer cell
autophagy to resist cell death,” Cell Proliferation, vol. 52,
no. 2, article e12568, 2019.

[31] A. Adamus, P. Müller, B. Nissen et al., “GCSH antisense regu-
lation determines breast cancer cells’ viability,” Scientific
Reports, vol. 8, no. 1, article 15399, 2018.

[32] Y. Ikegami, S. Tatebe, Y. C. Lin-Lee, Q. W. Xie, T. Ishikawa,
and M. T. Kuo, “Induction of MRP1 and gamma-
glutamylcysteine synthetase gene expression by interleukin
1beta is mediated by nitric oxide-related signalings in human
colorectal cancer cells,” Journal of Cellular Physiology,
vol. 185, no. 2, pp. 293–301, 2000.

[33] T. Zhai, D. Muhanhali, X. Jia, Z. Wu, Z. Cai, and Y. Ling,
“Identification of gene co-expression modules and hub genes
associated with lymph node metastasis of papillary thyroid
cancer,” Endocrine, vol. 66, no. 3, pp. 573–584, 2019.

[34] R. Karki, S. M. Man, and T.-D. Kanneganti, “Inflammasomes
and cancer,” Cancer Immunology Research, vol. 5, no. 2,
pp. 94–99, 2017.

35Journal of Immunology Research


	Construction of a Cuprotosis-Related Gene-Based Model to Improve the Prognostic Evaluation of Patients with Gastric Cancer
	1. Introduction
	2. Method
	2.1. Screening of STAD Transcriptome Expression Matrix
	2.2. Analysis of Immune Infiltration of GC
	2.3. Establishment of Cuproptosis-Related Gene Expression Matrix in GC
	2.4. Construction of a Cuprotosis Prognostic Model for GC and Analysis of Risk Factors
	2.5. Principal Component Analysis and GO and KEGG Enrichment Analyses of Cuproptosis-Related Genes in GC
	2.6. Immune-Related Function Analysis of Cuprotosis-Related Risk Genes in GC, Immune Escape, and Immunotherapy
	2.7. Tumor Mutation Burden (TMB) Analysis of Cuprotosis-Related Risk Genes in GC
	2.8. Relative Expression of Core Target Genes
	2.9. Single-Gene GSEA Enrichment Analysis
	2.10. Potential Drug Screening
	2.11. Statistical Analysis

	3. Results
	3.1. Analysis of Immune Infiltration of GC
	3.2. Differentially Expressed Genes Related to Cuprotosis in GC
	3.3. Construction of a Cuprotosis Prognostic Model for GC and Analysis of Risk Factors
	3.4. Principal Component Analysis and GO and KEGG Enrichment Analyses of Cuproptosis-Related Genes in GC
	3.5. Immune-Related Function Analysis of Cuprotosis-Related Risk Genes in GC, Immune Escape, and Immunotherapy
	3.6. Tumor Mutation Burden (TMB) Analysis of Cuprotosis-Related Risk Genes in GC
	3.7. Relative Expression of Core Target Genes
	3.8. Single-Gene GSEA Enrichment Analysis
	3.9. Potential Drug Screening

	4. Discussion
	Data Availability
	Conflicts of Interest
	Acknowledgments

