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This paper focuses on the modelling of fluid–structure
interaction and wave propagation problems in a
stented artery. Reflection of waves in blood vessels is
well documented in the literature, but it has always
been linked to a strong variation in geometry, such
as the branching of vessels. The aim of this work
is to detect the possibility of wave reflection in a
stented artery due to the repetitive pattern of the
stents. The investigation of wave propagation and
possible blockages under time-harmonic conditions
is complemented with numerical simulations in the
transient regime.

1. Introduction
Cardiovascular disease (CVD) is the most common
cause of mortality in adults within the Western
world. The pathological process underpinning CVD is
atherosclerosis, which can lead to narrowing and/or
occlusion of blood vessels. The resulting reduction in
blood flow velocity and volume causes tissue ischaemia
(lack of oxygen delivery) in the territory supplied by
the affected artery. Intraluminal stenting is one technique
that can be performed to restore adequate flow and avoid
ischaemia occurring. The outcomes of stenting vary
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depending on the anatomical site of the diseased arteries. For example, coronary stents have very
good success rates in improving the patency of vessels, preventing further cardiac ischaemia and
avoiding the need for surgical bypass. However, stenting of larger limb vessels in peripheral
vascular disease has not been as successful and large amounts of energy and resources have been
put into establishing why. The reason for this variability in stenting outcome is poorly understood
and is likely to be multifactorial. Arterial walls are elastic and subjected to pulse waves originating
from the left ventricle, the frequency and regularity of which are altered with physical activity and
multiple disease states. It is a possibility that the reinforcement of arteries with stents alters the
propagation of pulse waves through the arterial network altering the flow dynamics. This may
lead to decreased flow velocity or increased wall shear stresses in the arterial wall that could
induce changes leading to restenosis of occlusion.

Reflection of waves in blood vessels is a well-known phenomenon, but it has always been
related to strong geometrical changes within the arterial tree, such as the branching of vessels
[1,2]. The aim of this work is to investigate whether reflection of waves can occur in a stented
artery, due to the reinforcement provided by the stents.

Wave propagation in fluid-filled cylinders has been extensively investigated in the literature.
This problem, which involves fluid–structure interaction, has always been challenging: on the one
hand, it is difficult to find solutions in a closed form, so that approximations and/or numerical
techniques were employed; on the other hand, the study of the dynamics of fluid-filled cylinders
constitutes the basis for the analysis of every piping system, which implies that it is suitable
for a very broad range of applications. In particular, several investigations were conducted to
determine the resonant frequencies and wave propagation in such systems, with [3–10] and
without [11–27] the fluid.

Many computational models were performed for haemodynamics, but only a limited number
of investigations addressed the propagation of waves in blood vessels [28] and, in particular,
when the systems exhibit a repetitive pattern in their geometry [29]. A recent work by Jaganathan
et al. [30] shows a comparison between different types of stents on the basis of their natural
frequencies, but the analysis is performed only for the metallic structure.

The geometry of most of the commercially available stents is based on a brand-specific pattern
consisting of the repetition of a primitive cell along the circumference of the structure, thus yielding
the unit cell of the system (see [31] for stent geometry details). The deployed stent structure
consists of the repetition of several unit cells along the axis of the vessel. These features suggest
that a stented artery can be considered as a periodic structure, defined by a unit cell composed of the
artery wall, the stent structure and the blood; hence, the system can be modelled as a fluid-filled
periodically reinforced cylinder.

The analysis presented in the paper addresses three important points:

— the Bloch–Floquet waves in a periodically stented artery;
— the frequency response linked to the transmission/reflection problem for the case of a

stented region of finite length; and
— the transient regime for a finite-length stented artery with nonlinear viscous fluid.

The Bloch–Floquet approach is a useful technique to analyse the behaviour of periodic systems
under harmonic perturbations. It is based on the study of a unit cell, which provides information
on the dynamic properties of a periodic system, hence reducing the complexity of the problem.
In particular, it allows to treat the stented artery as a waveguide and to identify the frequency
ranges in which waves do and do not propagate. The application of this technique to fluid-filled
periodically reinforced cylinders constitutes a novel approach for the detection of reflected waves
in arteries in the absence of branching or any other sudden geometrical variation. The Bloch–
Floquet analysis is also used to obtain the deformation modes of the stented blood vessel in the
time-harmonic pulsation regime, as shown in figure 1.

Different types of stent configurations are investigated. In addition, two different cases are
studied: one represented by a single stent, and the other in which the system consists of a cluster
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Figure 1. Representative shapes of the deformation modes observed in the unit cell with a stent. (a) Axisymmetric mode, (b)
flexural mode, (c) torsional mode, (d) axial mode, (e) mode involving simple flattening of the wall, (f ) mode involving trefoil
flattening of the wall, (g) mode involving quatrefoiled flattening of the wall and (h) flexural-torsional mode with rotated end
sections. (Online version in colour.)

of stents separated by unstented sections. In the second case, standing waves are detected, which
represent trapped modes in the unstented regions. A semi-analytical model is used to estimate
the frequencies of these standing waves, which may fall within an interval of frequencies that can
be experienced during daily activities.

The effects of propagation and attenuation of waves in terms of localization of strain and
reduction of flow velocity are investigated by means of the frequency response analysis. This
analysis confirms the results of the Bloch–Floquet approach and provides additional information
on the physical properties of the system, such as pressure in the fluid and stress and strain in
the arterial wall. The investigation is performed for an assembly of a finite number of unit cells
subjected to an external harmonic loading. Moreover, different configurations are considered.

Finally, a transient regime analysis is performed for the finite-length stented artery, which
shows in detail how the flow is affected by the reinforcements. In the transient computations, the
fluid is described by the complete Navier–Stokes equations and full fluid–structure interaction
is taken into account. This is a more realistic analysis and, compared with the above-mentioned
techniques, provides more information on the system, such as the time history of the fluid velocity.

The text is organized as follows. Bloch–Floquet waves analysis is described in §2, and §3 is
focussed on the case of a cluster of stents. In particular, §3b discusses a semi-analytical model for
the evaluation of frequencies of trapped waveforms within the cluster of stents. Section 4 presents
the transmission/reflection problem for the case of a stented region of finite length. Transient
regime analysis is described in §5. Finally, general discussion and conclusions are presented in §6.

2. Waves in a periodically reinforced vessel

(a) Governing equations
The Bloch–Floquet approach is used to analyse the waves that can propagate through the system
and to determine their dynamic properties. This method allows one to derive the relation between
the frequency and the wavenumber (or, equivalently, the Bloch–Floquet parameter). This relation
is called the dispersion relation and its real solutions yield the so-called dispersion curves. The
dispersion curves provide the group velocity (corresponding to the slope of the curve) and the
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phase velocity (secant slope) at each frequency. They also indicate the frequency ranges in which
waves can physically propagate within the system (called pass-bands) and the ranges in which
waves cannot propagate (called stop-bands). The Bloch–Floquet analysis reduces the problem to
the study of a single unit cell which, in this case, includes the artery wall, the stent structure and
the blood.

In the following, subscripts ‘a’, ‘s’ and ‘f’ in the equations denote the artery, the stent and the
fluid (blood), respectively. Small displacement theory is employed in this work.

In order to determine the dispersion relation, the artery is modelled as a hollow cylinder
composed of a linear elastic isotropic homogeneous material. Accordingly, its equations of motion
are

μa∇2ua + (λa + μa)∇(∇ · ua) = ρa
∂2ua

∂t2 , (2.1)

where μa and λa are the Lamé parameters, ρa is the density (mass per unit volume), ua is the
displacement vector, t is the time and ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T represents the vector differential
operator.

The blood is modelled as an acoustic medium, and its equation of motion is

Kf∇2pf = ρf
∂2pf

∂t2 , (2.2)

where pf and Kf are the pressure and the bulk modulus of the fluid, respectively, whereas ρf
is the density of the fluid. This approximation yields accurate results within the framework of
eigenfrequency analysis, as previously shown in the literature [32].

As the fluid is modelled as an acoustic medium, the coupling at the fluid–solid interface is
obtained by means of the following relation for the stresses

σ an = −pfn, (2.3)

where σ a is the stress tensor in the artery wall and n is the unit outward normal vector. The
exterior boundary of the artery wall is free and this is expressed by the relation

σ an = 0. (2.4)

Analogous approaches describing interaction between an elastic medium and different sources in
the time-harmonic regime have been proposed in the literature, see for instance [33].

It can be noted that the simplified time-harmonic computations are accompanied further by the
full transient analysis of the fluid–structure interaction in the presence of the viscous Newtonian
fluid, as discussed in §5. The interesting wave regimes identified in the linearized time-harmonic
model are given additional attention in the transient computations.

In the linearized time-harmonic computations the stent is modelled as a curved wire with
circular cross section composed of a linear elastic isotropic homogeneous material. The stents are
considered to be already deployed and in contact with the artery wall. For simplicity, in this work
the connection between the stent and the artery wall is assumed to be bilateral, which means
that the stents are tied to the inner artery wall. Hence, continuity of displacements and tractions
is assumed at the interface. No other constraints are applied in the model in order to allow for
a broad class of deformation of the vessel. In fact, arteries themselves can be mobile with the
movement of the body, including elongation and twisting [34,35].

(i) Bloch–Floquet waves

Time-harmonic regime is assumed. Hence, the displacement field in the artery, the pressure field
in the blood and the displacement field in the stent are expressed as

ua(x, t) = Ua(x) eiωt, (2.5a)

pf(x, t) = Pf(x) eiωt (2.5b)

and us(x, t) = Us(x) eiωt, (2.5c)
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Figure 2. Representation of the geometry and of the quasi-periodic boundary conditions of the unit cell employed in the
numerical simulations. The middle lines of the coils are represented by dotted lines in (a). The dashed-dotted circumferences
shown in (a) represent the intersection between the inner wall of the artery and the planes (with normal x) containing
the centroids of the two coils. (a) Scheme of the unit cell and (b) scheme of the quasi-periodic conditions. (Online version
in colour.)

where Ua and Us denote, respectively, the displacement amplitude vectors for the artery wall and
for the stent, Pf is the pressure amplitude, and ω is the radian frequency.

Bloch–Floquet quasi-periodicity conditions are imposed, as shown in figure 2b, and they are
given by

Ua(x + La, y, z) = Ua(x, y, z) eikLa , (2.6a)

Pf(x + La, y, z) = Pf(x, y, z), eikLa (2.6b)

and Us(x + La, y, z) = Us(x, y, z) eikLa , (2.6c)

where La is the length of the unit cell, k is the wavenumber, which is inversely proportional to the
wavelength λ = 2π/k, and (x, y, z) is a point in the elementary cell, including the boundary.

(b) Definition of the three-dimensional geometries
The unit cell for the stented artery is composed of a hollow cylinder (representing the wall
of the vessel), two zigzag-shaped coils (representing the stent pattern) and a cylindrical fluid
domain enclosed by the hollow cylinder (representing the blood), as sketched in figure 2a. The
artery wall is modelled as a three-dimensional solid, having a length La of 10 mm, a lumen
diameter 2Ra of 7.3 mm and a thickness ha of 0.7 mm. Therefore, the outer diameter 2Rb is
equal to 8.7 mm and the average radius is equal to 4 mm, reproducing representative values
available in the literature (see, for example, [1, Tab. 4.2, p. 187]). The zigzag-shaped coils are
characterized by eight crowns (16 segments) and are modelled as beams with a constant circular
cross section (0.1 mm diameter). The distance between the opposite crowns is equal to one-third
of the unit cell length (≈ 3.333 mm), whereas the distance between the centroids of the two coils
is equal to half the unit cell length (5 mm), as indicated in figure 2a (on the left and right sides,
respectively).

The dynamic response of the stented artery with three different configurations of the coils,
shown in figure 3, is investigated. In particular, the following cases are analysed: a symmetric
unit cell (type A), where the coils are symmetric with respect to the middle cross section of the
cell; a unit cell with unidirectional stents (type B), obtained by translation of the coils; a unit cell
with connected type A stents, where some of the crowns are linked with additional beam elements
(figure 3d).
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(a)

(b) (c) (d)

Figure 3. Examples of unit cell with different stent configurations employed in the numerical simulations. (a) Illustrates one
among many stent geometries commercially available. (b–d) Represent different typical patterns for coils. (a) Example of a
Cook silver stent structure, (b) unit cell with type A stents, (c) unit cell with type B stents and (d) unit cell with type A connected
stents. (Online version in colour.)

Table 1. Definition of the elastic properties of the materials employed in the simulations.

materials

properties artery stent

Young modulus Ea = 800 kPa Es = 210 GPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poisson ratio νa = 0.49 νs = 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

density ρa = 1200 kg m−3 ρs = 7800 kg m−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Material parameters
Arteries are characterized by (nearly-)incompressible nonlinear behaviour, for which nonlinear
elastic constitutive models (including the description as a heterogeneous material) are reported in
the literature and their calibration based on experiments [36–41]. Nonlinear constitutive models
for shape memory alloys are generally used to describe the behaviour of balloon-expandable
and self-expanding stents [42,43], but some authors prefer to employ linear elastic constitutive
models [44–46]. Nonlinear constitutive models for atherosclerotic tissue and restenosis are
reported in [40,44,47].

The aim of this study is to identify possible pass-bands and stop-bands for the coupled
system composed of the stented artery and the blood by means of the Bloch–Floquet approach.
The components of the coupled system are modelled as linear elastic isotropic homogeneous
materials. The elastic parameters for the artery tissue and the stents employed in this work are
summarized in table 1, and they correspond to typical average values for the carotid artery [1,48]
and for metals commonly used for stents [49]. The blood is modelled as an acoustic medium of
bulk modulus Kf = 2.4 GPa and density ρf = 1050 kg m−3.

(d) Dispersion curves
In this section, the dispersion properties of the Bloch–Floquet elastic waves propagating along
the walls of the artery are discussed. The results are presented as dispersion curves in the
wavenumber-frequency plane. The dispersion curves are even and 2π/La periodic functions.
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Figure 4. Dispersion curves in thewavenumber-frequency plane representing different vibrationmodes for the symmetric unit
cell shown in figure 3b. The shapes of the deformation modes associated with the points highlighted with arrows are depicted
in figure 1, where the same letters are used. (Online version in colour.)

The interval [−π/La, π/La] is known as the irreducible Brillouin zone [50,51]. Owing to their
symmetry and periodicity, the dispersion curves are illustrated for the range 0 ≤ k ≤ π/La.

The dispersion diagrams presented in figures 4–6 identify ω as a multi-valued function of
the Bloch–Floquet parameter k. The dispersion diagrams show the presence of stop-bands and
standing waves in stented blood vessels. The stop-bands represent the intervals of frequencies
for which only evanescent waveforms occur. Standing waves are characterized by zero group
velocity and they are observed at the boundaries of stop-bands.

As a first step, the comparison between the case of a healthy artery and the case of an artery
with type A stents (figure 3b) is provided. Subsequently, a comparison of the three types of stents
depicted in figure 3 is presented to show the influence of the stent geometry on the dispersion
properties of the system.

(i) Vibration modes: type A stents

Figure 4 presents the complete dispersion diagram for type A stents. The labels (a–h), which mark
the individual dispersion curves in this figure, correspond to representative vibration modes,
shown in figure 1. In particular, the four curves corresponding to modes (a–d) originate at 0
and are referred to as ‘acoustic’ dispersion curves. They are dominated by flexural motion (b),
axially symmetric expansion/contraction deformation (a), torsional motion (c) and longitudinal
motion (d). As the frequency is increased, the individual dispersion curves represent mixed-
modes, which incorporate elastic deformations of different types, like the mode represented by
curve (h). It should be noted that there are no common stop-bands. However, it is possible to
investigate stop-band formation for each individual vibration mode separately, thus splitting
figure 4 into a set of different curves representing different modes. In the following, a limited
but representative number of vibration modes are discussed.

From figure 5b,c, it can be noted that the group velocities for the axisymmetric mode are
slightly different, with an increase observed in the case of the stented artery. Furthermore, there
are no stop-bands at low frequencies, and hence no blockages in transmission are observed.
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Conversely, at high frequencies, the appearance of a stop-band in the stented artery is noted.
The same observations hold true for the flexural mode shown in figure 5e,f.

A different behaviour is detected for the mode involving simple flattening of the wall, shown
in figure 5h,i. In fact, for the stented artery, the stop-band at low frequencies is much wider in
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comparison with the unstented artery, and an additional stop-band appears at high frequencies.
The stop-band at low frequencies in figure 5h indicates that this mode cannot propagate within the
typical frequency range of the blood vessels in human beings. When a type A stent is installed in
the artery, this stop-band is wider, which prevents the propagation of the simple wall flattening
mode within a larger frequency range, compared with the one that may have been activated
without stents.

(ii) Vibration modes: comparison between different types of stents

From figures 5 and 6, it can be noted that the behaviour of the system with type A stents and type B
stents is very similar. Connected type A stents show a slightly different group velocity at low
frequencies compared with type A and B stents, and an additional stop-band appears between
the first two dispersion curves associated with each mode. Furthermore, when connected type A
stents are installed, the stop-band between the second and the third dispersion curves appears at
higher frequencies compared with type A and B stents.

3. The cluster of stents
The cases analysed in the previous section are representative of common stent designs, where
a single stent is installed in the artery. Periodicity and geometry of the reinforcements in the
vessel can affect the dynamic response of the system in terms of wave propagation. Hence, the
question of finding particular geometries and patterns inducing stop-bands at low-frequency
regimes arises. Clinical experience shows that it is extremely rare for just one area of a diseased
artery to be affected. It is not unusual for several small areas within one artery to have profound
luminal reduction or a much longer segment affected. This raises the question as to whether it is
better to put in multiple small stents or one long stent to treat several areas of disease at once. The
case of multiple stents provides a different and very interesting pattern of the reinforcement of
the vessel, linked to the periodicity of the structure, as shown by Papathanasiou et al. [29].

In this section, an in-depth investigation of the case in which more stents are installed in
different sections of the arteries is provided for the three-dimensional model, thus generalizing
the one-dimensional analysis by Papathanasiou et al. [29]. To this purpose, a unit cell is composed
of a finite-length stent (denoted by Lsc) and unstented section of the artery, which is then repeated
periodically with a specific spacing Lfc. The geometry of this system is shown in detail in figure 7,
where type A stents are used. The total length Ltc of such a unit cell is equal to 60 mm and the
length Lfc of the stent free zone is equal to 20 mm. Two equivalent unit cells can be employed, and
these are shown in figure 7a,b.

(a) Numerical model
The dispersion curves obtained from the Bloch–Floquet analysis are shown in figure 8. It can be
noted that for the axisymmetric mode (figure 8a), there are two additional stop-bands appearing
in the low-frequency regime, but the width of these stop-bands is much smaller compared with
those determined for type A, type B and type A connected stents (figures 5c and 6c,d). Similarly,
a narrow stop band appears in the low-frequency regime for the flexural mode (figure 8b), which
is smaller than the first stop-band appearing for type A, type B and type A connected stents
(figures 5f and 6e,f ).

For the simple flattening of the wall (figure 8c), the dispersion curves have a slope close to
zero, so they represent standing waves and/or waves with a very small group velocity. This
means that energy is not transmitted through the system. The deformation modes corresponding
to the standing waves, illustrated in figure 8c, show that the deformation occurs only within
the zones separating the groups of stents (figure 8d). Therefore, the system behaves similarly
to a simplified system composed of a fluid-filled cylinder with a length Leq = 30 mm, indicated
in figure 7b. Appropriate boundary conditions need to be applied at the end sections of this
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bands. (a) Unit cell with type B stents, (b) unit cell with connected type A stents, (c) unit cell with type B stents, axisymmetric
mode, (d) unit cell with connected type A stents, axisymmetric mode, (e) unit cell with type B stents, flexural mode, (f ) unit cell
with connected type A stents, flexural mode, (g) unit cell with type B stents, mode involving simple flattening of the wall and
(h) unit cell with connected type A stents, mode involving simple flattening of the wall. (Online version in colour.)

equivalent system. In particular, the deformation modes associated with the (quasi-)zero slope
dispersion curves for the cluster of stents suggest the application of simply supported boundary
conditions. The resonant frequencies of the equivalent system, corresponding to the standing
waves for the cluster of stents, can be determined analytically as discussed in the next section.
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Figure 8d shows that exponential localization and flattening of the arterial wall can occur in
the unstented section. This can lead to a slight change in the shape of the lumen and subsequently
influences the blood flow at higher frequencies.

(b) Semi-analytical model
The frequencies corresponding to standing waves and to small group velocity waves, determined
numerically in §3a, can be also estimated analytically by approximating the arterial wall as a finite
elastic shell with the simply supported boundary conditions at the ends. The thin shell theory is
employed here, together with the assumption of small displacements. The fluid exerts pressure
on the artery wall. The equivalent cylindrical shell has thickness heq, radius of the middle surface
Req and length Leq. The reference system (x, θ , r) is depicted in figure 9, where the x-axis is the axis
of the shell. The components of the displacement field u = uex + veθ + wer of the middle surface
of the shell are aligned with the local x, θ , r directions, respectively.

(i) Framework of the thin shell theory

The equations of motion for a cylindrical thin shell have the form [52,53]

∂Nxx

∂x
+ 1

Req

∂Nxθ

∂θ
= ρaheq

∂2u
∂t2 , (3.1a)

∂Nxθ

∂x
+ 1

Req

∂Nθθ

∂θ
+ 1

Req

∂Mxθ

∂x
+ 1

R2
eq

∂Mθθ

∂θ
= ρaheq

∂2v

∂t2 (3.1b)

and
∂2Mxx

∂x2 + 2
Req

∂2Mxθ

∂x∂θ
+ 1

R2
eq

∂2Mθθ

∂θ2 − Nθθ

Req
+ fr = ρaheq

∂2w
∂t2 , (3.1c)

where the external load fr represents the fluid pressure at the fluid–solid interface, whereas the
generalized stresses are given by

(Nxx, Nθθ , Nxθ ) =
∫ heq/2

−heq/2
(σxx, σθθ , σxθ ) dr (3.2a)

and

(Mxx, Mθθ , Mxθ ) =
∫ heq/2

−heq/2
(σxx, σθθ , σxθ )r dr. (3.2b)
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The constitutive equations for a linear elastic isotropic homogeneous material, relating the stress
tensor σ in equation (3.2) to the strain tensor ε, have the form⎛

⎜⎝σxx

σθθ

σxθ

⎞
⎟⎠=

⎛
⎜⎝Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎞
⎟⎠
⎛
⎜⎝εxx

εθθ

εxθ

⎞
⎟⎠ . (3.3)

The non-zero components of the elastic matrix Q are

Q11 = Q22 = Ea

1 − ν2
a

, Q12 = Eaνa

1 − ν2
a

and Q66 = Q11 − Q12

2
= Ea

2(1 + νa)
, (3.4)

where Ea and νa are the Young modulus and the Poisson ratio of the shell’s material (the
artery), respectively. Following Love’s theory, the components of the strain tensor ε introduced in
equation (3.3) are defined in terms of the displacement field u as

εxx = ∂u
∂x

− ∂2w
∂x2 r, (3.5a)

εθθ = 1
Req

(
∂v

∂θ
+ w

)
+ 1

R2
eq

(
∂v

∂θ
− ∂2w

∂θ2

)
r (3.5b)

and εxθ = ∂v

∂x
+ 1

Req

∂u
∂θ

+ 1
Req

(
∂v

∂x
− 2

∂2w
∂x∂θ

)
r. (3.5c)

Substituting equations (3.2)–(3.5) into equation (3.1) yields the following form for the equations
of motion: ⎛

⎜⎝L11 L12 L13
L21 L22 L23
L31 L32 L33

⎞
⎟⎠
⎛
⎜⎝u

v

w

⎞
⎟⎠=

⎛
⎜⎝ 0

0
−fr

⎞
⎟⎠ , (3.6)

where Lij (i, j = 1, 2, 3) are the differential operators with respect to x and θ , given by

L11 = Eaheq

(1 − ν2
a )

∂2

∂x2 + Eaheq

2(1 + νa)R2
eq

∂2

∂θ2 − ρaheq
∂2

∂t2 , (3.7a)

L12 = L21 = Eaheq

2(1 − νa)Req

∂2

∂x∂θ
, (3.7b)

L13 = −L31 = νaEaheq

(1 − ν2
a )Req

∂

∂x
, (3.7c)

L22 = Eaheq

2(1 + νa)

(
1 +

h2
eq

12R2
eq

)
∂2

∂x2 + Eaheq

(1 − ν2
a )R2

eq

(
1 +

h2
eq

12R2
eq

)
∂2

∂θ2 − ρaheq
∂2

∂t2 , (3.7d)

L23 = −L32 = Eaheq

(1 − ν2
a )R2

eq

∂

∂θ
−

Eah3
eq

12(1 − ν2
a )R2

eq

∂3

∂x2∂θ
−

Eah3
eq

12(1 − ν2
a )R4

eq

∂3

∂θ3 (3.7e)

and L33 = −
Eah3

eq

12(1 − ν2
a )

(
∂2

∂x2 + 1

R2
eq

∂2

∂θ2

)2

− Eaheq

(1 − ν2
a )R2

eq
− ρaheq

∂2

∂t2 . (3.7f )

The fluid is modelled as an acoustic medium, hence the equations of motion of the fluid can
be expressed in the cylindrical coordinate system (x, θ , r) as

1
r

∂

∂r

(
r
∂pf

∂r

)
+ 1

r2
∂2pf

∂θ2 + ∂2pf

∂x2 = 1

C2
f

∂2pf

∂t2 , (3.8)

where pf is the fluid pressure and Cf is the speed of sound in the fluid (Cf =√
Kf/ρf).
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(ii) Time-harmonic regime

In the framework of the time-harmonic regime, the displacement field u of the shell can
be expressed in the form of a travelling wave, associated with an axial wavenumber k and
circumferential mode number n. The expression of the displacement field u is

u(x, θ , t) = U eikx sin(nθ ) cos(ωt), (3.9a)

v(x, θ , t) = V eikx cos(nθ ) cos(ωt) (3.9b)

and w(x, θ , t) = W eikx sin(nθ ) cos(ωt), (3.9c)

where ω is the radian frequency, and U, V, W are the wave amplitudes in the x, θ , r directions,
respectively. The associated form of the acoustic pressure field is expressed as

pf = Pf eikx cos(nθ )Jn(krr) cos(ωt), (3.10)

where Pf is the pressure amplitude of the acoustic fluid, kr is the radial wavenumber and Jn(krr)
is the Bessel function of the first kind of order n. The radial wavenumber is related to the axial
wavenumber by the relation

kr =
√

ω2

C2
f

− k2. (3.11)

(iii) Approximation of the trapped waveforms

The fluid–solid interaction is taken into account by imposing the following boundary condition
in terms of equivalence between the acceleration of the fluid and the shell:

∂2w
∂t2

∣∣∣∣∣
r=Req

= ∂vf

∂t

∣∣∣∣
r=Req

= − 1
ρf

∂pf

∂r
. (3.12)

Substituting equations (3.9c) and (3.10) into the boundary conditions (3.12) yields the pressure
amplitude Pf of the acoustic fluid in the form

Pf = ω2ρf

krJ′n(krr)
W. (3.13)

The displacement field (3.9) and the pressure amplitude (3.13) can be substituted into the
equations of motion (3.6), so that the equations of motion of the coupled system can be written as⎛

⎜⎝C11 C12 C13
C21 C22 C23
C31 C32 C33

⎞
⎟⎠
⎛
⎜⎝U

V
W

⎞
⎟⎠=

⎛
⎜⎝0

0
0

⎞
⎟⎠ , (3.14)

where the elements Cij are given by

C11 = Eaheq

1 − ν2
a

k2 + Eaheq

2(1 + νa)R2
eq

n2 − ρaheqω2, (3.15a)

C12 = i
Eaheq

2(1 − νa)Req
nk = −C21, (3.15b)

C13 = −i
Eaheqνa

(1 − ν2
a )Req

k = −C31, (3.15c)

C22 =
(

1 +
h2

eq

12R2
eq

)[
Eaheq

(1 − ν2
a )R2

eq
n2 + Eaheq

2(1 + νa)
k2

]
− ρaheqω2, (3.15d)
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C23 = C32 = − Eaheqn

(1 − ν2
a )R2

eq

[
h2

eq

12

(
k2 + n2

R2
eq

)
+ 1

]
(3.15e)

and C33 = Eaheq

(1 − ν2
a )

⎡
⎣ 1

R2
eq

+ h2

12

(
n2

R2
eq

− k2

)2
⎤
⎦− ρaheqω2 + fr, (3.15f )

and the fluid loading term takes the form

fr = −ρf

kr

Jn(krReq)
J′n(krReq)

ω2. (3.16)

The assumption of simply supported ends (at x = 0 and x = Leq) yields the following boundary
conditions

v = 0, w = 0, Nxx = 0, Mxx = 0, at x = 0 and x = Leq. (3.17)

In order to satisfy the boundary conditions (3.17), the axial wavenumber k is taken as

k = πm
Leq

. (3.18)

For (3.14) to have non-trivial solutions, the determinant of C must be equal to 0, so that the
characteristic equation takes the form

F(m, n, ω) = 0. (3.19)

(iv) Frequency comparison for the simplified structure

The term ‘simplified structure’ is used here for a finite section of the blood vessel, of length Leq

between the stents. To observe the trapped waveforms, finite-element analysis is also performed
for the case when the appropriate boundary conditions are set at the edges of the finite section.
These computations are compared with the results obtained from the semi-analytical shell model
described above.

Equation (3.19) is used to obtain the natural frequencies of the fluid-filled shell that
approximate the frequencies corresponding to the dispersion curves for the cluster of stents with
zero or small slope. The second column of table 2 summarizes the first three frequencies for
standing waves evaluated by means of the semi-analytical model. The results are compared with
the frequencies obtained through two finite-element models of the simplified structure described
in this section. In particular, in the first model the artery is modelled as a three-dimensional solid,
whereas in the second model the artery is modelled as a shell.

The first column in table 2 corresponds to standing waves, with quasi-periodicity boundary
conditions set on the edges of the elementary cell. The third column corresponds to a finite hollow
cylinder, whose displacements at the edge boundaries are equal to zero. The fourth column
is produced from the finite-element computations for the elastic shell in the framework of the
Kirchhoff–Love shell theory, with the simply supported edges of the finite section of the blood
vessel.

A comparison between the semi-analytical model and the simplified structure where the artery
is modelled as a shell (columns 2 and 4 of table 2) shows that there is a good agreement between
the two models.

On the other hand, the model in which the artery is treated as a three-dimensional solid
shows a small difference (compared with the approximation based on the shell theory) in the
values of the frequencies corresponding to standing waves. This difference is associated with
the choice of the fixed displacement boundary conditions at the edges of the thin-walled solid
used in the calculations. Furthermore, it can be noted that the values obtained from the finite
three-dimensional structure are closer to those obtained from the Bloch–Floquet analysis for the
cluster of stents (column 1 of the table 2). The values of the frequencies estimated using the semi-
analytical model provide a good approximation for the standing waves frequency characterized
by exponential localization within the unstented arterial wall.
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Table 2. Comparative results in terms of frequency between the semi-analytical model and the finite-element analysis for the
determination of the standing waves within the cluster of stents. In the semi-analytical model, the results refer to the case
m= 2 assuming length Leq = 30 mm, radius Req = 4 mm and thickness heq = 0.7 mm. In the first column, n denotes the
circumferential mode number.

finite structure

Bloch–Floquet semi-analytical simplified structure simplified structure

n approach (Hz) model (Hz) (solid) (Hz) (shell) (Hz)

1 113.82 120.94 107.23 121.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 155.08 156.29 146.61 160.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 206.77 225.96 216.98 226.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Transmission problem
In this section, the transmission problem for the single stent and for the cluster of stents in a finite-
length artery is presented. The material properties employed for the models discussed in this
section are reported in table 1. In both cases, a pressure with amplitude p0 = 2.6 kPa ≈ 20 mmHg
is applied at x = 0, and it generates a wave which propagates from the left-hand side to the
right-hand side of the finite-length system (figures 10a and 11a). Zero displacement boundary
conditions are applied to the end sections of the artery.

The analysis is performed in the following way. In the first step, the response of the system
is investigated within the frequency range corresponding to a pass-band. In the second step, the
investigation is restricted to a frequency range corresponding to the first stop-band of the system
related to the axisymmetric mode, which was determined in §2d (figure 5c).

(a) Single type A stent
The geometry for the case of a single type A stent is represented in figure 10a, where the total
length of the artery is equal to 100 mm. A type A stent composed of 10 coils spaced by a distance
La/2 = 5 mm is inserted in the middle of the artery, so that the left end and the right end are not
supported by stents.

From figure 10b, it can be noted that within the pass-band regime for the axisymmetric mode,
waves can propagate without dissipation of energy and no reflection is detected; in this figure,
the pressure field at the frequency of 400 Hz is shown. Conversely, waves having a frequency
within the stop-band regime for the axisymmetric mode (ranging from 606.9 to 692.1 Hz) cannot
propagate through the system (figure 10c).

(b) Cluster of type A stents
The geometry for the case of a cluster of type A stents is represented in figure 11a, where the total
length of the artery is equal to 380 mm. The system is composed of five unit cells (each of length
Ltc = 60 mm) described in figure 7a, where type A stents are employed. Additional sections of
stent-free artery (length equal to 4La) are present at the left and at the right ends of the assembly
of unit cells.

Similar to the case of a single stent, figure 11b shows that waves can propagate without
dissipation within the pass-band regime for the axisymmetric mode and no reflection is detected;
in this figure, the effect of a wave of frequency 61 Hz is illustrated. Conversely, waves having a
frequency inside the stop-band regime cannot propagate through the system (figure 11c). In the
latter case, where the frequency of the wave is equal to 68 Hz, the decrease in pressure amplitude
is less evident because the stop-band width for the axisymmetric mode of this system (ranging
from 66.3 to 69.7 Hz) is narrower compared with that of the single stent (606.9 to 692.1 Hz).



17

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170670

...................................................

O x
z

y

2.5La 5La 2.5La

La

4

La

2

La

2

La

2

La

2

La

2

La

2

La

2

La

2

La

2

La

4

DP (kPa)

DP (kPa)

−2.85
−1.75
−0.65

0.45
1.55
2.65

−2.00
−1.10
−0.20

0.70
1.60
2.50

(a)

(b)

(c)

Figure 10. Schemeof the finite-length structure employed in frequency response analysis for type A stents. The system is based
on the repetition of five unit cells of type A stents illustrated in figure 3b, where two sections of unstented artery are present at
the left end and at the right end. The pressure field is shown in (b) and (c). (a) Scheme of the finite-length structure, (b) map of
the pressure within a pass-band at 400 Hz and (c) map of the pressure within a stop-band at 650 Hz. (Online version in colour.)
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Figure 11. Schemeof thefinite-length structure employed in frequency response analysis. The system is based on the repetition
of five unit cells of clusters of type A stents illustrated in figure 7a, where two portions of artery without stents are positioned
at the left end and at the right end. The pressure field is shown in (b) and (c). (a) Scheme of the finite-length structure, (b) map
of the pressure within a pass-band at 61 Hz and (c) map of the pressure within a stop-band at 68 Hz. (Online version in colour.)

5. Response of the system in the transient regime
The pulsatile nature of flow is different in the arterial tree depending upon the anatomical
position and the resistance in its draining arterial bed (organs supplied). The vessel calibre differs
depending upon anatomical location and the blood flow required at times of activity or rest.
The arteries are also subjected to the effects of human activities including low-frequency walking
or running, as well as higher frequencies such as riding in vehicles. This means that evolution
of the pulsatile flow can play an important role in the behaviour of a stented artery. Therefore, a
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further investigation in the framework of the transient regime is required to complete the dynamic
analysis of the stented artery. This can improve the understanding of failure when changes on the
wave propagation and stress occur, and can help to explain the observed tissue reactions to their
placements [54,55].

(a) Computational transient framework
A computational model is developed for the analysis of a finite-length artery in the transient
regime. In the first step, transient regime analysis is performed for an idealized straight artery
without stents; in the second step, the analysis is performed for the same artery where type B
stents are installed, and a comparison of the results is provided.

The artery is modelled as a hollow cylinder, whose length is 100 mm, with inner and outer
diameters equal to 7.3 and 8.7 mm, respectively. Zero displacement boundary conditions are
applied to the end sections of the artery. In the case of a stented artery, the vessel is reinforced
with 10 coils, whose spacing is equal to 5 mm, placed in the centre of the system, thus providing
the geometry represented in figure 10a, where type A stents are replaced with type B stents.
Differently from the previous section of this text, the stents are modelled as three-dimensional
solids with square cross section (0.1 mm × 0.1 mm). Therefore, equations of motion (2.1) are used
for the artery and for the stents, whereas the complete Navier–Stokes equations are employed to
model the fluid (blood). The Navier–Stokes equations are written as

∂vf

∂t
+ (vf · ∇)vf + ∇pf

ρf
− μf

ρf
∇2vf = 0, (5.1)

where vf is the velocity field of the fluid and μf is the dynamic viscosity.

(i) Material properties and boundary conditions

Consistent with the analyses reported in the previous sections, linear elastic isotropic
homogeneous materials are employed for the artery and the stents. The material properties of the
artery and of the stents are reported in table 1. The blood is modelled as a viscous incompressible
fluid of density 1050 kg m−3 and of dynamic viscosity 0.003 Pa s.

The continuity of the displacements and tractions between the stents and the artery is applied
at the interface corresponding to the external surface of the stent and the inner surface of the
artery. It is assumed that the inlet and the outlet surfaces of the fluid are positioned at x = 0 mm
and at x = 100 mm, respectively.

Full coupling between the fluid and the structure is taken into account. Coupling is provided
by means of condition (2.3), which involves a relation between the fluid pressure and the stress
in the artery, together with the following relation between the velocity of the fluid and the
displacement of the artery

vf = ∂ua

∂t
, (5.2)

representing the no-slip boundary condition for the viscous fluid.

(ii) Initial conditions

At the initial time t = 0 s, the whole system is at rest. Furthermore, a velocity field v0 is applied
to the fluid at the inlet. The magnitude of the initial inlet mean velocity vm,0 is equal to 0.2 m s−1

and laminar flow regime is assumed, whereas the outlet pressure is assumed to equal zero. In
a first phase, representing the initialization of the flow, the inlet velocity is assumed constant
(namely, v(t) = v0, hence vm(t) = vm,0) in order to reach the steady-state condition at a certain
time t0. During this phase, the velocity profile of the flow takes the form of a circular paraboloid,
corresponding to the Poiseuille flow. The maximum velocity of this profile is equal to 0.4 m s−1.
A distribution pc, representing the shape of a circular paraboloid, is applied to the inlet velocity
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Figure 12. Graph of the function b(t) expressed by (5.6) assuming A0 = 1,�A= 0.1 and n= 20. (Online version in colour.)

field in order to facilitate the system to reach the steady-state regime. In particular, for the system
depicted in figure 10a, the distribution pc is expressed as

pc = 1 − y2 + z2

R2
a

, (5.3)

where Ra is the inner radius of the artery, y and z are the Cartesian coordinates describing the
inlet surface at x = 0 mm. Therefore, the initial inlet velocity field can be expressed as

v0 = 2vm,0pcex, (5.4)

where ex is the unit vector oriented along the x-axis, which is the axis of the artery.

(iii) Pulsating flow

After reaching the steady-state regime, pulsating flow inlet conditions are assumed (v(t) �= v0 for
t ≥ t0) as follows. An idealized pulsation representing the variation of inlet velocity is expressed
in terms of Gaussian approximations and corresponds to 4 beats per second. This beat-rate,
corresponding to 240 bpm, is representative of patients affected by tachycardia. It should be noted
that the interest is focused on some of the frequencies composing the pulsation signal, which
might be attenuated by the stent structure. The idealized pulsation is chosen as a continuous
function approximating the velocity profile in an artery (see for instance [56, Fig. 1]).

In the time-amplitude plane, the shape of this pulsation profile is flat (corresponding to the
initial inlet mean velocity vm,0) for approximately two-thirds of the period, whereas, in the
remaining part of the period, there is the variation from vm,0 to the maximum peak (assumed to be
equal to 1.1vm,0), and back again to vm,0 (the same holds for the velocity field), thus representing
the beat.

The pulsation is defined by a smooth function, which is periodically extended for all values of
the time variable t. On a fixed interval, this function is approximated by a linear combination of
‘shifted’ Gaussians. In particular, it can be noted that for a sufficiently large N the function

Const
2N∑

k=−2N

e−(t−k)2
, (5.5)

approximates a function, which is constant in the interval t ∈ (−N/2, N/2), and decays
exponentially fast when |t| > 2N. This function is infinitely differentiable and is fully suitable for
approximating smooth pulses in the transient model. The desired pulsation is obtained by means
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of a distribution b(t) applied to the constant velocity field v0. The expression employed for the
pulsating inlet velocity profile is

b(t) = A0 + �A

⎛
⎝ n∑

k=−n

exp

(
− k2

72

)⎞⎠
−1

m∑
j=0

n∑
k=−n

exp

{
− 1

72

[
240

(
ft − j − 1

4

)
− k

]2
}

, (5.6)
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where A0 is the initial amplitude (unit value is assumed), �A is the variation of the amplitude
(assumed equal to 0.1), f is the number of beats per second, m denotes the total number of beats
and n corresponds to the number of the series elements approximating the flat zone (n = 20
provides a good approximation and has been used in the simulations). The function b(t) in
equation (5.6) is plotted in figure 12. The inlet velocity field is expressed as

v(t) =
{

v0 t < t0,

b(t)v0 t ≥ t0.
(5.7)
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Equation (5.7) provides the inlet condition that is applied in the computational model for the
whole duration of the analysis.

The inlet velocity field v(t) provided in equation (5.7) is smooth in the time domain (b is
infinitely differentiable with respect to time) and therefore more suitable for transient analysis
computations. The analysis is performed for a total of 30 beats after the initialization of the flow,
which takes place at approximately 2.8 s.

The velocity field v(t) can potentially promote different vibration modes of the system, because
it includes several harmonics. From the spectral analysis of the distribution b(t), it can be noted
that the amplitudes of the harmonics with a frequency higher than 32 Hz are already one-tenth
of the amplitude of the first harmonic. Similarly, the amplitudes of higher harmonics having a
frequency above 60 Hz are already two orders of magnitude below that of the first harmonic.
Hence, the inlet velocity field excites a broad range of frequencies, although only a few of them
can be considered in practice, because the effect of the others becomes negligible.

In the case of a pulsation corresponding to 3 Hz but with a variation of amplitude �A equal
to 0.5, the spectral analysis shows that harmonics having a frequency above 40 Hz are nearly two
orders of magnitude below that of the first harmonic.

(b) Computations of the fluid velocity and elastic deformation of the blood vessel
Figures 13 and 14 illustrate the speed of the fluid flow on the axis of the cylindrical vessel as
a function of time for different inlet frequencies. A comparison between unstented and stented
blood vessels emphasizes the different transient response of these systems to a pulsating flow.
The computations are presented for the case of type B stents.

It is observed that in the pass-band region the overall transient response of the stented artery
does not show localization, and it converges to the time-harmonic mode slightly faster than in
the case of the unstented softer system. It can be noted that for the case of the higher frequency
shown in figure 13, the profile of the displacement curve varies in transition from the unstented
to stented case. This profile clearly indicates the variation of the velocity of the flow due to the
presence of stents in the system.

6. Conclusion
The paper has presented a novel approach to predictive dynamic modelling of a stented artery,
which incorporates waveforms occurring due to the fluid–structure interaction. The outcomes of
this study include description of regimes and deformations of blood vessels, which may have a
detrimental effect on transmission of the blood flow.

The simplified, but mathematically advanced approach based on the concept of Bloch–Floquet
waves, reveals several classes of dynamic deformations featured by a stented blood vessel. It
has been demonstrated that both axisymmetric and non-axisymmetric deformations may be
associated with so-called stop-bands, and therefore have a detrimental effect on the fluid flow
through the stented vessel. The trapped modes are given special attention for clusters of stents
separated by a finite distance, and asymptotic approximations are derived for predictive analysis
of the associated waveforms.

The Bloch–Floquet wave theory has proved to be effective as the framework for time-harmonic
modelling of waves in stented blood vessels. The approach proposed here enables one to
evaluate qualitatively and quantitatively wave reflections from stents. In particular, it has been
demonstrated that waves of certain frequencies can be blocked by stents placed in arteries. The
geometry of stents has proved to be an important factor influencing the position of the first stop-
band, which is critical for cardiovascular applications. In addition, the cross-linking of coils within
the stent leads to the formation of additional stop-bands and may increase the stop-band width.
Multiple stents separated by a finite distance further reduce the frequency at which the stop-bands
can occur.
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The transient analysis involving two-way fluid–structure interaction has been implemented
for a stented blood vessel and a comparison with an unstented blood vessel is discussed in
terms of blood flow. The greater understanding of the effects of stent design on the fluid–solid
interaction will provide the researchers with more accurate modelling of this dynamic system.
This will allow for further investigation into why certain arteries respond well to stenting, while
others have difficulties.
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