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Abstract: Peak oxygen uptake (peakV̇O2) measured by clinical exercise testing is the benchmark for
aerobic fitness. Aerobic fitness, estimated from maximal treadmill exercise, is a predictor of mortality
in adults. PeakV̇O2 was shown to predict longevity in patients aged 7–35 years with cystic fibrosis
over 25 years ago. A surge of exercise studies in young adults with congenital heart disease over the
past decade has revealed significant prognostic information. Three years ago, the first clinical trial in
children with pulmonary arterial hypertension used peakV̇O2 as an endpoint that likewise delivered
clinically relevant data. Cardiopulmonary exercise testing provides clinicians with biomarkers and
clinical outcomes, and researchers with novel insights into fundamental biological mechanisms
reflecting an integrated physiological response hidden at rest. Momentum from these pioneering
observations in multiple disease states should impel clinicians to employ similar methods in other
patient populations; e.g., sickle cell disease. Advances in pediatric exercise science will elucidate new
pathways that may identify novel biomarkers. Our initial aim of this essay is to highlight the clinical
relevance of exercise testing to determine peakV̇O2, and thereby convince clinicians of its merit,
stimulating future clinical investigators to broaden the application of exercise testing in pediatrics.
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1. Introduction

Aerobic fitness refers to the body’s ability to transport oxygen from the environment and
utilize it in working muscle. It is well accepted as a health-related and health-determining trait
since Blair et al. demonstrated more than 25 years ago that higher aerobic fitness measured during
an incremental treadmill exercise test was associated with reduced all-cause mortality in adults [1].
Exercise testing has proven to be an invaluable tool in research and practice, because it yields otherwise
unobtainable physiologic information on clinical manifestations, adaptations, and compensatory
strategies, in a variety of disorders. There are many terms used to convey this concept of aerobic
fitness, but for the purposes of this manuscript, terminology will be confined to peak oxygen uptake
(peakV̇O2) or aerobic fitness.
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Increased attention to the health and fitness of toddlers, children, and adolescents, and to the
concept of pediatric origins of adult disease, have brought exercise testing to the forefront as a clinical
and research tool; in turn, leading to the imperative of standardizing methodologies. Therapeutic
advances have created a growing number of childhood survivors of a wide range of conditions,
including preterm birth, congenital heart disease, pulmonary hypertension, cystic fibrosis, sickle cell
disease, and cancer. In addition, the same environmental and social factors contributing to the obesity
epidemic in otherwise healthy children are at work in children with chronic disease and disability.
High levels of physical activity are (or were) the norm in children, and a child’s inability to engage in
physical activity is often one of the first indicators of childhood disease. We submit that peakV̇O2 is
a biomarker for the development and severity of various health outcomes. Devising and investigating
new medical therapies in children has always been a challenge, but exercise testing can become
a benchmark or outcome measure in clinical trials.

2. Discussion

2.1. Peak Oxygen Uptake (PeakV̇O2) in Children and Adolescents

Maximal exercise testing is essential for assessing peakV̇O2, and provides information on the
function of respiratory, circulatory, neuromuscular, blood, and metabolic systems, as well as limits of
exercise tolerance. Physiological limitations become apparent when working muscle can no longer
sustain the task because the muscle lacks sufficient metabolic capacity, the cardiovascular system
cannot deliver sufficient oxygen, or the respiratory system cannot provide sufficient oxygen transfer
or carbon dioxide removal, resulting in intolerable acidosis. Ultimately, these signals are interpreted
at the cerebral level, prompting the individual to cease exercise, manifested by inability to continue
the test despite internal motivation or external urging. Therefore, the measurement of peakV̇O2 is the
consummate measure of cardio-pulmonary and muscle-metabolic function, and thus is useful in the
diagnosis, management, and prognosis of disease. It is most readily determined with a progressive
incremental exercise test to voluntary exhaustion. The end point of the test should be maximal
exertion [2,3] or the limit of exercise tolerance. Whereas it is simple for the purposes of this paper
to define peakV̇O2, clear criteria or guidelines to indicate the attainment of a gold standard measure
remain elusive [4,5], rendering comparisons between studies or individuals a not-insurmountable
challenge. A major issue in conducting maximal exercise tests is defining the end point(s) for achieving
peakV̇O2 in pediatric subjects. In adults, achieving a plateau in oxygen uptake, (i.e., no increase in V̇O2

with an increase in work) has been proposed as the ultimate indicator of achieving maximum V̇O2 or
true V̇O2max [6]. However, children often do not attain a plateau in oxygen uptake, despite indicating
that they have reached their limit of tolerance [5,7]. Some would argue that mere determination of the
so-called “anaerobic” or “ventilatory” threshold is simpler and therefore preferable, but this parameter
is indeterminate in ~20% of subjects [8], and it can have a large range of inter-reviewer variability,
rendering it unsuitable for clinical use [9].

The attainment of peakV̇O2 relies on two components: central and peripheral. The central
component is responsible for the bulk convection of oxygen from the ambient environment to the
working muscle. The equally important peripheral component is determined by how effectively
exercising muscle utilizes substrate for energy production, one index of which is arteriovenous
oxygen content difference. Reported exercise tolerance is affected by many factors that are virtually
impossible to identify and control for completely (e.g., climatic factors, specific test modality, etc.).
Exercise tolerance and termination during an incremental test to maximal effort is influenced by the
pre-frontal cortex [10,11]—a motivational factor virtually impossible to estimate or measure. Moreover,
the underlying presumption that peakV̇O2 is a measure of global cardiac and pulmonary function
essentially ignores the muscle component, though muscle function may play a greater role than
cardio-respiratory factors in determining overall aerobic fitness in certain clinical populations. Sadly,
our understanding of peripheral muscle performance in determining overall aerobic exercise capacity
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is wanting, because it is the most difficult component to study. Newer techniques such as near-infrared
spectroscopy may shed light on this “black box” [12].

One must inject a cautionary note when peakV̇O2 is estimated from sub-maximal field tests or
sub-maximal cycling or treadmill tests, as such methods do not maximally stress the body’s systems,
and typically estimate peakV̇O2 based on a standardized algorithm. In general, these approaches are
characterized by large variability, and therefore less reliability, validity, and robustness. That is not
to say that data obtained from submaximal exercise testing are without merit [13]. In certain patient
populations, rates of change (slope) of particular variables during incremental exercise have prognostic
value [14,15]. Other parameters obtained during sub-maximal exercise, such as gas exchange or
anaerobic threshold [9,16] terms and oxygen uptake efficiency slope [17] are purported to be useful,
though each has unique problems with determination or interpretation.

2.2. PeakV̇O2 and Health Outcomes in Children

2.2.1. Cystic Fibrosis as Paradigm

There is a growing body of literature on the clinical significance of exercise testing and peakV̇O2

in children with chronic disease. Nixon et al. first reported that peakV̇O2 was a strong predictor
of survival in young cystic fibrosis (CF) patients [18], an observation that was later replicated [19].
Indeed, peakV̇O2 has supplanted the previous standard of forced expiratory volume in one second
(FEV1) in predicting mortality in CF patients awaiting lung transplantation [20]. In patients with CF,
certain classes of cystic fibrosis transmembrane conductance regulator (CFTR) mutations (I and II) are
associated with more severe disease status, and reduced peakV̇O2 is also associated with these classes
of mutations [21], showing a link between genotype and a biomarker (peakV̇O2). The importance of
genotype-specific treatment for CF was recently demonstrated in a clinical trial of mutation-specific
therapy for patients with the G551-D CFTR mutation. Not only did this therapy result in sustained
improvement in FEV1, but also in weight gain and overall enhanced health-related quality of life as
well [22]. As the consummate test of cardiopulmonary function, the maximal exercise test is uniquely
capable to capture these inter-related measures of treatment benefit(s). Furthermore, change in
peakV̇O2 over time is more useful as a prognostic marker than the commonly-used longitudinal
decline of FEV1 [19]. Information that can be gained from exercise tests eventually prompted the
adoption of a position statement on the value of exercise testing in cystic fibrosis [23].

2.2.2. Congenital Heart Disease

There is increasing survival among children with congenital heart defects, prompting the
development of specialized clinics for adults with congenital heart disease. In the past decade,
reports on exercise testing in this population have proven invaluable for risk stratification [24].
PeakV̇O2 and heart rate reserve were shown to provide the greatest predictive information for
prognosis, after adjusting for age, cyanosis, and need for negative inotropes [14,15,25]. Many such
patients report exertional dyspnea, and one of the most interesting data bytes emerging from exercise
studies addresses the tedious clinical conundrum “is it the heart or is it the lung?”. Hyperventilation
during exercise—defined as an exaggerated slope of ventilation vs. CO2 production—is ubiquitous
in adults with various types of congenital heart disease, and was the strongest predictor of mortality
in non-cyanotic patients [15]. In some—particularly those with Fallot’s tetralogy—hyperventilation
may result from maldistribution of pulmonary blood flow related to residual pulmonary stenosis.
Balloon angioplasty in such patients improved not only ventilatory efficiency, but also peakV̇O2 due
to improved forward stroke volume [26]. Thus, it is both heart and lungs!

PeakV̇O2 is an independent predictor of hospitalization or mortality in patients with surgically
repaired tetralogy of Fallot [27], and in patients who have undergone atrial switch procedures for
transposition of the great vessels [28]. The latter patients are now adults, and lingering concerns about
long-term sustainability of the right ventricle acting as the systemic ventricle are being addressed by
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exercise testing [29,30]. While much work still needs to be done, exercise testing—particularly with
the measurement of stroke volume—permits identification of those who benefit from exercise training,
and by default, those in whom pharmacologic therapy may be indicated [31,32].

The Fontan procedure has been lifesaving for many infants with previously lethal forms of
congenital heart disease. Measurement of peakV̇O2 has not delivered the promise of a tangible
outcome measure, perhaps because maximal effort as described above is difficult to achieve in these
patients [33,34]. Nevertheless, reports of sub-maximal exercise results are providing insights and
laying a foundation for future investigation or interventions. Based on experience in other congenital
heart diseases, exercise testing may well yield prognostic data as well.

2.2.3. Pulmonary Hypertension

PeakV̇O2 has prognostic value in children and adolescents with pulmonary hypertension, as
reported by the Task Force on End Points and Clinical Trial Design [35]. The first study using
peakV̇O2 as an outcome measure in children with pulmonary arterial hypertension demonstrated
improved oxygen delivery and exercise capacity in children treated with a moderate and high dose
of sildenafil [36]. The finding that a low dose did not improve peakV̇O2 while a high dose was
associated with higher mortality triggered a US Food and Drug Administration (FDA) black box
warning regarding use of sildenafil for pulmonary hypertension in pediatrics, the wisdom of which
has been questioned [37].

2.2.4. Sickle Cell Disease

The use of exercise testing to assess cardiopulmonary fitness in sickle cell anemia (SCA) has been
relatively sparse compared to other conditions, despite initial reports in this population over 30 years
ago [38–40]. Measurement of peakV̇O2 in children and adults with SCA has been limited to date
by concerns regarding the safety of pushing individuals with SCA to voluntary exhaustion during
exercise testing. The pathophysiology of SCA is characterized by accelerated red blood cell breakdown,
microvascular occlusion, and a pro-inflammatory state—all of which may lead to acute pain episodes
as well as acute and chronic organ injury over the lifespan. Although triggers for acute pain episodes
vary but may include high intensity exercise, the safety of maximal exercise testing in children with
SCA has now been demonstrated [41,42].

PeakV̇O2 has been found to be significantly lower (up to 30% in recent studies) in children with
SCA, when compared to matched controls [41]. This finding is not surprising, given the known
impact of the disease on physical functioning, as assessed by health-related quality of life surveys
or surrogates for peakV̇O2, such as the 6-min walk distance [43,44]. Compared to what has been
established for other conditions, less is known about the clinical significance or prognostic implications
of low peakV̇O2 in SCA. Given the complexity and multi-organ nature of the disease, factors beyond
anemia likely contribute to limitations in peakV̇O2 in SCA. Cardiopulmonary complications such as
pulmonary vascular disease and diastolic dysfunction are associated with lower peakV̇O2 and other
measures of exercise capacity in adults with SCA [45,46]. Recent data suggest low peakV̇O2 may also
be associated with a greater inflammatory response to exercise, as defined by an increase in levels of
vascular cell adhesion molecule [47]. However, the utility of peakV̇O2 to predict clinically relevant
endpoints such as pain episodes, hospitalizations, or mortality has not yet been studied. In many ways,
SCA represents an ideal disease model to examine whether interventions to improve peakV̇O2 could
have a biological impact on inflammation and vascular health, and therefore lead to clinical benefits.

2.3. Need for Reference Values

There is no agreement as to what constitutes low peakV̇O2 in children. Establishment of
clinical thresholds or recommended levels of health outcomes in children and adolescents typically
has two requirements: establishing age-, sex-, and possibly ethnic-based normative values;
and determining specific levels which affect health and disease outcome. The first requirement



Children 2017, 4, 6 5 of 9

involves the understanding of the general developmental pattern in the trait of interest (e.g., age- and
sex-associated variation). Indeed, the lack of agreement on cut-off values for children may be related
to the age-, sex-, and maturity-related changes in peakV̇O2. The developmental pattern of peakV̇O2

has been well-studied in the classic cross-sectional studies of Astrand [6], as well as more recent
longitudinal studies [48,49], and has been extensively reviewed [50–52]. Absolute peakV̇O2 (mL/min)
of girls is typically similar to or slightly lower than that that of boys until puberty, when peakV̇O2 of
girls reaches a plateau while that of boys rises further. Expressed relative to body mass (mL/kg/min),
boys’ peakV̇O2 remains constant through adolescence, while that of girls decreases after puberty [2].

The second requirement of the establishment of clinical thresholds is to determine a specific
level that adversely impacts the risk of health or disease outcome. Some health-related outcomes
have well-accepted clinical cut-points (e.g., cholesterol, glucose, etc.). Based on an increased risk of
metabolic syndrome, McMurray et al. suggested that low peakV̇O2 is <37 mL/kg/min for girls and
<42 mL/kg/min for boys [53]; whereas others simply used receiver operating curves to identify the
lowest quartile as the cut-off for reduced peakV̇O2 [54]. The problem with choosing an absolute cut-off
lies in the fact that some studies report lower values for normal, healthy children [55]. One could argue
that defining “normal” based on the average and deviation from the average is in itself problematic,
since “normal” may in fact be below an acceptable level based on risk factors for some adverse health
outcomes. Nevertheless, while normative and clinical thresholds of peakV̇O2 values are not yet widely
established, a working basis is extant.

Importance of Data Harmonization

The main obstacles to using the physiologic response to exercise as an outcome in clinical
trials are: (1) the lack of well-accepted and precise definitions of exercise outcome variables in
children; (2) the lack of mechanisms to support the sharing of exercise-derived data among separate
institutions; and (3) the lack of commonly-accepted protocols for exercise testing and physical activity
assessment in the laboratory. We submit that cardiopulmonary exercise testing and measurement of
peakV̇O2—despite the inherent challenges—is essential in pediatric medicine, and therefore merits
our best, concerted efforts. Large studies using the physiologic response to exercise in children as
an outcome measure are needed to address feasibility concerns of single center trials and to accrue
generalizable data. Such an effort will be possible when harmonized protocols for testing, acquisition,
and reporting are established, permitting one to measure peakV̇O2 in many centers. Multicenter trials
introduce another set of feasibility concerns that must be addressed—a challenge best tackled by data
harmonization, which can reduce or minimize these obstacles. It will not only facilitate the large-scale
studies required to advance pediatric care, but will also ultimately lead to the establishment of true,
nationally representative, normative data for children’s physiological response to exercise. The Data
Harmonization in Exercise Data study group has identified a strategy and direction for achieving
data harmonization which can be accomplished by carefully examining exercise data as well as data
collection and reporting protocols for peakV̇O2 data from multiple institutions [56].

3. Future Direction

Much of what is known about exercise physiology has been derived from studies done in adults,
yet every pediatrician knows that lessons learned from research in adults do not necessarily apply to
children or even to adolescents. There is a growing body of literature defining the state-of-the-art of
pediatric exercise medicine, though progress has been slow. This paper advocates the advancement of
exercise science in general—and exercise testing in particular—in pediatrics by providing a rationale
based on demonstrated prognostic value of data so obtained. Our focus has been on peak oxygen
uptake (the conventional measure of aerobic fitness), since peakV̇O2 is the consummate test of
cardiopulmonary and muscle function, and has already proven itself as a biomarker for longevity.
Fundamentally, one need only consider the Barker hypothesis and developmental origins of health
and disease to grasp this. Inactivity is a key risk factor in the development of most chronic diseases
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and cancers, and inactivity typically results in low peakV̇O2. This is alarming, given that physical
activity patterns track from childhood into adulthood [57–59]. It does not require a leap of faith to
envision peakV̇O2 as a valid biomarker in health or disease during the developmental years that
awaits exploration. This essay highlighted common diseases where it has been found to be particularly
useful, but progress has been impeded by under-appreciation of the merits of clinical exercise testing,
and perhaps over-estimation of barriers to its conduct. One hopes this overview foments change in
such attitudes.
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