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Abstract

Background

Post-operative atrial fibrillation (POAF) is a frequent cardiothoracic surgery complication that

increases hospital stay, mortality and costs. Despite decades of research, there has been no

systematic overview and meta-analysis of preclinical therapies for POAF in animal models.

Methods

We performed a systematic search of MEDLINE and EMBASE from their inception through

September 2020 to determine the effect of preclinical POAF therapies on primary efficacy

outcomes using a prospectively registered protocol (CRD42019155649). Bias was

assessed using the SYRCLE tool and CAMARADES checklist.

Results

Within the 26 studies that fulfilled our inclusion criteria, we identified 4 prevention strategies

including biological (n = 5), dietary (n = 2), substrate modification (n = 2), and pharmacologi-

cal (n = 17) interventions targeting atrial substrate, cellular electrophysiology or inflamma-

tion. Only one study altered more than 1 pathophysiological mechanism. 73% comprised

multiple doses of systemic therapies. Large animal models were used in 81% of the studies.

Preclinical therapies altogether attenuated atrial fibrosis (SMD -2.09; 95% confidence inter-

val [CI] -2.95 to -1.22; p < 0.00001; I2 = 47%), AF inducibility (RR 0.40; 95% CI 0.21 to 0.79;

p = 0.008; I2 = 39%), and AF duration (SMD -2.19; 95% CI -3.05 to -1.32; p < 0.00001; I2 =

50%). However, all the criteria needed to evaluate the risk of bias was unclear for many out-

comes and only few interventions were independently validated by more than 1 research

group.

Conclusion

Treatments with therapies targeting atrial substrate, cellular electrophysiology or inflamma-

tion reduced POAF in preclinical animal models compared to controls. Improving the quality

of outcome reporting, independently validating promising approaches and targeting compli-

mentary drivers of POAF are promising means to improve the clinical translation of novel

therapies for this highly prevalent and clinically meaningful disease.
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Introduction

Post-operative atrial fibrillation (POAF) is a commonplace arrhythmia seen in a third of

patients after coronary artery bypass grafting and almost half of patients after valve repair/

replacement [1–3]. Albeit often transient, the impact of POAF on surgical outcomes is signifi-

cant as it portends a 2-fold increase in mortality, greater hospital resource utilization and

increased costs [4, 5]. Emerging evidence has shown that POAF arises from a combination of

pre-existing cardiomyopathic changes in the atria, surgical-induced changes in atrial substrate

and post-operative insults (such as inflammation, altered neural regulation and oxidative

stress) [6–8]. These electrical and structural changes increase AF vulnerability by creating a

pro-fibrillatory substrate while altered calcium handling increases the risk for delayed afterde-

polarizations and the stimulation of ectopic atrial beats that trigger the arrhythmia [9–11].

Unfortunately, many of the standard therapies for paroxysmal AF have a very limited ability

to prevent POAF. Once POAF occurs, routine rhythm control is not recommended as stan-

dard rhythm-control therapies are often ineffective or limited by off target side effects. As

such, a number of dietary, interventional, molecular and pharmacologic agents that alter the

drivers or substrate regulating POAF have been studied in preclinical models to identify an

effective prophylactic strategy. The purpose of this systematic review is to provide a compre-

hensive overview of all preventative POAF studies in animal models reporting functional out-

comes with an evaluation of the potential mechanisms, study design and bias. From this

analysis, we identify promising strategies that positively influence post-surgical AF outcomes

to provide recommendations for future pre-clinical and clinical trials.

Methods

Search strategy

We performed an electronic literature search of the Medical Literature Analysis and Retrieval

System Online (MEDLINE) and the Excerpta Medica dataBASE (EMBASE) from database

inception to September 2020 using methods prospectively registered in the International Pro-

spective Register of Systemic Reviews (PROSPERO, CRD42019155649). To maximize the sen-

sitivity of the search strategy, we combined the terms: “animal experimentation,”

“postoperative period,” and “atrial fibrillation” or any of their synonyms as either MeSH terms

or key words (S1 Table in S1 File). The search strategy was designed to capture all animal stud-

ies relevant to the study question as previously described [12]. In addition, a manual screening

of the bibliographies of all retrieved articles was performed to enable a broad evaluation of the

current literature.

Study selection

Papers were independently screened by two investigators (CS and CM) in the title-abstract

and full-text screen using the predefined inclusion and exclusion criteria described below.

Before formally commencing the screening process, a calibration test using 10 randomly

retrieved articles was executed to ensure high inter-rater validity. When no consensus on

inclusion was met, a third investigator was consulted. Papers were included if they (1) reported

efficacy outcomes of preclinical therapies for POAF, and (2) used animal models of postopera-

tive atrial fibrillation (i.e., sterile pericarditis, atriotomy, pericardiotomy) that mimic the

inflammatory state seen in postoperative setting [13, 14]. We included both single-arm studies,

in which the effect of intervention was measured before and after administration, and double-

arm studies, in which parallel intervention and control groups were measured. Papers were

excluded if they (1) included human population (i.e., human clinical trials), (2) assessed
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efficacy outcomes through in vitro or ex vivo studies, (3) used irrelevant animal models

of POAF (e.g., vagal induction, electrical pacing only), (4) studied downstream POAF reduc-

tion strategies (e.g., cardioversion, ablation), and (5) focused on other cardiac arrhythmias

(e.g., atrial flutter, ventricular arrhythmia). We also excluded case-reports, review articles,

grey literature, unpublished articles, and studies that were not published in the English

language.

Data extraction and analysis

A standardized data abstraction table was created a priori by the review team to extract all rele-

vant data from full-text articles. Two reviewers (CS and CM) independently extracted the data

and compared the results for verification. Extracted data included study characteristics (e.g.,

sample size, randomization, study design, blinding of outcome analysis, endpoint), interven-

tion description (e.g., type and frequency of intervention, mode and dosage of administration),

animal model (e.g., species, POAF model, base characteristics), and primary (atrial fibrosis,

AF inducibility, termination, duration) and secondary (e.g., electrophysiological measure-

ments, conduction mapping) outcomes. Outcomes reported only in graphical format were

extracted using the web-based software WebPlotDigitizer (Version 4.3; https://automeris.io/

WebPlotDigitizer/). The SYstematic Review Centre for Laboratory animal Experimentation

(SYRCLE) risk of bias tool was used to assess study bias [15]. Each criteria of the SYRCLE tool

(selection, performance, detection, attrition, reporting, other bias) was assessed by two inde-

pendent investigators (CS and CM) and a value of low, high, or unclear risk of bias was

assigned for each included study. Quality assessment was performed using the Collaborative

Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMAR-

ADES) checklist [16]. Each study was assessed independently by the same two investigators

and a global quality assessment value of poor, average, or good quality was determined as per

the checklist. Any disagreements were resolved by discussion and consensus.

Data are expressed as mean ± SD unless otherwise specified. Significance level was deter-

mined a priori to p< 0.05. To account for heterogeneity of treatment effect between the

reviewed studies, random effects meta-analyses were performed using the DerSimonian and

Laird model for dichotomous variables (e.g., AF inducibility, AF termination) and random

effects inverse variance meta-analysis for continuous variables (e.g., atrial fibrosis, AF dura-

tion) before and after the treatment to determine the overall effect size of each outcome [17].

Dichotomous variables were reported as risk ratios (RR), and continuous variables as stan-

dardized mean differences (SMD) due to the considerable differences in the working defini-

tion of AF and measurement of outcomes in the included studies. In cases where the risk ratio

could not be calculated due to zero events in one or both groups, a continuity correction was

performed by assigning a fixed value of 0.5 to all cells in the 2x2 table to avoid computational

errors [18]. Z test was performed to determine the P-value for the overall effect of the compari-

sons. Heterogeneity of effect sizes was assessed using the Cochrane I2 statistic with the follow-

ing thresholds: 0–40% (low heterogeneity), 30–60% (moderate), 50–90% (substantial), and 75–

100% (considerable) [18]. Subgroup analysis was performed based on different study charac-

teristics, such as the size and type of animal models, and therapeutic strategies if there was con-

siderable heterogeneity (75–100%) to elucidate the source of heterogeneity. Furthermore, in

case of considerable heterogeneity, sensitivity analysis was also performed by eliminating a sin-

gle study at a time to elicit the impact of the study on the overall result. To evaluate potential

publication bias, funnel plots were produced to assess the symmetry in plotted values [19]. The

meta-analysis was performed using the Cochrane Collaboration’s Review Manager statistical

software (RevMan, 5.4).
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Results

Fig 1 illustrates the study selection process in a PRISMA flow diagram. The search strategy

identified a total of 360 and 303 citations from EMBASE and MEDLINE, respectively. One

additional citation was identified from a manual bibliographical search that was performed

during title-abstract screening [20]. After removing duplicate search results and screening for

relevant title and abstract, 85 articles were identified for full-text screening. Of these, 59 studies

were further excluded as they did not meet the inclusion criteria. In total, 26 studies were

included in this review [20–45].

Despite decades of clinical observation and reports on POAF, studies on pre-clinical thera-

pies gained increasing attention at the turn of the century with only one study dating back to

1993 [21]. As shown in Table 1, pre-clinical therapies could be largely grouped into four

themes: biologics (5 out of 26 studies) [29, 37, 38, 42, 44], dietary modification (2 studies) [33,

34], electrical substrate alteration (1 study) [22], anatomical substrate alteration (1 study) [40],

Fig 1. PRISMA flow diagram outlining the systematic search performed on September 03, 2020.

https://doi.org/10.1371/journal.pone.0241643.g001
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Table 1. Strategies for reducing post-operative atrial fibrillation in animal models.

Reference Treatment Method Species Animal model

Biologics

Rossman et al., 2009 [29] GAP-134 (gap junction modifier) IV administration Dog Induction of

SP

Fu et al., 2015 [37] Anti-rat IL-17 mAb IP injection Rat Induction of

SP

Sadrpour et al., 2015 [38] M-II (K201 metabolite) IV administration Dog Induction of

SP

Huang et al., 2016 [42] S3I-201 (selective STAT3 inhibitor) &

antagomir-21

IP injection & Plasmid IM injection Rat Induction of

SP

Chang et al., 2018 [44] MPT0E014 (HDAC inhibitor) IV administration Rabbit Pericardiotomy

Dietary modification

Mayyas et al., 2011 [33] n-3 PUFA (EPA+DHA) Diet supplement Dog Atriotomy

Zhang et al., 2011 [34] n-3 PUFA (EPA+DHA) Oral administration Dog Induction of

SP

Substrate alteration

Becker et al., 2002 [22] Multisite & septal atrial pacing Constant pacing from HRA, LRA, HLA, LLA and septal

electrodes

Dog Induction of

SP

Yang et al., 2015 [40] Modification of RA free wall incision Modified atriotomy incisional line extending from IVC to

TA

Pig Atriotomy

Pharmacologic

Shimizu et al., 1993 [21] E-4031 (class III antiarrhythmic agent) IV administration Dog Induction of

SP

Kumagai et al., 2003 [23] JTV-519 (K201; RyR-channel inhibitor) IV administration Dog Induction of

SP

Goldstein et al., 2004 [24] AZD7009 (K+ & Na+ channel blocker) IV administration Dog Induction of

SP

Kumagai et al., 2004 [25] Atorvastatin Oral administration Dog Induction of

SP

Ishii et al., 2005 [26] Methylprednisolone NS (2 mg/kg per day) Dog Atriotomy

Tselentakis et al., 2006 [27] Ibuprofen & methylprednisolone Topical atrial application Dog Induction of

SP

Goldstein et al., 2008 [28] Prednisone Oral administration Dog Induction of

SP

Matsumoto et al., 2010 [30] Vanoxerine IV administration Dog Induction of

SP

Yoo et al., 2010 [31] Triamcinolone Triamcinolone + fibrin applied to atria Dog Induction of

SP

Cakulev et al., 2011 [32] Vanoxerine Oral administration Dog Induction of

SP

Schuessler et al., 2012 [35] Methylprednisolone NS (2 mg/kg per day) Dog Atriotomy

Bhimani et al., 2014 [36] Ranolazine IV administration Dog Induction of

SP

Zhang et al., 2015 [39] Atorvastatin Oral administration Goat Induction of

SP

Schwartzman et al., 2016

[41]

Amiodarone Attachment of PBM on atrial epicardial surface Pig Induction of

SP

Robinson et al., 2016 [20] PPX[AMIO, DEX] Attachment of parylene-C film fixed on pericardium Rabbit Pericardiotomy

Ishii et al., 2017 [43] Methylprednisolone NS (2 mg/kg per day) Dog Atriotomy

Wu et al., 2020 [45] Colchicine Oral administration Rat Induction of

SP

DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; HDAC = histone deacetylase; HLA = high left atrium; HRA = high right atrium; IL-17 = interleukin 17;

IM = intramyocardial; IP = intraperitoneal; IV = intravenous; IVC = inferior vena cava; LLA = low left atrium; LRA = low right atrium; mAb = monoclonal antibody;

miR = microRNA; NS = not specified; PBM = Plasma-Based Amiodarone-Impregnated Material; POAF = postoperative atrial fibrillation; PPX[AMIO, DEX] =

amiodarone- and dexamethasone-loaded parylene-C film; PUFA = polyunsaturated fatty acid; RA = right atrium; SP = sterile pericarditis; RyR = ryanodine receptor;

STAT3 = signal transducer and activator of transcription 3; TA = tricuspid annulus.

https://doi.org/10.1371/journal.pone.0241643.t001
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and pharmacologic approaches (17 studies) [20, 21, 23–28, 30–32, 35, 36, 39, 41, 43, 45]. Of

these, three of the four studies using methylprednisolone were published by one laboratory

[26, 35, 43] and both studies using vanoxerine were published by a second group [30, 32].

Early publications largely focused on pharmacologic means of reducing POAF, while recent

publications showed more diversified approaches using dietary molecules and biologic targets.

Twenty-one of the 26 studies were carried out in large animal models (e.g., canine, swine,

goat) while small animal models (e.g., rat, rabbit) were only used in biologic therapy studies

and two pharmacologic studies [20, 45]. Most studies performed either induction of sterile

pericarditis during an open-heart surgery (19 studies) or atriotomy (5 studies) as pre-treat-

ments to model POAF in the animal model. Of note, only two studies used pericardiotomy

alone to model POAF, both of which were performed in rabbits [20, 44].

S2 Table in S1 File presents descriptions of the 26 included studies. Experimental groups

ranged between 5 and 12 animals, with only 3 studies reporting more than 10 animals in both

experimental and control groups. Eight studies were single-arm studies in which the effect of a

therapeutic intervention was evaluated at baseline and after administration for all animals

used in the study. Primary outcomes typically evaluated short-term (i.e., less than a week)

effects of treatments in POAF characteristics (23 studies), in keeping with the natural preva-

lence of POAF in hospitalized patients.

As shown in Table 2, 18 interventions reduced AF inducibility [20, 22–24, 26, 27, 29, 30,

32–34, 37, 41–43, 45], 1 intervention increased AF inducibility [28], and 2 interventions had

no effect [31, 39]. Six studies demonstrated an intervention that increased spontaneous termi-

nation of AF [21, 24, 30, 32, 36, 38]. Of the 13 studies that explored the effect of an intervention

on AF duration, 11 found a significant reduction [20, 25, 26, 29, 34, 37, 39, 41–43, 45] while 2

failed to demonstrate any effect [22, 31]. Of the 10 studies exploring effects on atrial remodel-

ling, 9 interventions were found to significantly attenuate atrial remodelling [20, 34, 37, 39–42,

44, 45] while 1 study identified an intervention that adversely impacted atrial remodeling but,

given the nature of the intervention (i.e., extensive atriotomy incisions), such an effect was

expected [40]. Among the non-substrate interventions, only 6 were performed as a single treat-

ment as opposed to multiple systematic treatments. These included miR-21 injection into the

left atrial wall [42], plasma-based amiodarone-impregnated material gel on the atrial surfaces

[41], ibuprofen and methylprednisolone powder on the atrial surfaces [27], triamcinolone

spray on the epicardium [31], and dexamethasone + amiodarone releasing nano-structured

parylene-C film on the epicardium [20].

To assess the current state of all pre-clinical therapies published to date, we performed a

meta-analysis of their primary efficacy outcomes. As shown in Table 3 and Fig 2, grouped

analysis showed that preclinical therapies altogether attenuated atrial fibrosis (SMD -2.09; 95%

confidence interval [CI] -2.95 to -1.22; p< 0.00001; I2 = 47%), AF inducibility (RR 0.40; 95%

CI 0.21 to 0.79; p = 0.008; I2 = 39%), and AF duration (SMD -2.19; 95% CI -3.05 to -1.32;

p< 0.00001; I2 = 50%). Treatment with any preclinical therapy was also more apt to result in

termination of AF.

For the purpose of meta-analysis, only the studies that reported (1) the percentage atrial fibro-

sis; (2) the number of animals in which AF was inducible; and (3) the mean duration of induced

AF were reported. Studies were not included if they did not specify the type of arrhythmia (i.e.,

summed all atrial tachyarrhythmias). AF = atrial fibrillation; opLA = pericardiotomy of left atrium;

PBM = Plasma-Based, Amiodarone-Impregnated material; PC = pericardiotomy; PPX[AMIO,

DEX] = amiodarone- and dexamethasone-loaded parylene-C film; PUFA = polyunsaturated fatty

acid; SD = standard deviation; SEM = standard error of the mean; SP = sterile pericarditis.

We performed a risk of bias assessment on all studies included in the present review using

the SYRCLE bias tool (Table 4). Overall, the risk of bias was unclear for many; particularly
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with regards to selection (i.e., allocation concealment), performance (i.e., random housing,

blinding of participants and personnel) and detection bias (i.e., random outcome assessment,

blinding of outcome assessment). Certain interventions (e.g., methylprednisolone, vanoxerine)

were only investigated by a single group so the generalizability of these findings needs to be

confirmed and this impacted on the study quality which was assessed using the CAMARADES

checklist (S3 Table in S1 File). Collectively, the median score was 4 (Interquartile Range [IQR]

3.75–5). While the majority of double-arm studies incorporated randomization protocol for

assigning animals to treatment groups (11 of 18 studies), only one study assessed the dose-

response relationship [45]. No study formally stated their sample size calculation and only four

studies stated that investigators were blinded for assessment of outcomes. Although body

Table 3. Differences in atrial fibrosis, AF duration, inducibility and termination.

Control Treatment

Reference Error Control N Mean Error Treatment N Mean Error

Atrial fibrosis�

Kumagai et al., 2004 [25] SD SP control 10 26% 7% Atorvastatin 10 16% 4%

Huang et al., 2016 [42] SEM SP control 5 17.73% 1.32% S3I-201 5 11.22% 1.06%

Huang et al., 2016 [42] SEM SP control 5 17.88% 1.28% miR-21 5 13.02% 0.98%

Robinson et al., 2016 [20]�� SD PC control 5 2.75 0.42 PPX[AMIO,DEX] 6 0.25 0.42

Chang et al., 2018 [44] SEM opLA 9 36.5% 7.8% MPT0E014 9 15.4% 2.6%

Wu et al., 2020 [45] SEM SP control 6 14.62% 1.31% Colchicine 6 5.51% 0.65%

AF duration

Kumagai et al., 2004 [25] SD SP control 10 534 s 189 s Atorvastatin 10 177 s 57 s

Rossman et al., 2009 [29] SEM SP control 9 603 s 119 s GAP-134 9 254 s 112 s

Schwartzman et al., 2016 [41] SD SP control 5 228 s 78 s PBM 5 21 s 9 s

Robinson et al., 2016 [20] SD PC control 5 187.6 s 174.7 s PPX[AMIO,DEX] 6 9.5 s 6.8 s

Ishii et al., 2017 [43] SD Atriotomy control 6 148 s 54 s Methylprednisolone 6 4 s 6 s

Wu et al., 2020 [45] SEM SP control 7 99.5 s 8.4 s Colchicine 7 24.2 s 9.8 s

Control Treatment

Control N total N with event (%) Treatment N total N with event (%)

AF inducibility

Ishii et al., 2005 [26] Atriotomy control 6 6 (100%) Methylprednisolone 6 2 (33.3%)

Tselentakis et al., 2006 [27] SP control 9 5 (55.5%) Methylprednisolone 8 1 (12.5%)

Tselentakis et al., 2006 [27] SP control 9 5 (55.5%) Ibuprofen 7 0 (0%)

Goldstein et al., 2008 [28] † SP control 11 2 (18.2%) Prednisone 7 4 (57.1%)

Mayyas et al.,2011 [33] Atriotomy control 6 4 (66.6%) n-3 PUFA 7 0 (0%)

Zhang et al., 2011 [34] SP control 10 7 (70%) n-3 PUFA 10 1 (10%)

Schwartzman et al., 2016 [41] SP control 5 5 (100%) Amiodarone 5 2 (40%)

Ishii et al., 2017 [43] Atriotomy control 6 6 (100%) Methylprednisolone 6 2 (33.3%)

AF termination

Shimizu et al., 1993 [21] - - - E-4031 4 4 (100%)

Goldstein et al., 2004 [24] - - - AZD7009 7 7 (100%)

Matsumoto et al., 2010 [30] - - - Atorvastatin 11 10 (90.9%)

Bhimani et al., 2014 [36] - - - Ranolazine 4 3 (75%)

Sadrpour et al., 2015 [38] - - - M-II 2 2 (100%)

�Masson’s trichrome was used for detection of collagen fibers in prepared atrial tissues. Results shown indicate mean % area fibrosis.

�� Cardiac adhesion was assessed using a 4-point scoring system: 0 –no adhesions; 1 –mild adhesions; 2 –moderate adhesions; 3 –severe adhesions.

†only POD3 result shown.

https://doi.org/10.1371/journal.pone.0241643.t003
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Fig 2. Forest plots of the effect of preclinical therapies on primary AF outcomes. (A) Standard mean difference of the degree of atrial fibrosis between POAF

treatment and control groups following operation, (B) Risk ratio of AF inducibility in animals following operation, and (C) Standard mean difference of AF duration

between POAF treatment and control groups following operation. CI = confidence interval; IV = inverse variance; SD = standard deviation.

https://doi.org/10.1371/journal.pone.0241643.g002
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temperature may influence cardiac electrophysiology [46], only 25% of studies stated physio-

logic temperatures were maintained during the procedures. Finally, we sought to assess any

potential publication bias through a test for asymmetry using funnel plots. As shown in Fig 3,

computed funnel plots for the three primary efficacy outcomes (i.e., AF fibrosis, AF inducibil-

ity, AF duration) illustrated a trend of asymmetry, with greater proportion of the outcomes

favouring positive findings. This is potentially indicative of publication bias, however, given

the small number of studies reporting each outcome measure, the plots must also be inter-

preted with caution as the power to detect bias is low.

Table 4. SYRCLE bias tool summary table.

� Low risk of bias Selection bias Performance bias Detection bias Attrition bias Reporting bias Other bias

�High risk of bias
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� Not applicable

Reference

Double-arm Trials

Becker et al., 2002 [22] � � � � � � � � � �

Kumagai et al., 2004 [25] � � � � � � � � � �

Ishii et al., 2005 [26] � � � � � � � � � �

Tselentakis et al., 2006 [27] � � � � � � � � � �

Rossman et al., 2009 [29] � � � � � � � � � �

Yoo et al., 2010 [31] � � � � � � � � � �

Mayyas et al., 2011 [33] � � � � � � � � � �

Zhang et al., 2011 [34] � � � � � � � � � �

Schuessler et al., 2012 [35] � � � � � � � � � �

Fu et al., 2015 [37] � � � � � � � � � �

Zhang et al., 2015 [39] � � � � � � � � � �

Yang et al., 2015 [40] � � � � � � � � � �

Schwartzman et al., 2016 [41] � � � � � � � � � �

Huang et al., 2016 [42] � � � � � � � � � �

Robinson et al., 2016 [20] � � � � � � � � � �

Ishii et al., 2017 [43] � � � � � � � � � �

Chang et al., 2018 [44] � � � � � � � � � �

Wu et al., 2020 [45] � � � � � � � � � �

Single-arm Trials

Shimizu et al., 1993 [21] � � � � � � � � � �

Kumagai et al., 2003 [23] � � � � � � � � � �

Goldstein et al., 2004 [24] � � � � � � � � � �

Goldstein et al., 2008 [28] � � � � � � � � � �

Matsumoto et al., 2010 [30] � � � � � � � � � �

Cakulev et al., 2011 [32] � � � � � � � � � �

Bhimani et al., 2014 [36] � � � � � � � � � �

Sadrpour et al., 2015 [38] � � � � � � � � � �

https://doi.org/10.1371/journal.pone.0241643.t004
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Fig 3. Funnel plot of publication bias in the meta-analysis of primary outcomes. (A) Atrial fibrosis, (B) AF

inducibility, and (C) AF duration. RR = risk ratio; SE = standard error; SMD = standardized mean difference.

https://doi.org/10.1371/journal.pone.0241643.g003
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Discussion

In this study, we report the published work to date exploring pre-clinical therapies for POAF.

Amongst clinical AF syndromes, POAF is unique as it is highly prevalent, clinically meaningful,

and demonstrates predictable time-course [1–5]. Given that standard therapies are not useful or

highly toxic, these attributes combine to make the development of effective prophylaxis both clini-

cally and commercially attractive. Although our review identified several promising pre-clinical

strategies, clinical translation has been limited which may reflect the quality of the evidence, the

impractical nature of the interventions or the risks of off target (systemic) complications.

The outcomes reported in this systematic review should be interpreted in light of several

limitations. First, none of the animal models demonstrated spontaneous POAF. In all cases,

atrial fibrillation was induced in animals via extra-stimulation (e.g., atrial burst pacing) follow-

ing pericardiotomy, atriotomy, and/or application of sterile pericarditis. This artificial POAF-

like state ignores the complex and multi-faceted electrophysiology that arises in human

patients. Second, as shown in S4 Table in S1 File, induction protocols (i.e., pacing cycle length,

pulse duration and voltage) and AF definitions varied considerably between studies which, in

the absence of pre-registration, prompts speculation that these methods may have been cus-

tomized to enhance outcomes. Furthermore, funnel plots, used to evaluate publication bias,

showed a trend of asymmetry favouring successful interventions. Although it is challenging to

definitively identify publication bias given the small number of studies (<10) that discourage

the use of statistical tests for asymmetry [47, 48], the results presented in this review must be

considered in light of these potential biases. It is also notable that the largest group studied in

the entire sample comprised only 12 animals. This would be fine if the outcomes were

extremely reproducible and justified by a robust sample size calculation, but no study pub-

lished this important design feature. Finally, none of the models incorporated any of the risk

factors for POAF that include advanced age, obesity, congestive heart failure, chronic renal

failure, or lung disease [1, 2, 4]. All studies were performed in young healthy animals, or failed

to report the age at experimentation. These shortcomings compromise external validity and

reduce the ability of any preclinical model to be translated. Despite the complexity and cost

needed to mimic human conditions, the results from this present study suggest that more clin-

ically applicable animal models for POAF are desperately needed.

Despite the number of studies identified, we were discouraged to find that very few studies

replicate key findings. When multiple studies used the same approach, they were often per-

formed by the same group which limits generalizability of the findings. In fact, no study satis-

fied all the criteria needed to ensure low risk of bias as design issues were often not outlined.

With the institution of consistent reporting standards across many peer reviewed journals,

study quality and reproducibility will likely become more consistent and increase confidence

in pre-clinical reports.

Progress in this field is also likely limited by reliance on large animal models (81% of the

studies). The limited throughput and high cost of these large animal models help to explain the

small group sizes and few treatments strategies used in these studies. Small animal models of

POAF have only been developed in the past 4–5 years with 3 studies using a rat model of sterile

pericarditis [37, 42, 45] and 2 study using a rabbit model of pericardiotomy [20, 44]. Small ani-

mal models open the possibility of broad compound screens and dose-response relationships

for promising compounds prior to validation within large animal models. The latter still being

necessary as these large animal models help confirm product efficacy and scaling to larger

“human” doses. In the future, ex vivo heart preparations or pluripotent-derived cell models of

POAF may emerge but this will likely be challenging as POAF arises from the complex inter-

play between surgical intervention, medical co-morbidities and an intact host.
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The pathogenesis of POAF revolves about the interplay between inflammation, pre-existing

triggers, structural disease, and peri-operative insults. As shown in S5 Table in S1 File, pre-

clinical interventions focus on reducing inflammation, modifying cardiac electrophysiology or

altering substrate with none addressing all 3 mechanisms. It is very possible that, for any ther-

apy to provide a real-world meaningful reduction in POAF, a combinatorial approach will be

needed. This insight may help to explain why clinical trials have failed to find a consistent sig-

nal for efficacy when a preclinical approach is applied to the clinic. For example, the pre-clini-

cal data supporting pre-operative steroids to prevent POAF appears to be uniform with

multiple studies showing enhanced AF termination, reduced AF inducibility, reduced atrial

fibrosis and reduced conduction inhomogeneities. In contrast, the 16+ clinical trials to date

investigating the ability of steroids to suppress POAF have failed to show a clear signal for ben-

efit [49–53]. The interpretation of this aggregate data may have been complicated by drug

selection, dose administered, trial-specific differences in logistics and even inadvertent toxicity

(including corticosteroid-related AF). Peri-operative steroids have not been widely adopted or

recommended in recent guidelines. Similar discrepancy in translation from preclinical animal

studies to clinical trials is seen with prophylactic administration of PUFA [54], which demon-

strated no effect on the incidence of POAF in patients undergoing open heart surgery despite

strong evidence in animal models.

Future approaches for POAF will also likely evolve to include more biological therapies that

target the fundamental substrate or triggers of POAF [55]. In this systematic review, only 5

studies explored the impact of biological intervention on POAF. These studies focused on pre-

dictable targets (inflammation and cardiac electrophysiology) but only recently have next gen-

eration targets (such as autonomic tone, atrial ectopy, mechano-electric feedback and

hormonal modulation) become obvious [56].

The ideal therapy for POAF should be affordable, effective and non-toxic. When examined

in this light, many of the approaches chosen to date fall short. The poor efficacy of antiarrhyth-

mic drugs suggests that changing cellular electrophysiology alone is not likely to be effective

but may provide benefit when combined with other strategies. Systemic immunomodulatory

approaches are complicated by increased risks of infection, hyperglycemia, gastritis, pro-

arrhythmia and myelosuppression. Anti-fibrotic approaches may be effective if confined to the

atria but are unlikely to have much benefit if they impact post-operative healing or increase

the risk of infection. Local delivery of a treatment to the atria avoids many of these systemic

issues. This injectate has to persist long enough to modify cell function but, unlike a therapy

for longstanding paroxysmal or persistent atrial fibrillation, a therapy for POAF need only be

present during the post-operative period. A strategy that involves local injection of miRNA at

the time of cardiac surgery to modify cellular electrophysiology or fibrosis for a few days

would exemplify this approach. But the high price tag associated with “Good Manufacturing

Practices” and xenogen free recombinant vectors scaled to human doses (100X greater than a

rat) effectively preclude realistic consideration at this time. The challenge lies in identifying

cost-effective solutions. Plausible options include: 1) modifying surgical techniques to limit

epicardial contact (perhaps using artificial intelligence or robotic supported techniques) [57],

2) empiric substrate modification for high risk patients at the time of surgery, 3) epicardial

application of biodegradable materials embedded with multiple proteins or transcripts that

inhibit fibrosis and inflammation, or suppress early afterdepolarizations and delayed afterde-

polarizations, 4) multimodal systemic therapies to decrease inflammation and pro-arrhythmia,

or 5) pre-treating high risk patients using catheter-based modification of pro-arrhythmic sub-

strate. As outlined, the emerging number of complimentary preclinical models will help iden-

tify promising therapies to treat this disease which is ripe for disruptive innovation.
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