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Fragmenting networks by  
targeting collective influencers  
at a mesoscopic level
Teruyoshi Kobayashi1 & Naoki Masuda2

A practical approach to protecting networks against epidemic processes such as spreading of infectious 
diseases, malware, and harmful viral information is to remove some influential nodes beforehand to 
fragment the network into small components. Because determining the optimal order to remove nodes 
is a computationally hard problem, various approximate algorithms have been proposed to efficiently 
fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing 
the non-backtracking matrix of given networks, which outperforms various existing algorithms. In 
fact, many empirical networks have community structure, compromising the assumption of local 
tree-like structure on which the original algorithm is based. We develop an immunization algorithm by 
synergistically combining the Morone-Makse algorithm and coarse graining of the network in which 
we regard a community as a supernode. In this way, we aim to identify nodes that connect different 
communities at a reasonable computational cost. The proposed algorithm works more efficiently than 
the Morone-Makse and other algorithms on networks with community structure.

Identification of influential nodes in a network is a topic of interest in network analysis, enjoying numerous appli-
cations. For example, a removal or immunization of an influential node may suppress spreading of an infectious 
disease that may occur later. A viral information spreading campaign starting from an influential node may be 
more successful than a campaign starting from other nodes. There are various notions of influential nodes, as 
evinced by a multitude of definitions of node’s centrality corresponding to the aforementioned and other appli-
cations1. Among them, a major criterion of the influential node is that the removal of a node, or immunization, 
efficiently fragments the network into small pieces. Because the problem of finding the minimal set of nodes to be 
immunized to fragment the network is NP-hard2, various immunization algorithms to determine the order of the 
nodes to be removed to realize efficient fragmentation of the network have been proposed2–12, sometimes with the 
constraint that the information about the network is only partially available6,13–17. Notably, although immunizing 
hubs (i.e., nodes with a large degree) first is intuitive and much better than randomly selecting nodes to be immu-
nized18–20, many immunization algorithms outperform the hub-first immunization algorithm.

Morone and Makse proposed a scalable and powerful algorithm to sequentially remove nodes and fragment 
the network into small components as early as possible9. Founded on the message passing approach and theory of 
non-backtracking matrices, the method calculates the so-called collective influence (CI) for each node to rank the 
nodes for prioritization. Their method, which is referred to as the CI algorithm, outperforms various other known 
methods in model and empirical networks. In the present study, we propose a new CI-based immunization algo-
rithm that is designed to perform well when the network has community structure.

The CI algorithm assumes that the given network is locally tree-like. In fact, a majority of empirical networks 
are not locally tree-like. At a microscopic level, empirical networks are usually clustered, i.e., full of triangles1. At 
a mesoscopic level, many networks are composed of communities such that links are dense within communities 
and sparse across different communities21. Although the CI algorithm also seems to work efficiently in loopy 
networks unless loops are not excessive9, the performance of the CI algorithm on networks with community 
structure is unclear. Some extant immunization algorithms are explicitly or implicitly informed by community 
structure4–6,10,15,16,22,23. The immunization algorithms using the betweenness centrality are effective on networks 
with community structure6,7,16,22,23. However, they are not scalable due to a high computational cost of calculating 
the betweenness centrality24. For other immunization algorithms exploiting community structure of networks, 
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their performance relative to the CI algorithm is unknown in general5,10 or at least for networks with community 
structure4,9. Yet other community-based immunization algorithms impose that only local information about the 
network is available, mimicking realistic constraints6,15,16. This constraint naturally limits the performance of an 
immunization algorithm.

We develop an immunization algorithm by formulating a CI algorithm for a coarse-grained network, in which 
a node represents a community, and a weighted link represents the number of links between different communi-
ties. We compare the performance of the proposed algorithm with that of the CI algorithm9, and the conventional 
algorithm targeting hubs18–20, and others5,10 when networks have community structure.

Theory
Consider an undirected and unweighted network having N nodes. The aim of an immunization algorithm is to 
sequentially remove nodes to fragment the network as soon as possible, i.e., with a small number of removed 
nodes.

Collective influence. The CI algorithm is based on the scoring of nodes according to the CI value9. The CI 
of node i is defined as
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where

≡ −z k 1, (2)i i

ki is the degree of node i, and ∂ iBall ( , ) is the set of nodes at distance  from node i. When = 0, the CI is equiv-
alent to the degree as long as the rank order is concerned.

The CI algorithm calculates the 


iCI ( ) value of all nodes and removes the node with the largest CI value in one 
step. Then, the CI values of all the remaining nodes are recalculated, and the same procedure is repeated.

In fact, we use the order of nodes to be removed determined above as a tentative order. To improve the overall 
performance, we reorder the nodes by reinserting them as follows. We start from the situation in which the frac-
tion of nodes in the largest connected component (LCC) is equal to or less than 0.01 for the first time. Then, we 
calculate for each removed node i the number of components that node i connects if it is reinserted in the current 
network. Next, we add back the node that connects the smallest number of connected components. We repeat this 
procedure until all the removed nodes are reinserted such that the initial network is restored.

The computation time of the CI algorithm is evaluated as follows9. The calculation of 


iCI ( ) requires O(1) time 
for one node, and hence O(N) time for all nodes. Because sorting the 



iCI ( ) values consumes O(N logN) time, 
each step of the CI algorithm consumes O(N logN) time. Therefore, the total computation time until O(N) nodes 
are removed is evaluated as O(N2 logN). However, by exploiting the fact that the CI values of only O(1) nodes are 
affected by the removal of a single node, one can accelerate the same algorithm with a max-heap data structure, 
yielding O(N logN) total computation time25.

Community-based collective influence. Community structure may make a network not locally tree-like. 
We propose an immunization algorithm by running a weighted-network variant of the CI algorithm on a 
coarse-grained network in which a community constitutes a supernode. We first run a community detection 
algorithm. Denote by NC the number of communities and by ∼A the NC ×  NC coarse-grained weighted adjacency 
matrix whose (I, J) element is equal to the number of links that connect communities I and J (I ≠  J). We use low-
ercases (e.g., i, j) to denote individual nodes and uppercases (e.g., I, J) to denote supernodes, i.e., communities, 
throughout the text. The diagonal elements of ∼A are set to zero.

Assume that the coarse-grained network is locally tree-like. By taking into account the fact that the 
coarse-grained network is generally a weighted network, we define the CI of community I in the coarse-grained 
network by

∑′ = ′ ′′
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where ∂Ball I( , ) denotes the set of the communities whose distance from community I is equal to  in the 
coarse-grained network.

We set
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This definition is analogous to zi ≡  ki −  1 in Eq. (1). With this definition of ′zI , the CI of community I is equal to 
zero when I has only one neighbor, as in the original CI9,26.
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where J is a community that is at distance  from I, and J− is the community that is at distance − 1 from I and on 
the path between I and J (Fig. 1(a)). It should be noted that ′′zJ  is equal to zero if J− is the only neighbor of J. It 
should also be noted that, when every community consists of only one node in the original network, 
′ =
 

i iCI ( ) CI ( ) for 1 ≤  i ≤  N. Equation (5) is ill-defined for = 0. To be consistent with the original definition of 
the CI, we define ′′ ≡ ′z zJ J  for = 0. Then, ′ ICI ( )0  is large when node I has a large degree in the coarse-grained 
network.

Let A =  (Aij) be the adjacency matrix of the original network. Equation (3) is rewritten as
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where I+ is the community adjacent to I (hence distance one from I) through which J is reached from I (Fig. 1(b)). On 
the basis of Eq. (6), we define the community-based collective influence (CbCI) of node i, denoted by CbCI(i), as
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where node i belongs to community I. In Eq. (7), the importance of a node stems from three factors. First, CbCI(i) is 
proportional to ′zI , which is essentially the number of inter-community links of the community to which i belongs. 
Second, CbCI(i) is large if I has many high-degree nodes at distance  in the coarse-grained network (i.e., sum of ′′zJ ). 
Third, CbCI(i) is large if node i has many inter-community links relative to the total number of inter-community 
links that community I has (i.e., ∑ ∼

′∈ ′ ′ ′A A/i I ii II ). We set = 2 in the following numerical simulations. When = 2, 
I+ in Eqs (6) and (7) coincide with J− in Eq. (5) (Fig. 1(b)).
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Figure 1. Concept of the community-based collective influence. (a) Egocentric view of the coarse-grained 
network. Each circle represents a community. Two communities are adjacent by a weighted link if a node in one 
community is connected to at least one node in the other community. The link weight in the coarse-grained 
network is equal to the number of links that connect the two communities in the original network. Local tree-
like structure of the coarse-grained network is assumed. (b) Illustration of ′zI  and ′′zJ  for = 2, in which case 
I+ =  J−. A line represents a link in the original network. The dashed circle represents the Ith community.  
(c) Schematic of community-based reinsertion. A dashed circle represents a community. Suppose that we  
will reinsert either node i or j. If reinserted, node i and j would have a path to two and three communities, 
respectively. Therefore, we reinsert node i.
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We remove the node with the largest CbCI value. If there are multiple nodes with the same largest CbCI value, 
we select the node having the largest degree. If there are multiple nodes with the same largest CbCI and degree, we 
break the tie at random. Then, we recalculate the CbCI for all remaining nodes, remove the node with the largest 
CbCI, and repeat the same procedure until the size of the LCC becomes equal to or less than 0.01N. We further 
optimize the obtained order of node removal by reinsertion, as in the CI algorithm. We use the coarse-grained 
network, not the original network, to inform the reinsertion process in the CbCI algorithm. In other words, the 
number of communities that belong to the same component as the reinserted node is measured for each tenta-
tively reinserted node. We decide to reinsert the node whose presence connects the least number of communities 
(Fig. 1(c)).

Given a partitioning of the network into communities, the calculation of CbCI(i) for one node consumes O(1) 
time. Therefore, if we adapt the original implementation of the CI algorithm9 to the case of the CbCI, sorting of 
CbCI(i) dominates the computation time of the CbCI algorithm. The time complexity of the CbCI algorithm is 
the same as that of the CI algorithm in ref. 9, i.e., O(N2 logN), if community detection is not a bottleneck. The use 
of the max-heap data structure makes the CbCI algorithm run in O(N logN) time if NC =  O(N) such that the CbCI 
values of O(1) nodes are affected by the removal of a single node. Generally speaking, the CbCI algorithm with 
the max-heap data structure runs in O(N logN) ×  O(N/NC) =  O((N2/NC)logN) time.

We use the following six algorithms for community detection: (i) Infomap27,28, requiring O(M) time21, 
where M is the number of links, and hence O(N) time for sparse networks; (ii) Walktrap, which requires 
O(N2 logN) for most empirical networks29; (iii) the label-propagation algorithm, requiring nearly linear 
time in N ref. 30; (iv) a fast greedy algorithm for modularity maximization, requiring O(N(logN)2) time 
for sparse networks31; (v) modularity maximization based on simulated annealing, which is practical up 
to ≈ 104 nodes in the original paper32 and time-consuming because modularity must be maximized in a 
parameter-dependent manner33; (vi) the Louvain algorithm, which practically runs in O(N) time34. The last 
three algorithms intend to maximize the modularity, denoted by Q. The first three algorithms detect com-
munities according to different criteria.

Except for the simulated annealing algorithm, the computational cost is at most that for the CbCI algo-
rithm given the partitioning of the network, i.e., O(N2 logN). Therefore, if the CbCI algorithm is naively 
implemented, community detection is not a bottleneck in terms of the computation time when any of these 
five community detection algorithms is used. If NC =  O(N) and we implement the CbCI algorithm using the 
max-heap data structure, a community detection algorithm requiring more than O(N logN) time presents 
a bottleneck. In this case, the Infomap when the network is sparse (i.e., M =  O(N)), label-propagation algo-
rithm, and Louvain algorithm retain O(N logN) total computation time of the CbCI algorithm. The total 
computation time with any of the other three community detection algorithms is governed by that of the 
community detection algorithm.

Results
In this section, we compare the performance of the CbCI algorithm with the CI and other immunization algo-
rithms (see Methods) on two model networks and 12 empirical networks. Let q be the fraction of removed nodes. 
The size of the LCC after qN nodes have been removed, divided by N, is denoted by G(q).

Scale-free network models with and without community structure. We start by testing various 
immunization algorithms on a scale-free network model with built-in community structure (Methods). We 
sequentially remove nodes from this network according to each immunization algorithm and track the size of 
the LCC. We use the community structure imposed by the model to inform the CbCI and CbDI algorithms. The 
results for a range of immunization algorithms are shown in Fig. 2(a). Both CbCI and CbDI algorithms consid-
erably outperform the CI algorithm. The CbCI algorithm performs better than the CbDI algorithm. The per-
formance of the CbCI algorithm is close to the Betweenness algorithm. It should be noted that the Betweenness 
algorithm, while efficient, is not scalable to larger networks.

Next, we consider a scale-free network without community structure, which is generated by the original BA 
model with N =  5000 and 〈 k〉  ≈  12 (the parameters of the model are equal to m0 =  m =  6). We run the CbCI 
and CbDI strategies by applying a community detection algorithm to the generated network although the BA 
model lacks community structure. In fact, all but the label-propagation algorithm returns a partitioning result. 
The performance of the different immunization algorithms for this network is compared in Fig. 2(b). The CbCI 
algorithm combined with Infomap or Walktrap outperforms the Degree and LSP algorithms. The performance 
of the CbCI algorithm is close to that of the CI algorithm except in an early stage of node removal. A different 
community-based immunization algorithm, CbDI, lacks this feature. This result suggests that the CbCI algorithm 
combined with Infomap or Walktrap can work efficiently even when the network does not have community 
structure.

The results for the CbCI and CbDI algorithms combined with the other four community detection algorithms 
are shown in Fig. S2(a). The figure suggests that the CbCI algorithm combined with Infomap or Walktrap per-
forms better than when it is combined with a different community detection algorithm.

Empirical networks. In this section, we run the CbCI and other algorithms on the following 12 empirical 
networks with community structure. (i) Two networks of Autonomous Systems of the Internet constructed by 
the University of Oregon Route Views project35–37: A node is an Autonomous System. The network collected on 2 
January 2000 and that on 31 March 2001 are referred to as AS-1 and AS-2, respectively. (ii) Pretty Good Privacy 
network (PGP)38: Two persons are connected by a link if they share confidential information using the PGP 
encryption algorithm on the Internet. (iii) World Wide Web (WWW)39: A network of websites connected by 
hyperlinks, which is originally a directed network. (iv) Email-based communication network at Kiel University 
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(referred to as email-uni)40: E-mail sending activity among students, which provides a directed link, recorded 
over a period of 112 days. (v) Email-based communication network in Enron Corporation (email-Enron)36,41,42: 
Two e-mail users in the data set are connected by an unweighted directed link if at least one e-mail has been sent 
from one user to the other user. (vi) Collaboration networks in General Relativity and Quantum Cosmology 
(CA-GrQc), Astro Physics, (CA-Astroph), and Condensed Matter, (CA-Condmat) categories36,43 and High 
Energy Physics – Phenomenology (CA-HepPh) and High Energy Physics – Theory (CA-HepTh) categories in 
arXiv35,36. By definition, two authors are adjacent if they coauthor a paper. (vii) High-energy physics citation 
network within the hep-th category of arXiv (HEP)44, which is originally a directed network. For each network, 
we removed the link weight, self-loops, and direction of the link, and submitted the LCC to the following analysis. 
Summary statistics of these networks including the modularity, Q, are shown in Tables S1 and S2.

We do not investigate the Betweenness immunization algorithm due to its high computational cost (i.e., 
O(NM) time for calculating the betweenness centrality of all nodes24, hence O(N2M) time for removing O(N) 
nodes).

The performance of the different immunization algorithms is compared on two empirical networks in Fig. 3. 
Among the 12 empirical networks that we tested, these two networks yielded the smallest and largest modularity 
values as maximized by the Louvain algorithm. The figure indicates that the CbCI algorithm combined with 
Infomap or Walktrap performs better than the previously proposed algorithms including the CI algorithm in both 
networks. The CbCI algorithm performs better than the CI algorithm in many other empirical networks as well 

Figure 2. Normalized size of the LCC, G(q), plotted against the fraction of removed nodes, q, in model networks 
with N = 5000. A curve corresponds to an immunization algorithm. See Methods for the abbreviations. (a) Scale-free 
network with prescribed community structure. (b) BA model.

Figure 3. Normalized size of the LCC, G(q), plotted against the fraction of removed nodes, q, in two 
empirical networks. (a) E-mail communication network in Enron. (b) World Wide Web.
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(Fig. S2(b)–(m)). Furthermore, the CbCI algorithm combined with a different community detection algorithm 
also outperforms the CI algorithm in most of the networks (Fig. S2(b)–(m)).

To be quantitative, we measure the fraction of removed nodes at which the network fragments into sufficiently 
small connected components, i.e.,

θ≡ <q q G qinf{ : ( ) }, (8)c

where we remind that G(q) is the size of the LCC normalized by N. We set θ =  0.05. We calculate qc for each com-
bination of a network and an immunization algorithm.

The value of qc for each immunization algorithm normalized by the qc value for the CI algorithm is plotted in 
Fig. 4. A symbol represents a network. A small normalized value of qc implies a high efficiency of the immuniza-
tion algorithm. As expected, the Degree immunization algorithm performs worse than the CI in all the tested net-
works (Fig. 4(c)). For the CbCI algorithm combined with Infomap, qc is smaller by 15.0% to 49.7% than that for 
the CI algorithm (Fig. 4(a)). The CbCI algorithm combined with Walktrap shows a similar performance for all but 
one networks (Fig. 4(b)). The CbCI algorithm combined with three of the other four community detection algo-
rithms performs better than the CI algorithm for networks with relatively strong community structure (Fig. S3). 
The CbDI algorithm combined with Infomap performs better than the CI algorithm for all networks, but to a 
lesser extent than the CbCI algorithm combined with Infomap does (Fig. 4(d)). The CbDI algorithm combined 
with Walktrap (Fig. 4(e)) and the other four community detection algorithms (Fig. S3) performs worse than the 
CI algorithm. The LSP algorithm performs worse than the CI algorithm in a majority of the networks (Fig. 4(f)).

Even if two immunization algorithms yield the same qc value on the same network, G(q) may considerably 
drop at a smaller q value with one immunization algorithm than the other algorithm. To quantify the perfor-
mance of immunization algorithms in this sense, we measure the size of the LCC integrated over q values7,45, i.e.,

∑≡ .
=

G
N

G i N1 ( / )
(9)i

N

0

It should be noted that G is the area under the curve when G(q) is plotted against q and ranges between 0 and 1/2. 
A small G value implies a good performance of an immunization algorithm.

The value of G for each immunization algorithm normalized by that for the CI algorithm is plotted in Fig. 5. 
The CbCI algorithm combined with Infomap outperforms the CI algorithm in 11 out of the 12 networks in terms 
of G (Fig. 5(a)). Similarly, the CbCI algorithm combined with Walktrap outperforms the CI algorithm in ten out 
of the 12 networks (Fig. 5(b)). The CbCI combined with any of the other four community detection algorithms 
outperforms the CI algorithm in roughly half of the networks and tends to be efficient for networks having large 
modularity values as determined by the Louvain algorithm (Fig. S4). In particular, for the three networks with the 
largest modularity, the CbCI algorithm combined with any of the six community detection algorithms 

Figure 4. The fraction of removed nodes to fragment the network, qc, for an immunization algorithm 
divided by the value for the CI algorithm. (a) CbCI combined with Infomap. (b) CbCI combined with 
Walktrap. (c) High degree adaptive (Degree). (d) CbDI combined with Infomap. (e) CbDI combined with 
Walktrap. (f) Laplacian spectral partitioning (LSP). A symbol represents a network. The cross represents the 
model network used in Fig. 2(a). The modularity value, Q, is determined by the Louvain algorithm.
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outperforms the CI algorithm. The Degree, CbDI, and LSP algorithms are less efficient than the CI algorithm in 
terms of G (Figs 5(c)–(f) and S4).

Why do Infomap and Walktrap marry better with the CbCI algorithm than the other commu-
nity detection algorithms? We have shown that the CbCI algorithm is more efficient when it is combined 
with Infomap or Walktrap, in particular Infomap, than with the other four community detection algorithms. To 
explore why, we start by measuring the clustering coefficient46 of the unweighted version of the coarse-grained 
networks. We do so because in theory the CI assumes locally tree-like networks9,47. High clustering in the 
coarse-grained network may discourage the CbCI algorithm. For each empirical network, we measure the 
Pearson correlation coefficient between the clustering coefficient and qc normalized by the value for the CI algo-
rithm. We use the result for each community detection algorithm as a data point such that the correlation coeffi-
cient is calculated on the basis of six data points. The results are shown in Table 1. We find that the clustering 
coefficient is not consistently correlated with the normalized qc. The results are qualitatively the same with a 

Figure 5. The G value normalized by that for the CI algorithm. (a) CbCI combined with Infomap. (b) CbCI 
combined with Walktrap. (c) Degree. (d) CbDI combined with Infomap. (e) CbDI combined with Walktrap.  
(f) LSP. The Q value is determined by the Louvain algorithm.

Clustering 
coefficient

Weighted clustering 
coefficient NC

Mean path 
length Entropy

Normalized 
entropy

AS-1 0.238 0.120 − 0.415 − 0.354 − 0.523 − 0.608

AS-2 − 0.258 0.119 − 0.417 0.065 − 0.319 − 0.203

PGP 0.298 0.490 − 0.603 − 0.534 − 0.667 − 0.781

WWW − 0.005 − 0.430 0.306 − 0.375 0.216 − 0.169

email-uni 0.213 − 0.053 − 0.362 0.125 − 0.446 − 0.568

email-Enron − 0.278 − 0.398 − 0.073 − 0.136 − 0.650 − 0.817

CA-GrQc 0.438 0.345 − 0.773 − 0.458 − 0.891 − 0.934

CA-Astroph − 0.154 − 0.005 − 0.406 − 0.144 − 0.764 − 0.826

CA-Condmat 0.121 − 0.181 − 0.653 0.219 − 0.820 − 0.918

CA-HepPh 0.729 0.792 − 0.845 − 0.569 − 0.932 − 0.781

CA-HepTh − 0.200 − 0.118 0.178 0.325 − 0.067 − 0.320

HEP 0.314 0.204 − 0.718 − 0.042 − 0.842 − 0.759

Table 1.  Correlation coefficient between an explanatory variable and the normalized qc. The clustering 
coefficient is defined by the number of triangles containing the ith node divided by ki(ki −  1)/2, which is averaged 
over all nodes 1 ≤  i ≤  N. The weighted clustering coefficient is defined by ∑ −= ≠ ˆ ˆ ˆw w w k k( ) /[ ( 1)]j k j k i

N
ij jk ki i i, 1; ,

1/3 , 
which is averaged over i48,49. Here, = ≤ ′ ′≤ ′ ′ŵ w w/max ( )ij ij i j N i j1 , , and wij is the weight of the link between the ith and 
jth nodes. We calculated the correlation coefficient for each network on the basis of the data points obtained from 
the six community detection algorithms. The scattergrams based on which the correlation coefficient has been 
calculated are shown in Fig. S5(a), (c), (e), (g), (i), and (k).
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weighted clustering coefficient48,49 (Table 1). We obtain similar results if G instead of qc is used as a performance 
measure (Table 2). It should be noted that different community detection algorithms yield sufficiently different 
clustering coefficient values including large values (Fig. S5(a)). We conclude that the lack of local tree-like struc-
ture in the coarse-grained networks is not a strong determinant of the performance of the CbCI algorithm. This 
result does not contradict those for the original CI algorithm, which assumes local tree-like networks, because the 
CI algorithm is practically efficient on loopy networks as well9.

We have set = 2, thus ignoring the contribution of nodes in coarse-grained networks three or more hops 
away from a focal node. In fact, large coarse-grained networks may have a large mean path length and deteriorate 
the performance of the CbCI algorithm. Therefore, we calculate the correlation coefficient between NC, i.e., the 
number of the detected communities, and qC, and between the mean path length in the unweighted coarse-grained 
network and qC (Table 1). The correlation efficient between G and either NC or the mean path length is also meas-
ured (Table 2). The tables indicate that the performance of a community detection algorithm is not consistently 
correlated with the mean path length. It is correlated with NC, but in the manner such that the performance of the 
CbCI algorithm improves as NC increases, contrary to the aforementioned postulated mechanism. Therefore, the 
use of = 2 does not probably explain the reason why a community detection algorithm marries the CbCI algo-
rithm better than another.

In fact, the CbCI algorithm performs well when the detected communities have relatively similar sizes. To 
show this, we measure the entropy in the partitioning, which is defined by ∑ ′ ′

= N N N N( / )log( / )c
N

c c1
C , where ′Nc  is the 

number of nodes in the cth community. The entropy ranges between 0 and logNC. A large entropy value implies 
that the partitioning of the network is relatively egalitarian. The correlation coefficient between the entropy and 
the normalized qc is shown in Table 1 for each network. The entropy and qc are negatively correlated with each 
other for all networks and strongly so for most of the networks. This result is robust when we normalize the 
entropy by the largest possible value, i.e., logNC (Table 1), and when the performance measure is replaced by G 
(Table 2).

To assess the robustness of this finding, we calculate the same correlation coefficient between either the unno-
rmalized or normalized entropy and one of the two performance measures, but for each community detection 
algorithm. Now each empirical network constitutes a data point based on which the correlation coefficient is 
calculated. The correlation coefficient values are shown in Table 3. Although the correlation is weaker than in the 
previous case, the correlation between the entropy and either the normalized qC or G is largely negative, which is 
consistent with the results shown in Tables 1 and 2. The correlation coefficient between Q and each of the perfor-
mance measure is also shown in Table 3. The entropy provides a weaker determinant of the performance as com-
pared to Q, which is expected because the CbCI algorithm is designed for networks with community structure. 
Nevertheless, the entropy provides a larger (i.e., more negative) correlation value than Q does in some cases 
(Table 3).

Infomap tends to detect a large number of communities (Table S2) whose size is less heterogeneously dis-
tributed than the case of the other community detection algorithms (Fig. S5(i) and (k)). We consider that this 
is a main reason why Infomap is effective when combined with the CbCI algorithm. Roughly speaking, the 
label-propagation algorithm tends to yield a similarly large number of communities, NC (Table S2). However, 
the size of the community is more heterogeneously distributed with the label-propagation algorithm than with 
Infomap, as quantified by the entropy measures (Fig. S5(i) and (k)).

Discussion
We showed that the CbCI immunization algorithm outperforms the CI and some other algorithms when a 
given network has community structure. The algorithm aims to pinpoint nodes that connect different commu-
nities at a reasonable computational cost. The CbCI algorithm is in particular efficient when Infomap27,28 is used 

Clustering 
coefficient

Weighted clustering 
coefficient NC

Mean path 
length Entropy

Normalized 
entropy

AS-1 0.064 0.284 − 0.813 − 0.259 − 0.813 − 0.604

AS-2 − 0.369 0.416 − 0.693 0.105 − 0.660 − 0.449

PGP 0.084 0.295 − 0.489 − 0.586 − 0.603 − 0.766

WWW − 0.367 0.111 − 0.713 0.281 − 0.820 − 0.694

email-uni 0.394 0.362 − 0.810 0.043 − 0.823 − 0.595

email-Enron − 0.381 − 0.224 − 0.474 − 0.258 − 0.804 − 0.798

CA-GrQc 0.034 0.045 − 0.467 − 0.043 − 0.679 − 0.909

CA-Astroph − 0.313 − 0.112 − 0.137 − 0.232 − 0.526 − 0.700

CA-Condmat 0.334 − 0.024 − 0.706 0.387 − 0.851 − 0.839

CA-HepPh 0.227 0.419 − 0.424 − 0.214 − 0.607 − 0.685

CA-HepTh 0.248 0.629 − 0.632 − 0.129 − 0.754 − 0.730

HEP − 0.067 0.400 − 0.636 0.395 − 0.759 − 0.722

Table 2.  Correlation coefficient between an explanatory variable and the normalized G for each network. 
We calculate the correlation coefficient for each network on the basis of the data points obtained from the six 
community detection algorithms. The scattergrams based on which the correlation coefficient has been 
calculated are shown in Fig. S5(b), (d), (f), (h), (j), and (l).
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for detecting communities beforehand. Infomap runs sufficiently fast at least for sparse networks21 such that 
the entire CbCI algorithm runs as fast as the CI algorithm at least asymptotically in terms of the network size. 
The Walktrap community detection algorithm29 is the second best among the six candidates to be combined 
with the CbCI algorithm in terms of the quality of immunization. However, Walktrap is slower than Infomap. 
Walktrap consumes longer time than the main part of the CbCI algorithm, i.e., sequential node removal, when 
the max-heap data structure is used for implementing the CbCI algorithm. In this case, the community detec-
tion before starting the node removal is the bottleneck of the entire CbCI algorithm, and the CbCI algorithm is 
slower than the CI algorithm. To our numerical efforts, we recommend Infomap to be combined with the CbCI 
algorithm.

We argued that Infomap works better in combination with the CbCI algorithm than the other community 
detection algorithms do mainly because Infomap yields a relatively egalitarian distribution of the community size. 
However, the distribution of the community size is usually skewed even with Infomap50. The CbCI algorithm may 
work even better if we use a community detection algorithm that imposes that the detected communities are of 
the equal or similar sizes. This problem is known as k-balanced partitioning, where k refers to the number of com-
munities. Although k-balanced partitioning for general k is notoriously hard to solve, there are various approx-
imate algorithms for this problem51–53. Combining these algorithms with the CbCI algorithm may be profitable.

We partitioned the network just once in the beginning of the CbCI algorithm and used the obtained com-
munity structure throughout the node removal procedure. This property is shared by the CbDI algorithm5 and 
another immunization algorithm11. We may be able to improve the performance of immunization by updating 
the community structure during the node removal. Our preliminary numerical simulations did not yield an 
improvement of the CbCI algorithm with online updating of community structure (section S1 in the SI). We 
should also bear in mind the computational cost of community detection, which would be repeatedly applied in 
the case of online updating. Nevertheless, this line of improvement may be worth investigating.

The CI assumes locally tree-like networks9. Although the CI algorithm is practically efficient in moderately 
loopy networks as well9, many empirical networks are abundant in triangles and short cycles such that they are 
highly loopy1. Dense connectivity within a community implies that there tend to be many triangles and short 
cycles in a network with community structure54,55. Then, coarse graining effectively coalesces many triangles 
and short cycles into one supernode, possibly suppressing their detrimental effects. At the same time, however, 
coarse-grained networks tend to have a large clustering coefficient (Fig. S5(a)). We may be able to improve 
the performance of the CbCI algorithm by suppressing the effect of short cycles in coarse-grained networks. 
Recently, a method has been proposed to improve the accuracy of estimating the percolation threshold using 
non-backtracking matrices, where redundant paths are suppressed in the counting of the paths47. This method 
applied to both CI and CbCI algorithms may enhance their performance in the immunization problem.

The recently proposed collective influence propagation (CIp) algorithm, which can be interpreted as the CI 
algorithm in the limit of → ∞ , generally yields better solutions than the CI algorithm does25. Given that we 
have not implemented the CIp algorithm in the present article, we are not arguing that the CbCI algorithm is 
better than the CIp algorithm. It should also be noted that we may be able to combine the CbCI algorithm with the 
idea of the CIp algorithm (i.e., using the leading left and right eigenvectors of the non-backtracking matrix) to 
devise a new algorithm.

Methods
Immunization algorithms to be compared. We compare the performance of the CI and CbCI algo-
rithms against the following immunization algorithms.

•	 High degree adaptive (abbreviated as Degree)18–20: We sequentially remove the node having the largest degree. 
If multiple nodes have the largest degree, we break the tie by selecting one of the largest-degree nodes at ran-
dom. We recalculate the degree after each node has been removed.

 
•	 Community-based dynamical importance (CbDI)5: This method exploits the community structure of a net-

work, similar to the CbCI algorithm, but calculates the importance of a community in the coarse-grained 

Entropy Normalized entropy Q

qc G qc G qc G

Infomap − 0.088 0.358 − 0.017 − 0.206 − 0.576 − 0.210

Walktrap − 0.506 0.014 − 0.434 − 0.201 − 0.348 − 0.128

label propagation − 0.690 − 0.659 − 0.630 − 0.687 − 0.689 − 0.797

fast greedy − 0.211 − 0.099 0.067 − 0.081 − 0.015 − 0.310

simulated annealing − 0.695 0.057 − 0.288 − 0.005 − 0.330 − 0.391

Louvain − 0.791 − 0.001 − 0.267 − 0.370 − 0.707 − 0.370

Table 3.  Correlation coefficient between an explanatory variable and a performance measure for each 
community detection algorithm. We calculate the correlation coefficient for each community detection 
algorithm on the basis of the data points obtained from the 12 empirical networks. qc and G indicate the values 
normalized by those for the CI algorithm. The scattergrams based on which the correlation coefficient has been 
calculated are shown in Fig. S6.
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network in terms of the so-called dynamical importance3. The CbDI algorithm needs a community detection 
algorithm. We use each of the six community detection algorithms used in the CbCI algorithm.

The CbDI algorithm runs as follows5. We denote by λ and = Τ�� ��u u u( )N1 C
 the largest eigenvalue and the 

corresponding eigenvector of ∼A, respectively. Owing to the Perron-Frobenius theorem, it holds true that 
λ > 0 and ≥u 0i  (1 ≤  i ≤  NC). The number of links between node i and the Jth community is denoted by 
kiJ ≡  ∑ j∈communityJ Aij. We define λ= ∑ = ≠ 

( )x k u /J J I
N

iJ J1,
C , where I is the community to which node i belongs. 

The CbDI of node i is defined by − ∑ = ≠ u x k u(2 )I J J I
N

iJ J1,
C . We remove the nodes in descending order of the 

CbDI. If there are multiple nodes that have the same largest CbDI value, we break the tie by selecting the node 
that has the largest number of intra-community links. We recalculate the CbDI values of all the remaining 
nodes after removing each node. Once all the communities are disconnected, we sequentially remove the 
nodes in descending order of kiI. We recalculate kiI of all the remaining nodes after removing each node.

•	 The Laplacian spectral partitioning (LSP) algorithm runs as follows10:
1. For the largest connected component (LCC), calculate the Fiedler vector, i.e., the eigenvector associ-

ated with the smallest positive eigenvalue of the Laplacian, L ≡  DLCC −  ALCC, where DLCC denotes the 
NLCC ×  NLCC diagonal matrix whose (i, i) element is equal to the degree of the ith node in the LCC, NLCC 
is the number of nodes in the LCC, and ALCC is the adjacency matrix of the LCC.

2. Partition the NLCC nodes into two non-empty groups by thresholding on the value of the element in 
the Fiedler vector. Group 1 (group 2) consists of the nodes whose corresponding element in the Fiedler 
vector is higher (lower) than a threshold. There are NLCC −  1 possible ways to bipartition the nodes.

3. Calculate

=



 +





+











m m
K K

m m
K K

ln 2 ln ,
(10)

in
in

1
2

2
2 out

out

1 2


for each bipartition, where min and mout are the numbers of intra-group and inter-group links, respectively. 
K1 and K2 represent the sum of the nodes’ degrees in groups 1 and 2, respectively.

4. Find the partition that maximizes .
5. Given the partition, remove the node that has the largest number of inter-group links. Then, recalculate 

the number of inter-group links for each remaining node. Repeat the node removal until the two groups 
are disconnected.

6. Repeat steps 1–5 until the size of the LCC becomes less than θN, where θ =  0.01.

•	 High betweenness centrality adaptive (abbreviated as Betweenness)6,16,22,23: We remove the node with the larg-
est betweenness centrality. If multiple nodes have the same largest betweenness centrality value, the node hav-
ing the largest degree is removed. We recalculate the betweenness of all nodes every time we remove a node.

We excluded the dynamical importance3 because it is less successful than the CI on various networks9 and 
than the CbDI on networks with community structure5. We also excluded the immunization algorithms on the 
basis of the PageRank, closeness centrality, and k-core, which had been shown to be outperformed by the CI algo-
rithm9. This is because these algorithms do not particularly exploit community structure of the network such that 
there is no reason for believing that they would perform competitively on networks with community structure.

A scale-free network model with community structure. We constructed a scale-free network with 
built-in community structure as follows5. We first generate a coarse-grained network whose node is regarded as 
community, using the Barabási-Albert (BA) model56 having NC =  100 nodes and mean degree six. The initial 
network is the clique composed of m0 =  3 nodes, and each added node has m =  3 links. After generating a 
coarse-grained network, we assign 50 nodes to each community, resulting in N =  50 ×  NC =  5000 nodes in total. 
For each community, the intra-community network is given by the BA model with m0 =  m =  4, which yields the 
mean within-community degree equal to = − + − = .



k N m m m m N2[( ) ( 1)/2]/ 7 60 0 0 . Additionally, if 
communities I and J are adjacent in the coarse-grained network, then nodes i ∈  I and j ∈  J are connected with 
probability 〈 k〉 g/(6N/NC). This guarantees that a node is adjacent to 〈 k〉 g nodes in different communities on aver-
age. We set 〈 k〉 g =  1. The mean degree of the entire network is equal to = . ≈ +



k k k8 58 g
.
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