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Abstract
Background Lung epithelial lining fluid (ELF)—sampled through sputum induction—is a medium rich in cells, proteins and 
lipids. However, despite its key role in maintaining lung function, homeostasis and defences, the composition and biology 
of ELF, especially in respect of lipids, remain incompletely understood.
Objectives To characterise the induced sputum lipidome of healthy adult individuals, and to examine associations between 
different ELF lipid phenotypes and the demographic characteristics within the study cohort.
Methods Induced sputum samples were obtained from 41 healthy non-smoking adults, and their lipid compositions ana-
lysed using a combination of untargeted shotgun and liquid chromatography mass spectrometry methods. Topological data 
analysis (TDA) was used to group subjects with comparable sputum lipidomes in order to identify distinct ELF phenotypes.
Results The induced sputum lipidome was diverse, comprising a range of different molecular classes, including at least 75 
glycerophospholipids, 13 sphingolipids, 5 sterol lipids and 12 neutral glycerolipids. TDA identified two distinct phenotypes 
differentiated by a higher total lipid content and specific enrichments of diacyl-glycerophosphocholines, -inositols and -glyc-
erols in one group, with enrichments of sterols, glycolipids and sphingolipids in the other. Subjects presenting the lipid-rich 
ELF phenotype also had significantly higher BMI, but did not differ in respect of other demographic characteristics such as 
age or gender.
Conclusions We provide the first evidence that the ELF lipidome varies significantly between healthy individuals and propose 
that such differences are related to weight status, highlighting the potential impact of (over)nutrition on lung lipid metabolism.

Keywords Induced sputum · Epithelial lining fluid · Pulmonary surfactant · Lipid metabolism · Lipidomics · Mass 
spectrometry · Weight status

1 Introduction

Epithelial lining fluid (ELF) is the thin layer of biofluid that 
covers the apical surface of the respiratory epithelium, from 
the alveoli up through to the large airways. As the first bar-
rier between the lung and the external environment, it is a 

prime target for molecular studies of lung disease. Sputum 
induction is a non-invasive procedure for sampling ELF 
(Chanez et al. 2002) and is widely used to study the pathobi-
ological mechanisms, inflammatory responses and microbial 
compositions of respiratory diseases such as asthma (Seys 
2017; Wright et al. 2000), chronic obstructive pulmonary 
disease (COPD) (Iwamoto et al. 2014; Shaw et al. 2014; Tel-
enga et al. 2014), cystic fibrosis (Muhlebach and Sha 2015; 
Quinn et al. 2016; Sagel et al. 2007) and tuberculosis (Pan 
et al. 2015). Although sputum induction primarily targets 
secretions which originate in the lower airways, sputum sam-
ples actually comprise a mixture of pulmonary surfactant, 
saliva, immune cells, and squamous cells from the upper 
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airways and oral epithelium (Fig. 1). The ratio of each of 
these varies depending on the subject, disease state and the 
induction method used (e.g. Belda et al. 2000; Pizzichini 
et al. 1996). Moreover, sputum samples may contain secre-
tions from the upper airways or the gastroesophageal tract, 
inhaled aerosols and microbes. These additional sources can 
affect the concentrations of lower airways biomarkers, prin-
cipally through dilution of the sample with saliva, and may 
also influence its molecular composition.

Despite the widespread use of induced sputum in lung 
research, its lipid composition and the associated influenc-
ing biochemical factors have not been fully elucidated. In 
part, this may be due to the difficulty in obtaining sufficient 
good quality samples, particularly from healthy individu-
als (Chanez et al. 2002; Lins 2016). The few studies that 
have described the lipid composition of ELF (as sampled by 
sputum induction) have shown that it is dominated by glyc-
erophospholipids, in particular a restricted number of satu-
rated glycerophosphocholine (PC) species, with only small 
amounts of other classes such as glycerophosphoglycerol 
(PG), -ethanolamine (PE) and -inositol (PI) being present 
(Dushianthan et al. 2012; Sahu and Lynn 1978; t’Kindt et al. 
2015). A variety of glycerolipids (di- and triacylglycerols 

together with free fatty acids), sterols (predominately choles-
terol) and sphingolipid species (various species of ceramides 
and sphingomyelins) have also been detected, but these are 
much less abundant in induced sputum than in plasma or 
tissue samples (Sahu and Lynn 1978; t’Kindt et al. 2015). 
While these existing studies have offered valuable insight 
into the molecular diversity of induced sputum samples, 
more information on the amounts and variability of individ-
ual lipid molecular species is required. The lipid composi-
tion of any biofluid can be significantly affected by inherent 
instrumental and biological variabilities between samples 
and individuals (e.g. Sales et al. 2016). Indeed, the relative 
abundances of PC species have been shown to differ between 
induced sputum, BAL and tracheal wash samples, as well as 
between patients (Dushianthan et al. 2012). Such variability 
must be considered in respect of sputum, particularly when 
this sampling method is used for large cohort-based disease 
studies (Hyötyläinen and Orešič 2015).

In view of the limited knowledge about the pulmonary 
lipidome under ‘normal’ conditions, the aims of the cur-
rent study were to: (1) define better the lipid composition 
of induced sputum (and by extension ELF), in a substan-
tial cohort of healthy non-smoking adult volunteers; (2) 

Fig. 1  Induced sputum is a composite sample that, whilst the pro-
cedure targets the lower airways, contains material from a range of 
sources. The relative contributions of each of these vary and this 
complicates the robust measurement of biomarkers in induced spu-
tum samples. This figure summarises the main sources of material in 

induced sputum (in bold), as well as some potential minor sources, 
and gives some of the characteristics of the lipids found in each 
source (for more detail see Kremlev et al. 1994; Larsson et al. 1996; 
Fessler and Summer 2016)
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determine the variability of the ELF lipidome within this 
population; and (3) examine whether any observed lipidom-
ics differences are associated with common demographic 
and physiological parameters.

2  Materials and methods

A more extensive description of the study design, sample 
collection, experimental procedures and data analysis meth-
ods is presented in Supplementary Material 1.

2.1  Study participants

All induced sputum samples used in this study were obtained 
from the U-BIOPRED cohort (Unbiased Biomarkers for 
the Prediction of Respiratory Disease Outcomes). A total 
of 101 healthy non-smoking individuals were recruited in 
U-BIOPRED, of whom 55 successfully provided a sputum 
sample from either of two inductions. Of these, 41 passed 
the QC criteria for analysis based on cell viability, resus-
pension volume and a squamous epithelial cell cut-off of 
≤ 40% (Shaw et al. 2015), and were included here. The study 
group comprised 29 males and 12 females of predominately 
Caucasian origin and recruited at different clinical centres 
across Europe; their demographic characteristics are sum-
marised in Table 1.

2.2  Lipid extraction

Lipids were extracted from 100 µl of sputum using a semi-
automated Bligh–Dyer protocol (Bligh and Dyer 1959) on a 
robotic liquid handling platform. Briefly, each sample was 
extracted using 700 µl of 0.9% saline solution, 2 ml of meth-
anol (MeOH) and 1 ml of dichloromethane (DCM). Anti-
oxidant (10 µl of 5 mg ml−1 butylated hydroxytoluene in 
MeOH) and synthetic lipid standards for internal quantifica-
tion were added, followed by centrifugation at 3000 rpm to 

remove precipitated protein. Additional DCM and ultrapure 
water (1 ml each) were then added to the supernatants, fol-
lowed by a second centrifugation (3000 rpm) step. The lower 
organic phase was recovered, dried under a stream of  N2 gas 
and stored at − 80 °C until analysis.

2.3  Lipid analysis

Samples were reconstituted in 1 ml of MeOH:DCM:50 mM 
aqueous  NH4HCO2 (50:50:8 v/v), and 20-µl aliquots were 
removed from each sample and pooled to create a quality 
control (QC) sample. All measurements were performed 
on a MaXis 3G high resolution quadrupole time-of-flight 
mass spectrometer equipped with an electrospray ionization 
source (Bruker Daltonics, Bremen, Germany), coupled to an 
UltiMate 3000 ultra-high performance liquid chromatogra-
phy system (Dionex, Sunnyvale, CA, USA). For the initial 
screening by untargeted ‘shotgun’ MS, samples were intro-
duced by loop injection into a continuous stream of MeOH 
and mass spectra were acquired in full scan mode over an 
m/z range of 350–1200 (with separate injections for positive 
and negative ionisation). Blank injections were performed 
after every four samples (no significant carry-over was 
detected) and the pooled QC sample was run after every four 
samples to check for changes in instrument performance.

Fragmentation analysis for lipid identification was per-
formed using the same instrumental setup but in LC–MS/
MS mode. Samples (10 µl injection) were first separated on a 
C8 column (Waters Acquity UPLC CSH C8, 130 Å, 1.7 μm, 
2.1 mm × 100 mm) using mobile phases of (A) MeOH with 
50 mM  NH4HCO2 and 0.2% formic acid, and (B) 50 mM 
aqueous  NH4HCO2 with 0.2% formic acid (all LC grade). 
The following gradient was used: linear increase from 80 to 
98% A at 0.3 ml min−1 over the first 10 min, then a linear 
increase to 100% A at 0.3 ml min−1 over the next 10 min, 
isocratic at 100% A for 25 min but with an increased flow 
rate of 0.4 ml min−1, rapid return to the starting conditions 
(80% A at 0.3 ml min−1) to re-equilibrate the system for 

Table 1  Characteristics of the healthy, non-smoking adults who provided induced sputum samples for this study

The values for gender, ethnicity and atopy status are shown as counts and percentages, whereas the results for age, weight, height, BMI and 
FEV1 are given as median values and ranges

Study group (n = 41) TDA group 1 (n = 23) TDA group 2 (n = 18)

Gender (male/female) 29/12 [71/29] 17/6 [74/26] 12/6 [67/33]
Ethnicity (Caucasian/Non-Caucasian) 37/4 [90/10] 22/1 [96/4] 15/3 [83/17]
Age (years) 33 [18–65] 32 [23–65] 36 [18–50]
Height (cm) 177 [151–196] 176 [151–193] 177 [158–196]
Weight (kg) 80.0 [48.1–111.9] 75.2 [48.1–107.0] 83.5 [60.6–111.9]
Body mass index (kg/m2) 25.6 [18.9–32.0] 23.5 [18.9–32.0] 26.7 [22.8–30.8]
FEV1 (% predicted) 102.6 [66.9–123.6] 98.8 [66.9–123.6] 109.8 [79.6–122.9]
Atopy (positive/negative/unknown) 14/18/9 [34/44/22] 9/11/3 [39/48/13] 5/7/6 [28/39/33]
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5 min. Data-independent product ion scans were acquired 
over the entire 50 min gradient using the bbCID (broad-
band Collision Induced Dissociation) function in Compass 
(Bruker Daltonics). In this setting, the MS rapidly alternates 
between low and high collision energy, resulting in parallel 
sets of intact precursor and fragment ions over the selected 
mass range. This allows for precursor and fragment ions 
to be matched retrospectively by their LC retention times 
and peak elution patterns and using well-established frag-
mentation rules for lipids (Hsu and Turk 2003) to provide 
confirmation of identities.

2.4  Data processing

All screening mass spectra were smoothed and lock mass 
calibrated using the internal standard peaks. An averaged 
“background” spectrum and “sample” spectrum were gen-
erated from each sample injection and exported as separate 
mass-intensity lists. The ions in all mass-intensity lists 
were aligned using a hierarchical clustering-based algo-
rithm (adapted from Yang 2016); detailed description in 
Supplementary Material 1). After alignment, individual 
“background” spectra were subtracted from their associ-
ated “sample” spectra and, additionally, an average spectrum 
from all of the blank runs was also subtracted from each of 
the “sample” spectra. This protocol excluded from the final 
results all possible background signals from the instrument 
or introduced during sample preparation and storage. For 
each sample the average number of counts of each ion was 
calculated based on triplicate injections, with ions present 
in only one out of three runs removed from the list. Moreo-
ver, ions with < 60% detection rate across all samples were 
excluded from further analysis. To control for the introduc-
tion of batch effects due to instrument performance or dif-
ferences in sample work-up date all results were run through 
the widely used R script “ComBat” (Johnson et al. 2007).

All ion counts were normalised to the signal intensity of 
the 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 
internal standard, as well as the original sample volume, to 
obtain semi-quantitative results (i.e. µM relative to DMPC). 
However, biofluids and particularly induced sputum are sub-
ject to variable dilution of analytes during sampling and sub-
sequent workup (Simpson et al. 2004). As such variations 

can mask interesting trends or patterns within the dataset, 
a normalisation step is often required to compensate for 
sample dilution (Kirwan et al. 2014). Normalisation of MS-
based data is generally done as a fraction of the total signal, 
or relative to a specific ‘housekeeping’ protein or metabo-
lite. We opted for the latter and used 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC) as a biomarker for lower 
airways secretions and, by extension, sample dilution. The 
rationale is that DPPC is produced in large quantities by the 
alveolar type II cells and is the most abundant lipid in pul-
monary surfactant (Brandsma and Postle 2017; Goss et al. 
2012), whereas it is not a major component of the blood-
derived salivary lipidome (Larsson et al. 1996) or of cellular 
membranes.

2.5  Statistical analysis

Topological data analysis (TDA) was used to visualise 
groups of participants within the study cohort with compa-
rable sputum lipid profiles in an unbiased manner. TDA was 
performed using the Ayasdi machine intelligence platform 
(Ayasdi, Palo Alto, CA, USA) on the selected lipid data set 
(291 ions) and employing a normalised correlation metric 
combined with multidimensional scaling (MDS) lenses. Dis-
creet groups of participants were defined manually within 
the TDA networks as previously reported (Bigler et al. 2016; 
Hinks et al. 2016). Lipid composition and participant meta-
data (such as age, gender, BMI, cell counts) between each of 
the selected subgroups were then compared by Mann–Whit-
ney U test with a significance threshold of p < .05. No 
adjustments for multiple testing were done because of the 
relatively small cohort size, and validation of the results in 
follow-up studies is therefore warranted.

3  Results

3.1  Sputum samples and cell counts

All 41 sputum samples were obtained from healthy non-
smoking participants in the U-BIOPRED study and had 
passed the QC criteria for analysis listed above. The differ-
ential cell counts (Table 2) were dominated by macrophages 

Table 2  Differential cell counts 
of the sputum samples given as 
mean values and ranges; note 
that the squamous epithelial 
cells are measured relative to 
the sum of the other cell types

Study group (n = 41) TDA group 1 (n = 23) TDA group 2 (n = 18)

Macrophages 60.3 [8.0–96.3] 61.9 [8.0–96.3] 58.5 [25.8–93.9]
Neutrophils 38.0 [2.7–89.9] 36.4 [2.7–89.9] 39.7 [6.0–73.1]
Lymphocytes 1.2 [0.2–7.8] 0.9 [0.2–3.6] 1.4 [0.2–7.8]
Eosinophils 0 [0–1.6] 0.2 [0–1.6] 0 [0–1.1]
Squamous epithelial cells 12.7 [0–39.2] 18.1 [0.8–39.2] 5.8 [0–38.1]
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and to a lesser degree neutrophils, with only small numbers 
of lymphocytes and almost no eosinophils, comparable to 
previous findings in cohorts of healthy non-smoking adults 
(Belda et al. 2000; Spanevello et al. 2000).

3.2  Lipid identification

A total of 1364 positive and 1031 negative ions were 
detected in the 41 analysed sputum samples, the majority 
being present in a small number of samples but absent or 
below the limit of detection in the remainder. Only the 291 
ions detected in 60% or more of any of the samples were 
used for statistical analysis (see Supplementary Material 1 
for additional discussion). Identities of more than half of 
these ions (which constituted 95% of the total signal) were 
confidently assigned through a combination of accurate 
mass, MS/MS fragmentation, LC retention time, and com-
parison with the Lipid MAPS online database and the list 
of sputum lipids presented in t’Kindt et al. (2015). For a 
complete overview of detected ions, their assignments and 
abundances, see the Table in Supplementary Material 2.

The most common lipid class both in terms of the num-
ber of assigned molecular species and concentration was 
PC (Table 3). A total of 7 lyso-PCs, 28 diacyl-PCs and 15 
mixed alkyl/acyl-PCs were identified, comprising on average 
around 70% of the total signal. DPPC made up 33% of the 
total lipid, whilst other relatively abundant species all also 
contained palmitic acid: 3.9% PC[16:0/14:0] at m/z 706.539, 
3.8% PC[16:0/16:1] at m/z 732.554, 2.2% PC[16:0/18:2] 
at m/z 758.568 and 6.0% PC[16:0/18:1] at m/z 760.585 
(all detected in positive ESI). The second most common 
lipid class was PE, with 22 identified molecular species, 
but none in relative abundances exceeding more than 1% 
of total lipid. PG, PI and glycerophosphoserine (PS) were 

present in low concentrations, and each was represented by a 
few molecular species containing combinations of palmitic, 
palmitoleic, oleic and stearic acid. Only one diacylglyc-
erol was found (DG[34:1] at m/z 612.575), but the sputum 
samples contained at least 11 different TG species, ranging 
from saturated TG[50:0] at m/z 852.787 to arachidonic acid-
containing TG[54:4] at m/z 900.792. Concentrations of all 
glycerolipids were low. Cholesterol was present in relatively 
small amounts (< 5% of total lipid), as were three choles-
teryl esters (CE). Finally, the samples contained a variety 
of sphingolipids: four d18:1-ceramides (Cer), two hexo-
syl-d18:1-ceramides (HexCer), and six sphingomyelins. As 
with the glycerophospholipids, the sphingolipids contained 
a variety of saturated and mono-unsaturated fatty acids, and 
they were generally present in small amounts (up to 1.9% 
of total lipid in the case of SM[d18:1/16:0] at m/z 703.572).

3.3  Topological data analysis

TDA of the DPPC-normalised lipid data yielded two dis-
tinct groups of study participants (Fig. 2). The larger of the 
two, group A (n = 25), was significantly enriched in choles-
terol, CE species and sphingolipids (Cer and SM), as well 
as a small number of low-abundance glycerophospholipids 
(Fig. 3 and Supplementary Material 2). In contrast, group B 
(n = 16) was significantly enriched in all the major diacyl-
PC species, but not the lyso-PCs or mixed acyl/alkyl-PCs, 
which were comparable between the groups. Interestingly, 
the relative abundance of DPPC itself (measured as % of 
total lipid) was actually lower in group B than in group A. 
The results for the PE class were mixed, with a few species 
being enriched in either group, but the majority did not dif-
fer. Group A was somewhat enriched in PS (not significant), 
whereas group B had higher PI and PG levels, although 

Table 3  Lipid classes, 
number of species and relative 
abundances detected in induced 
sputum samples

A total of 291 ions were detected in 60% or more of the sputum samples. Over half of these could be con-
fidently assigned to a specific lipid class. However, the majority of unidentified ions were of low intensity, 
and in concentration terms PC, PE and PG species constituted almost 90% of the total lipid signal

Lipid class Identified lipid species per class Average abundance 
of lipid class (%)

Glycerophosphocholines (PC) 50 71.2
Glycerophosphoethanolamines (PE) 22 9.8
Glycerophosphoglycerols (PG) 3 8.0
Glycerophosphoserines (PS) 1 1.9
Glycerophosphoinositols (PI) 2 0.1
Diacylglycerols (DG) 1 0.1
Triacylglycerols (TG) 11 0.8
Sterol lipids (ST) 5 1.4
Ceramides (Cer) 5 0.3
Glucosylceramides (GlcCer) 2 0.4
Sphingomyelins (SM) 6 0.9
Unidentified lipids 94 5.2
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this was only significant for one of the three identified PG 
species. A second TDA was done on the non-normalised 
lipid data, which again yielded two distinct groups (Supple-
mentary Material 1, Fig. S1). This distribution of samples 
had 90% similarity with the TDA groups of the DPPC-nor-
malised data. Differential feature analysis showed that the 
grouping was driven by differences in overall lipid concen-
trations between A and B, which were significant for 71% 
of the ions (Supplementary Material 2). The main exception 
were the TG, CE and Cer species, almost all of which had 
comparable concentrations across all the sputum samples.

Comparison of the demographic and physiological 
characteristics of the study participants showed a signifi-
cantly (p = .010) higher BMI in group B (median 26.7; 
range 23–31 kg m−2) than in group A (median 23.5; range 
19–32 kg m−2), but no differences in respect of gender, 
ethnicity, age, weight, height lung function or atopic sta-
tus (Table 1). To examine the association with BMI, the 
significance of the lipid differences between subjects with 
BMI > 25 (n = 22) and those with BMI < 25 (n = 19) was 
tested in a supervised manner (Student’s t test with a sig-
nificance threshold of p < .05; both groups had comparable 
age distributions and gender ratios). This post hoc analysis 
confirmed the associations observed in the TDA analysis, 
with 65% of the lipids following the same trend (data not 
shown). However, although the median values differed, the 
BMI ranges of both groups were similar, and direct correla-
tions between individual lipid concentrations and BMI did 
not reach significance (linear regression at p < .05).

Numbers of macrophages and neutrophils, the two 
most abundant cell types in ELF, did not differ between 
the groups, but lymphocyte numbers were significantly 
(p = .013) elevated in group B, whereas squamous epithelial 

cells were significantly (p = .001) higher in group A (Table 2; 
Supplementary Material 1, Fig. S2).

4  Discussion

This study shows that ELF, as sampled by sputum induc-
tion, has a diverse lipidome comprising a range of different 
lipid molecular classes, including glycerophospholipids (PC, 
PE, PG, PS and PI), sphingolipids (SM, Cer and HexCer) 
sterol lipids (cholesterol, CE) and glycerolipids (DG, TG). 
Although this was a cross-sectional study of healthy, non-
smoking individuals, topological data analysis identified two 
distinct sputum lipid profiles. These were differentiated by 
enrichments of sterols, glycolipids and sphingolipids in one 
participant group (A), and elevated total lipid concentrations 
with enrichments of diacyl-PC, PG and PI species in the 
other (B). Of the various demographic and physiological 
measurements examined, only BMI was significantly dif-
ferent between these two lipid phenotypes.

4.1  Sputum lipid composition and sample dilution

The overall ELF lipid profile reported here reflects the 
unique composition of pulmonary surfactant and is broadly 
similar to previous reports (Dushianthan et al. 2012; Sahu 
and Lynn 1978; t’Kindt et al. 2015). Unlike human plasma 
(Quehenberger and Dennis 2011) for example, the ELF 
lipidome is dominated by a restricted number of mostly di-
saturated PC species, including the highly surface-active 
lipid DPPC (Fessler and Summer 2016; Goss et al. 2012). 
LC–MS/MS fragmentation confirmed the identities of 95% 
of sputum lipidome (Table 3), but future studies may require 

Fig. 2  TDA networks of DPPC-normalised lipid abundances (bottom) 
show a consistent presence of two groups within the healthy non-
smoking sputum sample set. TDA was performed on 291 ions and use 
a normalised correlation metric and two MDS lenses. The network is 

coloured by the total amount of lipid measured (average value of the 
samples in each node), with blue indicating low, and red high con-
centrations. The figure was obtained with the Ayasdi machine intel-
ligence platform (http://www.ayasd i.com/platf orm)

http://www.ayasdi.com/platform
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Fig. 3  Comparison of the 291 lipid species between the two TDA 
groups showed significant differences, a selection of which are pre-
sented here (see Table in Supplementary Material 2 for a full com-
parison of all ions). Each box contains a comparison between groups 
A and B as identified by topological data analyses of the DPPC-nor-
malised data. The exception is the relative abundance of DPPC itself 

(‡), for which the concentration was normalised to that of the total 
lipid signal. Boxplots were created in SPSS Statistics 24 (IBM) which 
defines outliers as ‘near’ (open circles: more than 1.5 times the inter-
quartile range) and ‘far’ (stars: more than 3 times the interquartile 
range)
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more extensive and detailed structural assignments, particu-
larly of the remaining 5% of low-abundance lipid species.

Although the sputum induction process primarily tar-
gets the bronchial ELF, passage of the expectorated sample 
through the oral cavity leads to a variable degree of mixing 
with saliva and squamous cells from the oral epithelium and 
nasopharynx (Fig. 1). Saliva itself is lipid-poor and contains 
only small amounts of sterols and glycerolipids (DG, TG) 
(Larsson et al. 1996). As a consequence, the main effect of 
increasing the amount of saliva in an expectorated sputum 
sample is dilution of ELF resulting in lower lipid concentra-
tion. The abundance of squamous epithelial cells relative to 
that of other cells is often used as a dilution marker, since 
they make up > 98% of cells in saliva (Belda et al. 2000; 
Spanevello et al. 1998, 2000). However, direct comparisons 
between the number of squamous cells in a sputum sample 
and concentrations of lung-specific molecular biomarkers 
have found only weak associations with a large margin of 
error (Boorsma 2000; Simpson et al. 2004). Other contribu-
tors to sputum samples are the membrane fragments and 
exosomes from immune cells, particularly neutrophils and 
macrophages. These have distinctive membrane phospho-
lipid profiles (e.g. Postle et al. 2004) which can be used to 
determine the contribution of cellular material to the overall 
lipidomic profile (Todd et al. 2010). Sputum lipid group A 
was characterised by lower total lipid concentrations and an 
enrichment of sterols, glycolipids and sphingolipids com-
pared to group B. Together with the higher squamous cell 
numbers, this could suggest a stronger salivary dilution of 
the samples that were taken from these participants. There-
fore, it was important to establish whether the observed TDA 
grouping was driven by straightforward sample dilution, 
rather than biological or lifestyle differences. A direct com-
parison of DPPC concentrations and squamous cell numbers 
(as per Boorsma 2000) did not show any significant cor-
relation (linear regression, R2 = 0.210). Moreover, relative 
abundances of DPPC to other PC molecular species such as 
PC[30:0], PC[32:1] or PC[36:2], were significantly different 
between the two groups (Fig. 3). Since saliva would dilute 
the different surfactant phospholipid species in a uniform 
manner, we conclude that the differences between the two 
groups did not result from sample dilution during the induc-
tion or subsequent processing.

4.2  Potential effects of weight status on lung lipid 
metabolism

The different composition and increased sputum lipid 
concentrations in the participant group with higher BMI 
(B) raises the intriguing possibility that being overweight 
affects ELF lipid homeostasis. The impact of diet on lung 
lipid metabolism and the wider pulmonary system has thus 
far received very little attention. All pulmonary surfactant 

phospholipids are synthesised by lung alveolar epithelial 
type II (AT2) cells, using fatty acids produced either by 
the fatty acid synthase (FAS) complex in the same cells, 
or derived from FAS or stored TG reserves in adjacent 
lipofibroblasts (Bernhard et al. 1997; Brandsma and Pos-
tle 2017). However, the degree to which the composition 
of secreted complex lipids is controlled by the AT2 cells, 
and to what extent it is driven by the availability of differ-
ent fatty acids in the circulation remains unclear. The active 
exchange of lipids between lungs, circulation and liver in a 
‘hepato-pulmonary rheostat’ is well documented (Brandsma 
and Postle 2017; Hunt et al. 2017; Trapnell and Bridges 
2017; Zhou et al. 2004), but in vivo evidence is scarce and 
mostly limited to observations in rodent models. Dietary 
lipid nutrition can modify pulmonary surfactant composi-
tion, shown for example by the temporary enrichment of 
myristic acid-containing PC species in nursing rat pups 
feeding on rat milk that is enriched in myristate (Bernhard 
et al. 2007). More recently, significant dysregulation of lung 
lipid metabolism was observed in mice fed obesogenic diets 
(Showalter et al. 2018). The so-called ‘fatty lung’ is at the 
extreme end of this spectrum, described in rat models of 
genetically or diet-induced obesity. This phenotype is char-
acterised by increased lung weight, volume and alveolar 
surface area, but decreased lung compliance (Foster et al. 
2010; Inselman et al. 2004) and an impaired response to 
chronic hypoxia (Yilmaz et al. 2015). Their lung tissue 
shows a substantial accumulation of TG-filled lipid droplets, 
as well as collagen deposition, similar to that observed in the 
livers of non-alcoholic fatty liver disease patients (Byrne 
and Targher 2015). In addition, the AT2 cell lamellar bod-
ies are enlarged and more abundant than in normal-weight 
animals, surfactant protein expression and secreted concen-
trations increased, and lipid-laden ‘foamy’ macrophages are 
present (Foster et al. 2010; Inselman et al. 2004). Secreted 
lipid concentrations were also found to be higher, although 
lipid synthetic rates were not assessed directly (for example 
as per Brandsma et al. 2017; Postle and Hunt 2009) and no 
compositional information is available.

It is reasonable to assume that similar processes operate 
in humans, where they may likewise result in metabolic dys-
regulation of the lung. Thus, we speculate that the elevated 
sputum lipid levels and atypical composition in group B may 
have been driven by the participants’ overall higher weight 
status. However, a number of limitations of the present study 
need to be acknowledged. Firstly, samples were acquired 
from a study not originally designed to investigate the effects 
of weight status on lipid metabolism. Consequently, weight 
status was primarily assessed by BMI, which is widely 
accepted to be a relatively poor predictor of adiposity (Abad 
and Pallan 2018; Shah and Braverman 2012). Moreover, 
severely obese participants were excluded from the study, 
and no effort was made to balance numbers of volunteers in 
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the different weight status groups. Second, sputum induc-
tion is a difficult procedure to perform, with success rates 
between 30 and 40% even in specialised research centres 
(Chanez et al. 2002). Generation of good quality sputum 
samples is particularly challenging from healthy individu-
als (e.g. Lins 2016), since not only are they less likely to 
volunteer for the procedure, but also, as their airways are 
not inflamed, they do not have mucus hypersecretion. There-
fore, although ours is the largest study of its kind in healthy 
individuals to date, validation of the findings is required in 
a larger, and ideally more ethnically diverse cohort. This 
would not only enable more rigorous statistical testing of 
the results (e.g. including adjustments for multiple compari-
sons), but also provide the opportunity for a more targeted 
study design in terms of weight status (e.g. including under-
weight and very obese groups and/or patients with diabetes) 
and better physiological measurements.

4.3  Implications and outlook

Obesity is widely recognised as a contributing factor in 
the pathophysiology and development of a number of res-
piratory diseases, including asthma, COPD and pulmonary 
fibrosis (McDonald et al. 2016; Muc et al. 2016; Romero 
et al. 2015), a process which may already start in utero 
(Heerwagen et al. 2010). It is known to affect a range of 
internal organs (Rutkowski et al. 2015; Sun et al. 2013) and 
having altered lung lipid metabolism or even a ‘fatty lung’ 
may be yet another feature associated with being signifi-
cantly overweight or obese. How AT2 cells would respond 
to a systemic oversupply of nutrients and fats remains to be 
elucidated. An excess lipid supply could either be secreted 
basolaterally back into the circulation, processed and 
secreted into the alveoli as pulmonary surfactant, or stored 
in intracellular lipid droplets (Brandsma and Postle 2017). 
The latter two potentially have significant negative health 
effects. Redirecting increased lipid influx to intracellular 
storage rather than adipose tissue (ectopic lipid deposition) 
is known to induce both pro-inflammatory and pro-fibrotic 
responses (Ertunc and Hotamisligil 2016). Excess pulmo-
nary surfactant secreted into the airways would normally be 
cleared by alveolar macrophages, but evidence suggests that 
oxidation of this material can induce a shift towards a pro-
inflammatory phenotype in these cells (Romero et al. 2015). 
Furthermore, the function of pulmonary surfactant itself 
depends strongly upon its unique lipid and protein compo-
sitions (Burg et al. 2018; Lopez-Rodriguez and Pérez-Gil 
2014), and any alterations may affect its ability to lower sur-
face tension at the air/liquid interface within the alveoli, as 
well as its efficacy as a physical and immunological barrier 
to the outside environment. In conclusion, there is significant 
potential for nutrition and weight status to affect lung lipid 
metabolism, and this may have significantly implications 

for respiratory health, inflammatory state, and disease risk 
and severity.

This study used untargeted shotgun mass spectrometry 
to analyse the lipid composition of the ELF of healthy non-
smoking adults acquired through sputum induction, and 
examined its variability in respect of common demographic 
variations. Rather than finding a uniform lipidome in this 
cross-section of ‘normal’ individuals, TDA identified two 
distinct groups of participants with significantly different 
sputum lipid compositions. The only demographic difference 
between these two groups was in BMI, suggesting weight 
status may be related to differences in lung lipid metabolism, 
as has been observed in animal models. Because this was a 
cross-sectional study of healthy individuals, the clinical rel-
evance of such metabolic alterations remain unclear. Further 
research is needed to confirm the existence of this phenotype 
in other human cohorts, and to obtain a mechanistic under-
standing of the relationships between nutrition, obesity and 
lung lipid metabolism, as well as its clinical implications for 
pulmonary diseases.
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and healthy volunteers. The clinical study itself was performed in 14 
clinical centres across Europe and has been described previously (Shaw 
et al. 2015). Its protocols were approved by all the local Ethics Review 
Boards, and study participants gave their written informed consent for 
in-depth characterisation using routine clinical protocols, haematologi-
cal and biochemistry blood tests, as well as molecular characterisation 
by a variety of ‘omics platforms. Processed biological samples from 
all clinical sites were stored in a central biobank (CIGMR Biobank, 
University of Manchester) where their identifiers were blinded. Sam-
ples for ‘omics analysis were shipped to the analytical sites from the 
central biobank, and the identity of the samples was only un-blinded 
after all the ‘omics analyses and data processing and quality control 
(QC) steps had been completed.
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