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ABSTRACT Pathogenic mycobacteria contain up to five type VII secretion (T7S) systems, ESX-1 to ESX-5. One of the conserved
T7S components is the serine protease mycosin (MycP). Strikingly, whereas MycP is essential for secretion, the protease activity
of MycP1 in Mycobacterium tuberculosis has been shown to be dispensable for secretion. The essential role of MycP therefore
remains unclear. Here we show that MycP1 and MycP5 of M. marinum have similar phenotypes, confirming that MycP has a sec-
ond unknown function that is essential for its T7S system. To investigate whether this role is related to proper functioning of the
T7S membrane complex, we first analyzed the composition of the ESX-1 membrane complex and showed that this complex con-
sists of EccBCDE1, similarly to what was previously shown for ESX-5. Surprisingly, while mycosins are not an integral part of
these purified core complexes, we noticed that the stability of both the ESX-1 complex and the ESX-5 complex is compromised in
the absence of their MycP subunit. Additional interaction studies showed that, although mycosins are not part of the central ESX
membrane complex, they loosely associate with this complex. We hypothesize that this MycP association with the core mem-
brane complex is crucial for the integrity and functioning of the T7S machinery.

IMPORTANCE Among the major virulence factors of pathogenic mycobacteria are the type VII secretion (T7S) systems. Three of
these systems, ESX-1, ESX-3, and ESX-5, have been shown to be crucial for virulence or viability. Here we describe the function
of mycosin proteases, which are conserved components within these systems. We show that MycP1 and MycP5 have a second,
proteolytic-independent function which is essential for the T7S system. We additionally found that this second essential role is
related to the stabilization and proper functioning of their respective ESX membrane core complexes. Finally, we found that this
is mediated by a loose association of MycP with the complex. Understanding the essential role of mycosins in type VII secretion
systems, which play central roles in the virulence and viability of pathogenic mycobacteria, may provide new intervention strate-
gies to treat tuberculosis.

Received 10 August 2016 Accepted 23 September 2016 Published 18 October 2016

Citation van Winden VJC, Ummels R, Piersma SR, Jiménez CR, Korotkov KV, Bitter W, Houben ENG. 2016. Mycosins are required for the stabilization of the ESX-1 and ESX-5 type
VII secretion membrane complexes. mBio 7(5):e01471-16. doi:10.1128/mBio.01471-16.

Invited Editor Roland Brosch, Institut Pasteur Editor Stefan H. E. Kaufmann, Max Planck Institute for Infection Biology

Copyright © 2016 van Winden et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Edith N. G. Houben, e.n.g.houben@vu.nl.

Pathogenic mycobacteria such as Mycobacterium tuberculosis
and Mycobacterium leprae remain notorious human patho-

gens. Important virulence factors of pathogenic mycobacteria are
the type VII secretion (T7S) systems and their substrates, which
are required for the completion of the macrophage infection cycle
and the uptake of nutrients and metabolites across its exception-
ally hydrophobic and impermeable cell envelope (CE) (1–4).
Pathogenic mycobacteria have up to five of these systems, called
ESX-1 to ESX-5, of which ESX-1, ESX-3, and ESX-5 have been
shown to be essential for virulence or bacterial viability (1, 5, 6).

ESX-1 is of pivotal importance for the virulence of pathogenic
mycobacteria, with ESX-1 substrates being linked to phagosomal
escape by destabilizing the phagosomal membrane of macro-
phages (1, 7). The importance of the ESX-1 system for virulence is
also shown by the absence of part of the esx-1 genomic locus in the
vaccine strain Mycobacterium bovis BCG (8–10). This deletion is
the major determinant for the attenuation of this strain. Also, in

the fish pathogen Mycobacterium marinum, a close relative of
M. tuberculosis, ESX-1 has been shown to mediate phagosomal
escape and deletion of the esx-1 region leads to a strong attenua-
tion in zebrafish (11, 12).

The most recently evolved mycobacterial T7S system,
ESX-5, is present only in the cluster of slow-growing mycobac-
teria. Interestingly, this cluster contains most of the pathogenic
species. ESX-5 is responsible for the secretion of many proteins
of the so-called proline-glutamic acid (PE) and proline-proline-
glutamic acid (PPE) families and is linked to host immune mod-
ulation. In addition, ESX-5 has been shown to be essential for in
vitro growth of M. marinum and M. bovis BCG by permeating the
outer membrane to allow nutrient uptake (4, 13–15).

The ESX systems of mycobacteria share a set of conserved com-
ponents (16, 17), five of which have one or more predicted trans-
membrane domains and are cell envelope localized (2). Four of
these membrane proteins of the ESX-5 system, i.e., EccB5 to EccE5,
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form a large membrane complex of 1.5 MDa (2, 17, 18). Although
crystal structures of the soluble domains of the individual compo-
nents EccB, EccC, and EccD have been published previously (19,
20), there are currently no structural data for this complete mem-
brane complex. Furthermore, the biochemical composition of this
complex has been elucidated only for the ESX-5 system, whereas
the composition and size of the other ESX complexes remain un-
known.

The fifth conserved component with a predicted transmem-
brane domain is the subtilisin-like protease mycosin (MycP),
which is among the most conserved T7S components (21). Al-
though previous pulldown experiments indicated that MycP is
not part of the core ESX membrane complex, MycP3 and MycP5

have been shown to be essential for mycobacterial viability and
MycP1 and MycP5 are essential for ESX-1- and ESX-5-associated
secretion, respectively (4, 22, 23). This indicates that each MycP is
essential for and functions specifically within its respective ESX
system. The crystal structures of the protease domains of MycP1

and MycP3 show a highly conserved overall subtilisin-like struc-
ture, with differences in the substrate binding groove indicating
different substrate specificities (24, 25).

Surprisingly, thus far, only one substrate, ESX-1 substrate
EspB, is known for any of the mycosins. This protein is processed
by MycP1 in vitro and upon secretion by M. tuberculosis (22).
Importantly, proteolytic activity of MycP1 is, however, not essen-
tial for ESX-1-associated secretion; a catalytically inactive MycP1

mutant of M. tuberculosis even showed increased secretion of
ESX-1 substrates (22). Therefore, the essential function of myco-
sins in secretion remains unknown. The catalytically inactive
MycP1 mutant of M. tuberculosis additionally showed decreased
virulence in mice, but it is still unknown whether this is a direct
effect of the deficiency in EspB processing or due to the observed
increased secretion of ESX-1 substrates in this mutant. Together,
these observations suggest a dual role of MycP within T7S, with
MycP1 being essential for ESX-1 secretion whereas proteolytic ac-
tivity of MycP1 is not essential for this function.

To further elucidate the dual function of mycosin proteases, we
investigated MycP1 and MycP5 functioning in M. marinum. We
show that, similarly to the ESX-1 system in M. tuberculosis, ESX-1-
and ESX-5-mediated secretion is independent of the (predicted)
proteolytic activity of their respective mycosins. However, we
show that both the ESX-1 and ESX-5 membrane complexes are
not stable in the absence of MycP1 and MycP5, respectively, pro-
viding an explanation of why mycosins are essential components
in the T7S system.

RESULTS
MycP1 is essential for ESX-1-dependent secretion in M. mari-
num, while its protease activity is not. To confirm the dual role of
MycP1 in another species (22), we first deleted the mycP1 gene of
M. marinum via allelic exchange and confirmed that the gene was
successfully deleted via PCR analysis (unpublished observation).
As expected, this knockout mutant was no longer able to secrete
the ESX-1 substrates EsxA, EsxB, and EspB. All examined sub-
strates were still detected in the pellet fractions (Fig. 1A). The
ESX-1 substrate EspE was also no longer extractable from intact
cells by the mild detergent Genapol X-080 (Fig. 1B), indicating
that it was no longer present on the cell surface. ESX-1-dependent
secretion was fully complemented by the introduction of the wild-
type gene (P1; Fig. 1A and B). To assess the role of the protease

activity of MycP1 in secretion, we complemented the �mycP1 mu-
tant also with a proteolytically inactive version, mycP1::S354A
(P1SA). In agreement with a previous study (22), expression of
proteolytic inactive MycP1 resulted in increased secretion of EsxA
and EsxB (Fig. 1A). We also observed an increase in the amount of
surface-localized EspE (Fig. 1B). Whereas the wild-type strain
showed efficient processing of EspB, mainly full-length EspB was
detected in the supernatant of the S354A mutant (Fig. 1A), which
is consistent with the effect observed for the MycP1 active site
mutant of M. tuberculosis (22). There was no increase in the ESX-
5-dependent secretion of proteins of the PE subfamily with poly-
morphic GC-rich repetitive sequences (PE_PGRS), showing that
the proteins are not in general more efficiently secreted by the
MycP1 proteolytically inactive mutant.

The secretion of ESX-1 substrates has been shown to be essen-
tial for contact-dependent lysis of erythrocytes by M. marinum,
which serves as a model for the ESX-1-dependent lysis of phago-
somal membranes and thus for mycobacterial virulence (11). We
confirmed that our wild-type M. marinum strain was capable of
lysing erythrocytes, whereas the �mycP1 mutant showed no he-
molytic activity (Fig. 1D). We could restore this lysing capability
by complementing the mutant with both wild-type mycP1 and the
proteolytically inactive MycP1 mutant. The latter complementa-
tion resulted in significantly increased hemolysis activity com-
pared to that seen with wild-type cells, which is in line with the
increased secretion of ESX-1 substrates in this mutant. Together,
these data show that, in the presence of a proteolytically inactive
MycP1 variant, the ESX-1 system is more active. Finally, we cre-
ated a version of MycP1 where the access to the active site is par-
tially blocked by placing a bulky amino acid, i.e., a tyrosine, at
different positions in the substrate binding groove. We first ana-
lyzed the effect of these mutations on the ability of MycP1 of My-
cobacterium thermoresistibile (MycP1mth) to cleave its substrate
EspB in vitro (25). Introducing a tyrosine at position 239, gener-
ating mycP1mth::N239Y, completely blocked protease activity
(Fig. 1C). Next, we investigated the effect of the mycP1mth::N239Y
mutation (N259Y in M. marinum) on secretion and hemolysis by
M. marinum. The bulky mutant (P1Bulky) showed a phenotype
similar to that of the active site mutant (Fig. 1A, B, and D), with
the bacteria still capable of oversecreting ESX-1 substrates and a
more efficient lysis of erythrocytes. This indicates that in addition
to protease activity, substrate binding to MycP1 is also not essen-
tial for secretion.

MycP5 shows a phenotype similar to that of MycP1. Ates et al.
(4) previously showed that a mycP5 transposon mutant in M. ma-
rinum is no longer able to secrete the ESX-5 substrate group of
PE_PGRS proteins. In this study, we confirmed this secretion de-
fect for an M. marinum mycP5 knockout strain (Fig. 2) and that the
original phenotype could be restored by complementation with
wild-type mycP5 (P5; Fig. 2). Similarly to the phenotype of MycP1,
complementation of the mycP5 knockout strain with the predicted
proteolytically inactive mutant mycP5::S461A (P5SA) or the bulky
mutant mycP5::D362Y (P5Bulky) fully restored ESX-5-dependent
secretion. However, we did not observe an increase in the secre-
tion of ESX-5 substrates, such as the PE_PGRS proteins or EsxN
and LipY. Importantly, LipY, which is normally processed upon
secretion (26), was processed in the active site and bulky mutants
in a manner similar as seen in the wild-type strain. Also, the pat-
tern seen with the PE_PGRS proteins, which are potentially pro-
cessed upon secretion, was unaltered. Either MycP5 is not in-
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volved in the processing of these substrates or there is redundancy
in the protease activities. In conclusion, MycP5 is also essential for
protein secretion via ESX-5, but this function is not linked to its
putative protease activity.

The composition of the ESX-1 membrane complex is similar
to that of the ESX-5 membrane complex. Because MycP is prob-
ably an inner membrane protein, we hypothesized that MycP may
be involved in the correct functioning of the core membrane com-
plex of T7S systems. We have shown previously by blue native
PAGE (BN-PAGE) and antibody (Ab) pulldown experiments that
the membrane complex of the ESX-5 system has a size of 1.5 MDa
and consists of four conserved membrane proteins, i.e., EccB5,
EccC5, EccD5, and EccE5 (2); no MycP5 could be detected in these
purified samples. Here, we set out to improve the purification
procedure by the introduction of an affinity tag, not only to more
accurately detect less-abundant components of the ESX-5 mem-
brane complex but also to determine the composition of the
ESX-1 membrane complex.

As the ESX-1 complex had not been analyzed before, we first
investigated whether the ESX-1 system of M. marinum forms a
similar complex. To analyze this, we generated polyclonal anti-
bodies directed against the C-terminal fragment of EccB1. These

antibodies were used to identify the ESX-1 membrane complex in
n-dodecyl �-D-maltoside (DDM)-solubilized membrane proteins
separated on BN-PAGE, as was done previously for ESX-5. EccB1

antibodies stained a number of different complexes, the largest of
which was approximately 1.5 MDa, similarly to ESX-5 (Fig. 3A).
To be able to isolate the complex, we introduced EccCb1 contain-
ing a C-terminal Twin-Strep-tag in an eccCb1 transposon mutant
of M. marinum (27). The affinity tag did not interfere with EccCb1

functioning, as introduction of the construct fully restored ESX-
1-dependent secretion (see Fig. S1 in the supplemental material).
The tag also did not interfere with formation of the 1.5-MDa
ESX-1 membrane complex as shown by BN-PAGE analysis of
detergent-solubilized membrane fractions and immunoblotting
using Strep antibodies (Fig. 3A), although these complexes were
less pronounced (Fig. 3A).

We subsequently performed pulldown experiments on deter-
gent-solubilized membrane fractions using Strep-Tactin beads.
We observed a number of copurified proteins after Coomassie
staining (Fig. 3B), and we confirmed that two were EccCb1-Strep
and EccB1 by immunoblot analysis (Fig. 3C). To identify the other
copurified proteins, liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) analysis was performed on the complete

FIG 1 MycP1 is essential for ESX-1-dependent secretion in M. marinum, while proteolytic inactive MycP1 shows increased ESX-1 activity. (A) Immunoblot
analysis of cell pellets and supernatants of wild-type (WT) M. marinum and the mycP1 deletion strain complemented with a WT mycP1 (P1) gene, a mycP1 gene
containing an active site mutation (P1SA), and a mycP1 gene with a bulky residue in the substrate pocket (P1Bulky). Proteins were visualized with anti-EsxA,
anti-CFP-10, and anti-EspB (ESX-1 substrates). As a control, blots were incubated with antibodies directed against the ESX-5 secreted PE_PGRS proteins and the
cytosolic GroEL2 protein. (B) Immunoblot detection of cellular (Genapol Pellet) and surface-localized (Genapol Supernatant) proteins of the M. marinum WT
strain and various mycP1 mutants. Surface-localized proteins were extracted with Genapol X-080 and stained for the ESX-1 substrate EspE. (C) SDS-PAGE of an
in vitro cleavage assay of EspBmtub by WT MycP1mth (P1), the active site mutant (P1SA), and the bulky mutant (P1Bulky). EspB was visualized by Coomassie
brilliant blue (CBB) staining, and MycP1 was analyzed with immunoblotting and stained with anti-His. (D) Hemolysis detection of erythrocytes by the
M. marinum WT strain and various mycP1 mutants. Hemolysis was quantified by determining the OD550 absorption of the released hemoglobin. Statistical
significant differences between strains were determined with one-way ANOVA; n � 6 per strain. *, P � 0.05; ***, P � 0.001.
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Strep-tag-purified sample. This analysis showed the significantly
increased presence of EccB1, EccCa1, EccCb1, EccD1, EccE1, and a
hypothetical protein, MMAR_2712 (Table 1), in the samples con-
taining EccCb1-Strep but not in control samples containing puri-
fied material from solubilized membranes of wild-type M. mari-
num. The presence of MMAR_2712 was surprising and might
indicate the presence of an additional component. However,
homology and structure predictions (Phyre2) indicated that
MMAR_2712 is a transmembrane protein with a large periplas-
mic domain containing a predicted phosphate binding site, an
activity unrelated to ESX-1 functioning. Furthermore, the gene
encoding this protein is highly conserved in many bacterial species
without an ESX-1 system. To test a possible interaction of this
protein with the ESX complex, we introduced an N- or a
C-terminal hemagglutinin (HA) tag in MMAR_2712 and isolated
this protein using HA antibody beads. Subsequently, we used im-
munoblotting to determine if ESX-1 components were copurified.
However, this experiment failed to confirm any interaction of
MMAR_2712 with ESX-1 components (unpublished observa-
tions). From these combined observations, we conclude that it is
unlikely that MMAR_2712 is a component of ESX-1. As with the
previously analyzed ESX-5 membrane complex, we were not able
to detect significantly more MycP1 peptides in the purified ESX-1
membrane complex, although a few specific MycP1 spectral
counts were observed in this analysis. We therefore conclude that
the composition and the size of the ESX membrane complex are
conserved between the systems.

Next, we also modified the ESX-5 system with a Twin-Strep-

tag to allow more-efficient purification of the ESX-5 membrane
complex. For this, we complemented the previously characterized
M. marinum eccC5 knockout strain (4) with EccC5 containing a
C-terminal Twin-Strep-tag. This affinity tag did not interfere with
ESX-5-dependent secretion (see Fig. S1 in the supplemental ma-
terial) or with formation of the 1.5-MDa ESX-5 membrane com-
plex (Fig. 3). The Strep-tag purification of EccC5-Strep was signif-
icantly more efficient than the EccCb1-Strep purification and
resulted in the copurification of the three known interactors, i.e.,
EccB5, EccD5, and EccE5, as shown by immunoblot analysis and
LC-MS/MS analysis (Table 2). The mass spectrometry analysis
revealed that, in this preparation also, there were no additional
proteins copurified with EccC5; although spectral counts for
MycP5 could be detected, these numbers were not above the spec-
tral count threshold levels (Table 2). We therefore conclude that
the mycosins are probably not a stable integral part of the ESX
membrane complex.

MycP1 and MycP5 are involved in the stability of the ESX
membrane complexes. Although mycosins do not appear to be
part of the core complex, the mycosins might still be involved in
the correct functioning of this membrane complex. To analyze
this, we first analyzed the presence of the ESX-5 membrane com-
plex in the absence or presence of MycP5. While the 1.5-MDa
membrane complex was readily visualized on BN-PAGE using
polyclonal antibodies directed against EccB5, EccC5, and EccD5

for the wild-type strain, the complex levels were strongly reduced
when membrane proteins of the mycP5 knockout mutant were
analyzed (Fig. 4A; see also Fig. S2A in the supplemental material).

FIG 2 MycP5 is required for secretion but can be complemented with variants that have mutations in the active site or at the binding site. (A) Immunoblot
analysis of cell pellets and supernatants of wild-type (WT) M. marinum and the mycP5 deletion strain complemented with a WT mycP5 (P5) gene, a mycP5 gene
containing an active site mutation (P5SA), and a mycP5 gene with a bulky residue in the substrate pocket (P5Bulky). Blots were stained for ESX-5 substrates with
anti-PE_PGRS and anti-EsxN. As a loading control, blots were probed with antibodies directed against the ESX-1 substrate EsxA and cytosolic GroEL2. (B)
Detection of cellular (Genapol Pellet) and cell surface-localized (Genapol Supernatant) PE_PGRS proteins of the M. marinum wild-type (WT) strain and the
mycP5 deletion strain complemented with various mycP5 mutant genes by immunoblotting. (C) Immunoblot detection of cellular (Genapol Pellet) and cell
surface-localized (Genapol Supernatant) proteins of wild-type (WT) M. marinum and the various mycP5 mutant strains expressing C-terminal HA-tagged LipY.
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Complementation with both wild-type mycP5 and mycP5::S461A
restored the complex to wild-type levels. This effect on complex
formation was not due to decreased stability of the separate sub-
units, as the expression levels of EccC5 and EccD5 were not af-

fected, whereas EccB5 levels were reduced only slightly upon the
mycP5 deletion. A similar effect was observed for the ESX-1 com-
plex; we could detect the 1.5-MDa ESX-1 complex in the wild-type
strain, while this complex was not observed in the absence of
MycP1 (Fig. 4B). This phenotype could be complemented by in-
troduction of wild-type MycP1 or the active site mutant. Expres-
sion levels of EccB1 were not affected by knocking out mycP1.
These results suggest that the strongly reduced membrane com-
plex levels in the absence of the respective mycosins were not due
to diminished expression of individual membrane components.

The observation that small amounts of the 1.5-MDa ESX-5
membrane complex could be detected in the mycP5 knockout
strain suggested that the membrane complex is less efficiently
formed or is less stable. To distinguish between these two possi-
bilities, we treated half of the membrane fractions with the cross-
linking agent dithiobis(succinimidyl propionate) (DSP) before
solubilization was performed to fix protein-protein interactions.
DSP cross-linking did not affect ESX-5 complex levels in the wild-
type strain. Also, in the negative-control strain, i.e., the eccC5

knockout mutant, the presence of DSP did not restore complex
formation of the remaining components. In contrast, cross-
linking had a major effect in the mycP5 mutant, as the ESX-5
membrane complex was detectable at wild-type levels in the DSP-
treated membranes (Fig. 4C). A similar experiment was per-
formed for ESX-1. Also, in this case DSP treatment of mycP1

knockout membranes resulted in a stabilizing effect on the ESX-1
complex (see Fig. S2B in the supplemental material). This shows
that the conserved components of the ESX-1 and ESX-5 mem-
brane complex interact in principle and seem to properly form the
~1.5-MDa membrane complex in the absence of their MycP com-
ponent but that the complexes more easily dissociate after deter-
gent extraction. We therefore conclude that the mycosins of
ESX-1 and ESX-5 are involved in stabilization of the respective
membrane complexes. We propose that this stabilization is crucial
for membrane complex functioning, explaining the essential role
of MycP in the T7S system.

MycP5 is associated with the ESX-5 core complex. In the mass
spectrometry results from the purified EccCb1 and EccC5 protein
samples, we did observe a few specific spectral counts for MycP1

and MycP5, respectively. These counts were too low to conclude
that MycP is a stable component of the T7S membrane complex.
However, we hypothesized that MycP could be loosely associated

FIG 3 Isolation and characterization of the ESX-1 membrane complex, whose
composition is similar to that of the ESX-5 membrane complex. (A) Immunoblot
of detergent-solubilized cell envelope fractions of the M. marinum wild-type
(WT), eccCb1::tn-eccCb1-2strep (1strep), and �eccC5-eccC5-2strep (5strep) strains
after blue native polyacrylamide gel electrophoresis. Blots were stained with anti-
EccB1 (B1), anti-EccB5 (B5), or anti-Strep tag (strep) antibodies as indicated. (B)
SDS-PAGE analysis and Coomassie staining of the Strep-Tactin-purified ESX-1
membrane complex from M. marinum eccCb1::tn-eccCb1-2strep and ESX-5 mem-
brane complex from M. marinum �eccC5-eccC5-2strep. Purifications using WT
M. marinum strains served as a negative control. Isolated proteins were analyzed
by mass spectrometry. (C) Immunoblot analysis of the purified ESX-1 membrane
complex from M. marinum eccCb1::tn-eccCb1-2strep and ESX-5 membrane com-
plex from M. marinum �eccC5-eccC5-2strep.

TABLE 1 Proteins copurified with EccCb1strepa

Identified
protein

Protein
description MW

Sequence
coverage
(%)

MS/MS normalized spectral
count

Fold
change P value

NSAFWT eccCb1-strep

A B A B A B

EccCa1 ESX-1 core component 80.8 73.5 20 3 271 157 19.0 2.5 � 10�3 0.35 0.3
EccCb1 ESX-1 core component 64.6 49.2 7 0 172 98 37.5 2.4 � 10�3 0.40 0.38
EccB1 ESX-1 core component 51.3 75.5 7 3 85 53 13.9 1.4 � 10�3 0.37 0.38
EccE1 ESX-1 core component 50.9 64.7 11 1 76 46 10.1 4.6 � 10�3 0.20 0.15
MMAR_2712 Hypothetical protein 76.1 51.4 9 1 70 44 11.0 3.0 � 10�3

EccD1 ESX-1 core component 51.3 14 0 0 18 11 � 9.7 � 10�4 0.05 0.03
MycP1 ESX-1 component 47.7 41.7 0 0 11 8 � 1.2 � 10�3

a LC-MS/MS was performed on Strep-tag-purified material from M. marinum wild-type (negative control) and M. marinum-eccCb1::tn-eccCb1strep cell envelope fractions, followed
by a two-way analysis. Proteins that showed �10 normalized spectral counts in both eccCb1strep pulldown samples and a normalized spectral abundance factor (NSAF) of �0.02
were selected. Data in columns A and B represent results from biological replicates. MW, molecular weight.
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with the complex and could thereby stabilize the core complex. To
investigate this, we tried to preserve this interaction by testing
different mild detergents to solubilize the cell envelope proteins of
the mycP5 deletion strain complemented with MycP5 containing a

C-terminal HA tag for detection. The HA tag did not interfere
with ESX-5-dependent secretion and therefore did not affect
MyP5 functioning (see Fig. S1C in the supplemental material).
Although several detergents did show solubilization compara-

TABLE 2 Proteins copurified with EccC5strepa

Identified
protein

Protein
description MW

Sequence
coverage
(%)

MS/MS normalized spectral
count

Fold
change P value

NSAFWT eccC5-strep

A B A B A B

EccC5 ESX-5 core component 152.6 71.4 75 50 706 651 10.8 5.7 � 10�6 0.42 0.41
EccD5 ESX-5 core component 53.5 29.2 24 15 118 111 5.9 4.4 � 10�5 0.20 0.20
EccE5 ESX-5 core component 44.0 57.6 17 8 103 110 8.5 4.3 � 10�5 0.21 0.24
EccB5 ESX-5 core component 54.1 55.4 22 16 95 84 4.6 8.3 � 10�5 0.16 0.15
MycP5 ESX-5 component 59.8 29.5 0 3 9 19 6.9 4.8 � 10�3

a LC-MS/MS was performed on Strep-tag-purified material from M. marinum wild-type (negative control) and M. marinum-�eccC5-eccC5strep cell envelope fractions, followed by
a two way analysis. Proteins that showed �10 normalized spectral counts in both eccC5strep pulldown samples and a normalized spectral abundance factor (NSAF) of �0.05 were
selected. The NSAF was calculated by dividing the normalized spectral counts from the nanoLC-MS/MS experiment by the relative molecular weight (Mr) to obtain the spectral
abundance factor (SAF) for each protein. Subsequently, each SAF was normalized by dividing it by the sum of the SAFs of the proteins in the complex. Data in columns A and B
represent results from biological replicates. MW, molecular weight.

FIG 4 MycP1 and MycP5 are essential for ESX membrane complex stability. (A) Immunoblot analysis of detergent-solubilized cell envelope fractions of wild-type (WT)
M. marinum and the mycP5 deletion strain complemented with various mycP5 mutant genes after BN-PAGE (BN) or SDS-PAGE (SDS). Blots were probed with
antibodies directed against EccB5 and FtsH. (B) Immunoblot analysis of detergent-solubilized cell envelope fractions of wild-type (WT) M. marinum and the mycP1

deletion strain complemented with various mycP1 mutant genes after BN-PAGE (BN) or SDS-PAGE (SDS). Blots were stained with antibodies directed against EccB1 and
FtsH. (C) Immunoblot analysis of DSP-cross-linked (�DSP) or DMSO-only-treated (�DSP) detergent-solubilized cell envelope fractions of the M. marinum wild-type
(WT) strain, an eccC5 deletion strain, and a mycP5 deletion strain after BN-PAGE (BN) or SDS-PAGE (SDS). (D) Immunoblot analysis of solubilized cell envelope
fractions (Total) and of proteins copurified with Strep-Tactin-purified MycP5-Strep (P5-Strep). Pulldown experiments using WT M. marinum material served as a
negative control. (E) Immunoblot analysis of DSP-cross-linked (�DSP) or DMSO-only-treated (�DSP) detergent-solubilized cell envelope fractions of the M. mari-
num mycP5 deletion strain complemented with HA-tagged MycP5 after BN-PAGE (BN). DM, n-decyl-�-D-maltopyranoside; DDM, n-dodecyl �-D-maltoside; CHAPS,
3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate; MNG-3, maltose neopentyl glycol-3.
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ble to that seen with DDM, they did not preserve the interac-
tion of the ESX-5 complex with MycP5 (Fig. 4E). Next, we tried
to fix the interaction by treating the cell envelope fractions with
DSP prior to the detergent extraction. Interestingly, the DSP treat-
ment resulted in a shift of the HA-tagged MycP5 to a molecular
weight corresponding to the ESX-5 core complex, indicating that
MycP5 is associated with the ESX-5 complex after cross-linking.
To confirm that cross-linking stabilizes the interaction, we per-
formed Strep-Tactin pulldown experiments on cross-linked and
detergent-solubilized membrane fractions of either the wild-type
strain or a mycP5 deletion strain complemented with MycP5 con-
taining a Twin-Strep-tag at its C terminus. Also, this tag did not
interfere with MycP5 functioning (see Fig. S1D). As we observed
that DSP severely interfered with the pulldown, we used formal-
dehyde to fix protein-protein interactions. This cross-linking
agent did not affect the pulldown efficiency, as similar MycP5 lev-
els were detected in the elution samples containing the Strep-
tagged MycP5, whereas no MycP5 was detected in the elution of
the wild-type samples by immunoblotting and Coomassie stain-
ing (see Fig. 4D; see also Fig. S3). The purification of MycP5 re-
sulted in the copurification of EccB5 and EccE5, albeit at relatively
low levels (Fig. 4D). This interaction could be stabilized by form-
aldehyde treatment, as we detected higher levels of EccB5 and
EccE5 in the cross-linked samples (Fig. 4D). We did not detect the
unrelated FtsH membrane component or the abundant GroEL2
cytosolic component in the elution samples (Fig. 4D). We did
observe a very-low-intensity signal for EccB1 in the elution frac-
tion; however, in contrast to EccB5 and EccE5, this signal was
reduced in the cross-linked elution sample, indicating that this
represented nonspecific contamination of the eluate. Our data
therefore seem to confirm that MycP5 indeed interacts with the
ESX-5 core complex components and that this interaction is es-
sential for the stability and functionality of the ESX complexes
corresponding to their respective mycosins.

DISCUSSION

In this study, we showed that the active site mutant of MycP1 has
a phenotype in M. marinum that is similar to that previously ob-
served in M. tuberculosis (22). In that previous study, Ohol et al.
(22) described a regulatory role of the proteolytic activity of
MycP1 in M. tuberculosis, with increased secretion by the MycP
active site mutation. This mechanism appears to be a conserved
feature, as we also observed increased secretion of EsxA, EsxB, and
EspE in an M. marinum strain harboring a proteolytic inactive
MycP1.

We used the ability of M. marinum to lyse erythrocytes in an
ESX-1-dependent manner, to further analyze ESX-1 functioning.
While the M. marinum �mycP1 mutant was indeed unable to lyse
erythrocytes, the active site mutant showed significantly increased
hemolytic activity, corresponding to the increased activity of the
ESX-1 system. It is possible that this was due to the increased
secretion of EsxA, as this substrate has been indicated to be re-
sponsible for the hemolytic activity (11, 12, 28), although the
other substrates of ESX-1 are also secreted in larger amounts. The
disparity between the increased membrane lysing capability ob-
served in M. marinum and the decreased virulence of M. tubercu-
losis in mice (22) may be explained by the immunogenicity of
EsxA, which might result in reduced virulence in later stages of
infection (29, 30).

MycP5 showed a phenotype similar to that of MycP1, with the

mutation in the predicted active site not affecting the secretion of
ESX-5 substrates. However, we did not observe increased secre-
tion in the mycP5 active site mutant, supporting the suggestion
that the observed phenotype of the proteolytically inactive MycP1

is caused by a specific MycP1 substrate, which could be EspB (22).
We also did not observe any differences in the (possible) process-
ing of ESX-5 substrates in the mycP5 active site mutant compared
to the wild-type M. marinum strain. This also means that there are
currently no MycP5 substrates known. Therefore, the possibility
remains that MycP5 is proteolytically inactive, although it con-
tains all the features known to be essential for protease activity. We
prefer the hypothesis that the phenotype of the active site mutant
of mycP5 is a result of functional redundancy between MycP5 and
other proteases, possibly other mycosins.

We also investigated whether substrate binding is involved in
the essential role of mycosins by introducing a bulky amino acid in
the substrate binding pocket of MycP1 and MycP5. Because these
modifications had an effect similar to that seen with the active site
mutations, we can conclude that not only the proteolytic activity
of mycosins but also substrate binding is not required for ESX-
dependent secretion. It should be mentioned, though, that the
mutated residue of MycP1, N239, coordinates the oxyanion hole
and, as such, may also affect proteolytic activity. Further experi-
ments are required to determine whether EspB indeed cannot
bind to MycP1mth::N239Y.

To study the involvement of mycosin in T7S membrane com-
plex functioning, we isolated both the ESX-1 membrane complex
and the ESX-5 membrane complex using a Twin-Strep-tag that
was fused at the C terminus of EccC. The Strep-tag purification
considerably increased the yield and purity of the purified ESX-5
complex compared to the previous purifications using antibodies
(2). Despite the improved purification, we were still unable to
detect any additional (less-abundant) components; although a
few spectral counts of MycP5 were specifically detected with the
EccC5-Strep pulldown, these were not above the spectral count
threshold levels. We also were unable to detect specific MycP5

copurification by immunoblot analysis using MycP5 antibodies.
Also, in the Strep-pulldown experiments of the ESX-1 complex we
could detect a few specific spectral counts for MycP1, but these
numbers were again below the threshold level.

We calculated the normalized spectral abundance factor
(NSAF) of the Strep-tag-purified complexes using a method sim-
ilar to a method described before (2) to estimate and compare the
relative abundances of individual components of the ESX-1 and
ESX-5 complexes. For this, the number of spectral counts (SpC)
per isolated protein was divided by the protein’s length (L), which
was again divided by the result of SpC/L for all isolated proteins in
the experiment. This analysis revealed an EccC5/EccB5/EccE5/
EccD5 ratio of approximately 2:1:1:1. This ratio is slightly different
from the 2:2:1:2 ratio that was found for the antibody pulldown
(2). It should be noted that EccC5 might be overrepresented in the
Strep pulldown results, as this component contains the affinity
tag. The NSAF values of the ESX-1 purified proteins revealed a
ratio of 9:7:4:4:1 for EccCa1/EccCb1/EccB1/EccE1/EccD1, showing
a similar distribution, in which the EccC subunits, which are pro-
duced as two separate proteins in ESX-1, are present at roughly
double the amount seen with the other components. For ESX-1,
only EccD1 seemed to be underrepresented compared to ESX-5.
This could suggest that the ESX-1 complex is less stable than the
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ESX-5 complex, which could also explain the smearing pattern
observed in BN-PAGE.

As MycP1 or MycP5 does not appear to be a (stable) compo-
nent of the ESX-1 or ESX-5 complex in M. marinum, it was sur-
prising that the presence of both MycP1 and MycP5 is required for
complex stability. The instability of the ESX-5 complex in the
mycP5 knockout was further indicated by the observation that we
could not stabilize the ESX-5 complex by cross-linking in the
mycP5 knockout background after repeated freeze-thaw cycles,
while this was possible with wild-type samples (unpublished ob-
servations). The mechanical stress of this process is apparently
already sufficient to dissociate this unstable complex. Using a
cross-linking approach, we showed that the ESX-1 complex and
the ESX-5 complex could be formed in the mycP1 and mycP5

knockout strains, respectively. Therefore, this indicates that the
mycosins are associated with the complexes and are essential for
their stability. Furthermore, this stabilization is required for the
complex to be functional. The fact that we are unable to detect
MycP1 or MycP5 above the threshold levels in the EccCb1 and
EccC5 pulldown experiments indicates that MycP associates with
the membrane complex only loosely and that its interaction is not
maintained after detergent extraction. This notion is supported by
the observed shift of HA-tagged MycP5 to a molecular weight
corresponding to the ESX-5 complex on BN-PAGE, the detection
of EccB5 and EccE5 in the elution samples from Strep-Tactin pull-
down experiments using Strep-tagged MycP5, and the fact that we
observe increased amounts of copurified EccB5 and EccE5 after
cross-linking. From this, we conclude that there is indeed an in-
teraction between MycP5 and the ESX-5 core complex, which
could explain the observed effects on complex stability. Although
we cannot explain the exact mechanism by which a loose associa-
tion of MycP with the core ESX complex can affect the stability of
the complex, there are comparable effects known, as reported in
the literature. In type IV pilus biogenesis in Neisseria meningitides,
for instance, the outer membrane protein PilW stabilizes multi-
meric PilQ, the outer membrane secretin, even though PilW is not
part of the multimeric complex formed by PilQ (31).

In summary, this study for the first time provided insight into
the essential function of mycosins in the T7S system. We propose
a new model for the T7S systems in mycobacteria, with the myco-
sins being associated with their respective membrane complexes,
which is crucial for the full integrity of the core secretion complex
(Fig. 5A). In the absence of mycosin, the complex is less stable and,
as a result, nonfunctional (Fig. 5B).

MATERIALS AND METHODS
Bacterial strains and culture conditions. M. marinum MUSA (32) was
used for all M. marinum experiments unless stated otherwise. M. mari-
num wild-type strains and the various derived knockout mutants were
grown on 7H10 agar supplemented with 10% Middlebrook oleic acid-
albumin-dextrose-catalase (OADC) (BD Biosciences) at 30°C or in
Middlebrook 7H9 liquid medium supplemented with 10% Middlebrook
ADC and, when required, 0.05% Tween 80 at 30°C and 150 rpm. Esche-
richia coli strains were grown in Luria-Bertani (LB) liquid medium or on
LB agar. Medium was supplemented with the appropriate antibiotics at
the following concentrations: kanamycin, 25 �g ml�1; hygromycin, 50 �g
ml�1; streptomycin, 35 �g ml�1; ampicillin, 100 �g ml�1; chloramphen-
icol, 30 �g ml�1. E. coli strain DH5� was used for DNA cloning and
plasmid accumulation and E. coli strain Rosetta for recombinant protein
expression.

Generating the mycP1 knockout in M. marinum. The generation of
the mycP5 and eccC5 knockout strains that were used in this study was
described previously by Ates et al. (4). Notably, a pSMT3 plasmid express-
ing the outer membrane porin MspA was present in these ESX-5 mutants
to circumvent the essentiality of this system for growth of M. marinum.
The mycP5 knockout mutant did not show a growth defect in the presence
of MspA. A mycP1 knockout was created in M. marinum MUSA by allelic
exchange using the phAE159 temperature-sensitive phage (33) and a
method similar to that described for the creation of the mycP5 and eccC5

knockout by Ates et al. (4). The required construct was made by DNA
amplification using primers MycP1 LF, MycP1 LR, MycP1 RF, and MycP1
RR (see Table S1 in the supplemental material) and the in-Fusion enzyme.
The chromosomal deletion was confirmed by PCR analysis and sequenc-
ing. The M. marinum E11 eccCb1 transposon mutant that was used in this
study has been described previously by Stoop et al. (27).

Cloning. The mycP1 and mycP5 genes were amplified from M. mari-
num MUSA genomic DNA by PCR with anchored primers (EcoRI and

FIG 5 Model of the T7S membrane complex. (A) MycP5 associates with the EccBCDE5 (B/C/D/E) membrane-embedded complex, and, as a result, the T7S
ESX-5 complex is stabilized and functional. IM, inner membrane; OM, outer membrane. (B) In the absence of MycP5, the ESX-5 complex is less stable and, as
a result, nonfunctional.
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HindIII; see Table S1 in the supplemental material). Point mutations, the
HA tag, and Twin-Strep-tag were introduced into mycP1 and mycP5 with
nested primers (see Table S1). The generated constructs were additionally
cloned as EcoRI-HindIII-digested fragments in pMV361 (34) or with
PmII and HindIII in the case of the Twin-Strep-tag. The C-terminal
Twin-Strep-tag was introduced into EccC5 by modifying the pMV-
EccBC5 vector described by Ates et al. (4). The vector was digested with
DraI and HindIII, and a linker consisting of two annealed oligonucleo-
tides (see Table S1 [OneStrep-1 and OneStrep-2]) was subsequently li-
gated to the digested vector. For the generation of pMV-EccBCab1-Twin-
Strep, the eccBCab1 genes were amplified from M. marinum E11 genomic
DNA with two consecutive PCRs. The first PCR amplified eccBCab1 with
an additional 100 to 200 bp on both sides of each gene, and the second
PCR amplified eccBCab1 and introduced a NsiI site in front of the gene
(see Table S1). The PCR product was digested with NsiI and ligated into
DraI- and NsiI-digested pMV-EccBC5-Twin-Strep. MycP1mth, MycP1mth

S334A, and EspBmtb E. coli expression plasmids were previous described
by Wagner et al. (25). The mycP1mth::N239Y construct was amplified with
anchored primers (NdeI and XhoI) using pET-21d-mycP1mth as a tem-
plate, and the point mutation was introduced with nested primers (see
Table S1). The construct was digested with NdeI and XhoI and ligated to
NdeI- and XhoI-digested pet-28a. All plasmids were checked by sequenc-
ing of the relevant sections.

Protein secretion and immunoblot analysis. M. marinum strains
were grown in 7H9 liquid medium supplemented with ADC, 0.05%
Tween 80, and appropriate antibiotics until mid-logarithmic phase, after
which the cells were washed and inoculated in 7H9 medium with 0.2%
dextrose– 0.05% Tween 80 at an optical density at 600 nm (OD600) of 0.4
and grown for another 16 h. The cells (Pellet) were spun down for 10 min
at 6,000 � g, washed with phosphate-buffered saline (PBS), and resus-
pended in SDS loading buffer. Supernatants were passed through 0.45 -
�m-pore-size filter units, and proteins were precipitated with trichloro-
acetic acid (TCA) and resuspended in SDS loading buffer. Alternatively,
the cells were resuspended in 0.5% Genapol X-080 and incubated for 1 h
at room temperature. Samples were spun down and pellets were resus-
pended in SDS sample loading buffer (Genapol Pellet), while 5� SDS
sample buffer was added to the supernatant containing Genapol X-080
(Genapol Supernatant). Proteins were separated on SDS-PAGE gels and
transferred to a nitrocellulose membrane, and membranes were stained
with anti-GroEL2 (Cs44; John Belisle, NIH, Bethesda, MD, USA), anti-
PE_PGRS (31), anti-ESAT-6 (monoclonal antibody [MAb] Hyb76-8),
anti-HA (HA.11; Covance), anti-EccB5 (2), anti-EccE5 (2), anti-EspE
(Eric Brown; Genentech), anti-EsxN (Mtb9.9) (35), anti-CFP-10 (Colo-
rado State University), anti-EspB (EPFL, Lausanne, Switzerland), or anti-
FtsH (36) antibodies. Polyclonal antiserum against the EccB1 synthetic
peptide CLPSDPNPRKVPAG was raised in rabbits by Innovagen (Lund,
Sweden) using Stimune (Prionix) as an adjuvant.

Protein expression and purification and activity assays. Recombi-
nant proteins were expressed in E. coli Rosetta (DE3) cells by induction
with 0.5 mM IPTG (isopropyl-�-D-thiogalactopyranoside) for 4 h at
22°C. Cells were harvested and resuspended in 20 mM Tris-HCl (pH 8.0)–
300 mM NaCl. The cells were lysed using lysozyme (1 �g ml�1) and a One
Shot cell disruptor (Constant Systems Ltd.). The cell lysate was centri-
fuged for 20 min at 8,000 � g, and the proteins were purified from the
cleared supernatant with a HiTrap Talon crude column (GE Life Sci-
ences), using an elution gradient of 0 mM to 250 mM imidazole. Purified
proteins were dialyzed using 20 mM HEPES (pH 7.5)–100 mM NaCl.
Mycosin activity assays were performed using 20 mM HEPES (pH 7.5)–
100 mM NaCl–2 mM CaCl2–5 mM FeCl–5 mM MgCl at 37°C for 16 h
with 0.2 mg ml�1 EspB and 0.1 mg ml�1 mycosin. Reactions were stopped
by the addition of SDS loading buffer. Samples were heated at 94°C for
5 min, and the proteins were separated on a 10% SDS-PAGE gel. Proteins
were visualized by Coomassie staining or by immunoblotting, using
mouse anti-His antibodies (GE Healthcare).

Hemolysis. Mid-log-phase M. marinum bacteria were harvested by
centrifugation, washed with PBS, and resuspended in phenol red-free
Dulbecco’s modified Eagle’s medium (DMEM) (Gibco). Bacteria from all
strains were set to a concentration of 2 OD units ml�1. Defibrinated sheep
blood cells (Oxoid) were washed with DMEM and set to a concentration
of 8 � 108 cells ml�1. A 75-�l volume of bacteria and 75 �l of erythrocytes
were mixed and spun down for 5 min at 610 � g in a round-bottom,
96-well plate. The bacteria and cells were incubated in a 5% carbon diox-
ide incubator at 32°C for 3 h. The pellets were resuspended and repelleted,
the supernatant was transferred to a flat-bottom, 96-well plate, and the
released hemoglobin was quantified by the measured absorbance at
405 nm. Statistically significant differences between strains were deter-
mined with one-way analysis of variance (ANOVA). The sample size con-
sisted of 6 biological replicates per strain, with each biological replicate
consisting of 4 technical replicates.

Blue native PAGE analysis of ESX membrane complex formation.
M. marinum bacteria were grown to an OD600 of 1 to 1.5 and harvested by
centrifugation. Cells were resuspended in PBS–250 mM sucrose and lysed
with a One Shot cell disruptor (Constant Systems Ltd.). Unlysed cells were
pelleted by centrifugation at 3,000 � g for 10 min. The cell envelope (CE)
fraction was isolated by centrifugation at 100,000 � g for 30 min and
resuspended in PBS–250 mM sucrose. Where stated, samples were cross-
linked with DSP or were treated with dimethyl sulfoxide (DMSO) as a
negative control and were subsequently quenched with 100 mM glycine–
10 mm NaHPO4 (pH 8.5). Membrane proteins were solubilized for 1 h
with 0.25% DDM, the insoluble fraction was removed by centrifugation at
100,000 � g for 20 min, and solubilized proteins (in complexes) were
separated on a 3% to 12% NativePage Novex bis-Tris protein gel (Life
Technologies). Proteins were transferred to a polyvinylidene difluoride
(PVDF) membrane and stained with anti-EccB1, anti-EccB5, anti-EccC5

(2), anti-EccD5 (2), or anti-HA antibodies.
Isolation of ESX-1 and ESX-5 membrane complexes and MycP5

pulldown. Proteins were solubilized from isolated CE fractions as de-
scribed above, with the addition of 0.3 mg/ml avidin (Sigma) after the
DDM incubation. Solubilized proteins were incubated with Strep-Tactin
beads for 30 min in a head-over-head manner, washed with 50 mM
HEPES-KOH (pH 7.8)–150 mM KOAc–125 mM sucrose– 0.04% DDM,
and eluted with 10 mM desthiobiotin, dissolved in the same buffer as was
used for the washing. For the MycP5-Strep-tag purification, where stated,
whole cells were treated with 1% formaldehyde and subsequently
quenched with 100 mM glycine–10 mm NaHPO4 (pH 8.5). Proteins were
solubilized from isolated CE fractions as described above, and the Strep-
Tactin pulldown was performed as described above. SDS solubilization
buffer was added to the elution fractions, and samples were heated at
94°C, separated on a 10% SDS-PAGE gel, and visualized by Coomassie
staining or transferred to a nitrocellulose membrane and stained with
anti-Strep-tag, anti-EccB1, anti-EccB5, anti-EccD5, or anti-EccE5 (2) an-
tibodies. SDS solubilization buffer was added to the elution fractions, and
samples were heated at 94°C, separated on a 12.5% SDS-PAGE gel, and
visualized by Coomassie staining or transferred to a nitrocellulose mem-
brane and stained with anti-Strep-tag, anti-EccB1, anti-EccB5, anti-FtsH,
anti-GroEL2, or anti-EccE5 (2) antibodies.

LC-MS/MS. Peptides were separated by the use of an UltiMate 3000
nanoLC-MS/MS system (Dionex LC-Packings, Amsterdam, the Nether-
lands) equipped with a 20-cm-by-75-�m-inner-diameter (ID) fused-
silica column custom packed with 3-�m-diameter 120-Å reprosil Pur C18

aqua (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany). After in-
jection, peptides were trapped at 6 �l/min on a 10-mm-by-100-�m-ID
trap column packed with 5 �m 120-Å reprosil Pur C18 aqua using 2%
buffer B (buffer A, 0.5% acetic acid–Milli-Q Water [MQ]; buffer B, 80%
Acetonitrile [ACN]– 0.5% acetic acid–MQ) and separated at 300 nl/min
in a 10% to 40% buffer B gradient in 60 min (90 min, injection to injec-
tion). Eluting peptides were ionized at a potential of �2 kVA into a Q
Exactive mass spectrometer (Thermo, Fisher, Bremen, Germany). Intact
masses were measured at a resolution of 70,000 (at m/z 200) in the Or-
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bitrap using an automatic gain control (AGC) target value of 3 � 106

charges. The top 10 peptide signals (charge states 2� and higher) were
submitted to MS/MS in the high-cell-density (HCD) (higher-energy col-
lision) cell (4-amu isolation width, 25% normalized collision energy).
MS/MS spectra were acquired at a resolution of 17,500 (at m/z 200) in the
Orbitrap using an AGC target value of 2 � 105 charges and an underfill
ratio of 0.1%. Dynamic exclusion was applied with a repeat count of 1 and
an exclusion time of 30 s.

MS/MS spectra were searched against the Uniprot M. marinum com-
plete proteome (ATCC BAA-535M) FASTA file (5,418 entries) using
MaxQuant 1.4.1.2 (37). Enzyme specificity was set to trypsin, and up to
two missed cleavages were allowed. Cysteine carboxamidomethylation
(Cys; �57.021464 Da) was treated as a fixed modification and methionine
oxidation (Met, �15.994915 Da) and N-terminal acetylation (N terminal,
�42.010565 Da) as variable modifications. Peptide precursor ions were
searched with a maximum mass deviation of 6.0 ppm and fragment ions
with a maximum mass deviation of 20 ppm (default MaxQuant settings).
Peptide and protein identifications were filtered at a false-discovery rate
(FDR) of 1% using the decoy database strategy. Proteins that could not be
differentiated based on MS/MS spectra alone were grouped into protein
groups (default MaxQuant settings).

Proteins were quantified (in a label-free manner) by spectral counting,
i.e., by determining the sum of all MS/MS spectra for each identified
protein (38). For quantitative analysis across samples, spectral counts for
identified proteins in a sample were normalized to the sum of spectral
counts for that sample. This gives the spectral count contribution of a
protein relative to the contribution of all spectral counts in the sample.
For comparisons of different biological samples, these normalized spec-
tral counts were used to calculate ratios. In this way, we were able to
correct for loading differences between samples. Differential analysis of
samples was performed using the beta-binominal test (39), which takes
into account within- and between-sample variations, giving fold change
values and associated P values for all identified proteins. Protein cluster
analysis of the differentially expressed proteins was performed using hi-
erarchical clustering in R. The protein abundances were normalized to
zero mean and unit variance for each individual protein. Subsequently,
the Euclidean distance measure was used for protein clustering.

Accession number(s). The mass spectrometry proteomics data have
been deposited in the ProteomeXchange Consortium via the PRIDE (40)
partner repository with the data set identifier PXD003766.
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