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ABSTRACT
Severe acute malnutrition (SAM) is a major challenge in low-income countries and gut microbiota
(GM) dysbiosis may play a role in its etiology. Here, we determined the GM evolution during
rehabilitation from SAM and the impact of probiotics (Lactobacillus rhamnosus GG and
Bifidobacterium animalis subsp. lactis BB-12) supplementation. The GM (16S rRNA gene amplicon
sequencing) of children admitted to hospital with SAM showed distinct composition over admission
(e.g. Klebsiella spp., and Enterobacteriaceae spp.), discharge (e.g. Clostridiaceae spp., Veilonella dispar)
and follow-up (e.g. Lactobacillus ruminis, Blautia spp., Faecalibacterium prausnitzii), reaching similar β-
and α-diversity as healthy individuals. Children with diarrhea had reduced distribution of
Bacteroidaceae, Lachnospiraceae, increased Enterobacteriaceae and Moraxellaceae, and lower α-
diversity. Children suffering from edematous SAM had diminished proportion of Prevotellaceae,
Lachnospiraceae, Ruminoccaceae and a higher α-diversity when compared to non-edematous SAM.
Supplementation of probiotics did not influence β-diversity upon discharge or follow-up, but it
increased (p < .05) the number of observed species [SE: > 4.5]. Children where the probiotic species
were detected had lower cumulative incidence (p < .001) of diarrhea during the follow-up period
compared to children receiving placebo and children receiving probiotics, but where the probiotics
were not detected. The GM of children with non-edematous and edematous SAM differ in composi-
tion, which might have implications for future GM targeted treatments. Probiotics treatment reduced
the cumulative incidence of diarrhea during the outpatient phase, with the strongest effect in children
where the administered probiotics could be detected in the GM.
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Introduction

Malnutrition remains a global challenge with 45% of
childhood deaths being attributed to
undernutrition.1 In addition, undernutrition in
early life is associated with long-term sequelae,
including stunting, less schooling, and reduced eco-
nomic productivity later in life.2 Recent research
indicates that gut microbiota (GM) dysbiosis may
be involved in development or maintenance of acute
malnutrition.3–6

Malnutrition seems to be associated with reduced
GM diversity and maturity as determined by

metagenomics and culturomics approaches.3–5,7–9

In Bangladesh, a birth cohort of children from
urban slum was followed until 2 years of age with
frequent analyses of GM composition.4 Based on
age-discriminatory bacterial taxa microbiota matur-
ity scores were developed. Children with severe acute
malnutrition (SAM) showed significant GM imma-
turity compared to well-nourished peers. Nutritional
interventions, including Ready-to-Use Therapeutic
Food (RUTF), only partially and temporarily
improved the GM maturity. Using the same GM
maturity models on samples from other
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Bangladeshi children, reducedmaturity was found in
stool samples during and 1 month after diarrhea
episodes.4 Findings of reduced GM maturity or
diversity in malnourished children, and temporary
improvement of GM during RUTF treatment has
also been observed in Malawian children.3 In
Uganda, a cross-sectional study found differences
in the GM composition of children with non-
edematous and edematous SAM and reported
lower numbers of observed species in the GM of
children with non-edematous compared to edema-
tous SAM.10

It has been suggested that disruption of normal
development of the GM may be causally related to
development of malnutrition.3,5,7-9 This was first
shown in the GM from a Malawian cohort of twin
pairs who became discordant for kwashiorkor (SAM
with edema).3 When the GM of twin pairs discor-
dant for kwashiorkor was transferred to germ-free
mice, only mice receiving GM from a child with
kwashiorkor became malnourished when fed a diet
similar to the diet of Malawian children. Likewise,
children with SAM in Niger and Senegal were
reported to have GM composition depleted in oxy-
gen-sensitive bacteria and being enriched in puta-
tively pathogenic Proteobacteria, Fusobacteria, and
Streptococcus gallolyticus.8,9 Moreover, animal stu-
dies have confirmed that transfer of GM originating
from undernourished children to germ-free mice
impair growth.7

If early life GM dysbiosis can contribute to mal-
nutrition, microbial interventions may be able to
support repairing or normalization of the GM.
Several bacterial species (e.g. species of
Lactobacillus, Bifidobacterium adolescentis, and
Bacteroides salyersiae) have been previously pro-
posed as probiotic candidates as an alternative to
fecal transplantation to address children suffering
from SAM.9 Meta-analyses have found that probio-
tics reduce the duration of acute diarrhea by 1 day
and reduce the risk of acute diarrhea lasting 4 days
or more.11 However, most studies were performed
in high-income countries and in well-nourished
children and the knowledge of the impact of pro-
biotic treatment in children with SAM is scarce.12

The PRONUT study investigated the effect of
a synbiotic mixture, a combination of four lactic
acid bacteria in a total dose of 1011 colony-forming

units in total per day and four fermentable fiber
sources. No effect on the primary outcome (nutri-
tional cure) was observed, but a near-significant
effect (relative risk = 0.65, p = .06) on overall
mortality was found.12 The ProbiSAM study inves-
tigated the effect of administrating a combination of
Lactobacillus rhamnosus GG (LGG) and
Bifidobacterium animalis subsp. lactis BB-12 (BB-
12) to children hospitalized with SAM.13 It was
found that administration of the probiotics did
not influence days with diarrhea during in-patient
treatment, but a significant 26% reduction in days
with diarrhea during the outpatient treatment (8–12
weeks after hospitalization) was observed in the
probiotic group.

In the present study, we investigate GM devel-
opment during rehabilitation from SAM, whether
probiotics supplementation has any effects on the
GM during inpatient and outpatient treatment of
SAM, and whether GM composition and develop-
ment is linked to the observed reduction in days
with diarrhea when administered probiotics dur-
ing the randomized controlled ProbiSAM trial.

Results

Cohort overview and sequencing

The study enrolled 400 children with a mean (±SD)
age of 17.0 (±8.5) months. Males constituted 58% of
the population, 14% were HIV seropositive, 66%
suffered from edematous malnutrition and 61%
had diarrhea at admission. Fecal samples were col-
lected at hospital admission, at discharge and 8
weeks post-discharge (follow-up). The proportion
of individuals from which a fecal sample was
obtained at admission to hospital, discharge, and
after 8 weeks post-discharge varied between 60%
and 80% at the different time points (Figure 1).
Control children included 22 apparently healthy
children aged 6–59 months living in communities
similar to the children admitted with SAM
(Figure 1).

Sequencing of DNA extracted from fecal samples
generated 34.5 million reads derived from the 16S
rRNA gene V3-V4-region with an average of 47,996
(max: 532,852, min: 10,289) sequences per subject
(Figure 1b). The analysis of amplicon-sequencing
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data generated 44,808 OTU phylotypes (representa-
tive sequences clustered at 97% sequence similarity)
that were summarized over 365 bacterial species.

GM variation during treatment of SAM

Constrained and un-constrained analyses of Bray–
Curtis dissimilarity metrics (Figure 2a-b) displayed
GM compositional signatures associated with
changes from admission to discharge and follow-up
and explaining up to 13% (adonis p < .001) of the
total variance. At follow-up, the GM of children
treated for SAM was indistinguishable from that of
healthy individuals from the same-community set-
ting (Figure 2a and b). Based on Constrained
Analysis of Principal coordinates (CAP), the most
discriminatory GM members (Figure 2b) at admis-
sion were associated with Enterobacteriaceae

members (Klebsiella and Enterobacteriaceae other).
At discharge, the relative abundance of
Clostridiaceae members (Clostridium uncl.,
Veilonella dispar (Clostridium cluster IX14) and
other Clostridiaceae) had increased and at follow-
up, the GM composition was enriched with
Lactobacillaceae (Lactobacillus ruminis),
Campylobacteraceae (Campylobacter uncl.), and sev-
eral members of the Clostridium cluster IV and
XIVa15 (such as Blautia, Lachnospiraceae,
Ruminoccoaceae and Faecalibacterium prausnitzii).

In relation to mean α-diversity (Figure 2c), the
lowest number of observed species was determined
at admission (41.4 ± 17.5), followed by an increase
as treatment progressed. Upon discharge and fol-
low-up, the mean α-diversity was 42.7 ± 12.7 and
49.3 ± 12.2 (p < .01 relative to both admission and
discharge), respectively. As also observed with

Children screened, n=757

Children randomized, n=400

Probiotics
Children admitted, n=200
Fecal samples, n=128 (64%)

37 children lost to follow-up
23 deceased
13 self-discharged
1 other

20 children lost to follow-up
3 deceased

17 self-discharged

357 children excluded
307 ineligible
17 declined
33 other

Children discharged, n=163
Fecal samples n=130 (80%)

Children at follow-up, n=144 
Fecal samples n=90 (63%)

Placebo
Children admitted 200
Fecal samples n=140 (70%)

36 children lost to follow-up
16 deceased
16 self-discharged
4 other

17 lost to follow-up
4 deceased

13 self-discharged

Children discharged, n=164
Fecal samples n=98 (60%)

Children at follow-up, n=149
Fecal samples n=110 (74%)
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Figure 1. Trial profile.
(a) Dotted boxes: patients lost to follow-up (b) Distribution of high-quality amplicon reads for the total number of samples subjected
to high-throughput sequencing.
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respect to β-diversity (Figure 2a and b), no signif-
icant differences between healthy subjects and at
follow-up for children treated for SAM were
observed regarding the number of observed spe-
cies (42.7 ± 12.7) (Figure 2c).

Diarrhea and edema on admission

At admission, significant differences in the num-
ber of observed species were observed between

children with and without diarrhea (39 ± 16 vs.
46 ± 19, p = .013), with diarrhea being associated
with a lower number of observed species.
Similarly, non-edematous SAM was associated
with a lower number of observed species relative
to edematous SAM (36 ± 15 vs. 45 ± 18, p < .001,
those with any grade of edema) (Figure 3a-b).
Likewise, Bray–Curtis dissimilarity analysis
demonstrated significant compositional differ-
ences between children admitted with vs. without
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Figure 2. Changes in β- and α-diversity over different stages of GM restitution.
Principal Coordinates Analysis (PCoA) plot based on Bray–Curtis distance of 16S rRNA gene (V3-V4 region) amplicons (phylotypes
summarized to species level) determined in the stool samples at different stages of the cohort and healthy subjects (a). Constrained
Analysis of Principal Coordinates (CAP) bi-plot of GM composition based on Bray–Curtis distance displaying the most influential
species (including their average abundance) discriminating stages (admission, discharge, and follow-up), and healthy subjects during
GM restitution (b). α-diversity boxplot depicting the number of observed species (phylotypes summarized to species level) through
stages (admission, discharge, and follow-up) and healthy subjects. Changes in α-diversity were analyzed through non-parametric
Monte Carlo test (permutations 999) (c).
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diarrhea (adonis, p = .001, R2= 0.018), and edema-
tous vs. non-edematous SAM (adonis, p = .001,
R2= 0.019) (Figure 3c-d). No significant interac-
tion effects of diarrhea and edema on α – (two-

way ANOVA p = .98) nor β -diversity (CAP p =
.24) were observed indicating no mutual depen-
dence between the two conditions with respect to
GM composition.
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Figure 3. GM composition associates with incidence of diarrhea and edema at admission.
Principal Coordinates Analysis (PCoA) plots based on Bray–Curtis distance on admission discriminating between non-diarrheic and
diarrheic children (a), as well as non-edematous from edematous children (b). Relative abundance of the discriminatory bacteria with
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The GM of children with diarrhea at admis-
sion was characterized by lower relative abun-
dance of Bacteroidaceae (Bacteroides spp.,
B. ovatus and B. uniformis), Lachnospiraceae
(R. gnavus, Coprococcus and Oscillospira uncl.),
higher Moraxellaceae (Moraxellaceae uncl. and
Acinetobacter uncl.), and Enterobacteriaceae
(Enterobacter) relative to children admitted
without diarrhea and/or the healthy children
(Figure 3e). At admission the GM of children
admitted with non-edematous SAM had lower
abundance of Prevotellaceae members
(Prevotella spp. including Prevotella stercorea),
Lachnospiraceae (Blautia, Lachnospira, and
Roseburia spp.), Ruminoccoaceae, Clostridiaceae
(F. prausnitzii), Veillonelaceae (Dialister spp.),
Comamonadaceae (Comamos uncl.), as well as
Pasteurellaceae (H. parainfluenzae) (Figure 3d)
compared to the children admitted with edema-
tous SAM and healthy subjects. Only the abun-
dance of Enterococcus uncl. (figure 3f) was
significantly higher in children with non-
edematous SM compared to edematous SAM.

Probiotics establishment increases α-diversity and
reduces days of diarrhea
Probiotic administration did not influence (adonis,
p > .05) the β-diversity profiles at discharge
(Figure 4a) nor follow-up (Figure 4b), and on
average the proportion of reads mapping the pro-
biotic strains was 0.33% at discharge and 0.02% at
follow-up (as determined by amplicons with >97%
similarity to the relevant 16S rRNA gene fragment
of Lb. rhamnosus and B. animalis). Furthermore,
in the probiotic group recovery of the two probio-
tic strains from fecal samples was not evenly dis-
tributed among the children (Figure 4c). Children
in which at least one probiotic strain was detected
were defined as individuals with high level of
probiotic response (responders), whereas children
where the probiotic strains could not be detected
were defined as individuals with low level of pro-
biotic response (non-responders) (Figure 4c and
d). Interestingly, at discharge, the average number
of observed species in the children defined as
responders was 4.8 (p ≤ 0.05) higher than in the
children that received placebo. Likewise, at follow-
up, the number of species in responders was 6.4
(p ≤ 0.01) and 4.5 (p ≤ 0.03) higher than in the

children defined as non-responders or receiving
placebo, respectively (Figure 4e and f), after cor-
recting for the confounding effect of age. There
were no significant associations between age, sex,
presence of diarrhea or edema at admission, GM
composition at admission, HIV status, weight-for-
length or duration of hospitalization and being
a responder/non-responder.

Throughout the trial, diarrhea incidence (mini-
mum of 1 day) during outpatient treatment was
assessed over a median (IQR) period of 56 (56:58)
days. Cumulative incidence function (CIF) analysis
on outpatient data found that the probability of
having more days with diarrhea was significantly
higher (p < .001) among placebo subjects as com-
pared to the probiotic group (Figure 4g).
Interestingly, differences between responders and
non-responders (p < .001) were also found, where
the probability of having more days with diarrhea
was significantly reduced (~two fold) in the respon-
ders as compared to non-responders (Figure 4g).

Discussion

GM changes during rehabilitation from SAM

Here we show that children with SAM have sig-
nificantly reduced number of observed species and
major compositional differences (β-diversity)
compared to healthy subjects. The number of
observed species increased during the course of
treatment with the lowest number found at admis-
sion increasing until it no longer differed from the
healthy individuals at follow-up. In line with this,
malnutrition in children has previously been asso-
ciated with reduced diversity and maturity of the
gut microbiota.3–5,7

Distinct GM compositional signatures were
observed during the treatment of the children
admitted with SAM (i.e. admission, discharge
and follow-up). Between admission and discharge,
a beneficial shift with less Enterobacteriaceae and
increasing Veillonela and Clostridiales abundance
were seen. A development that continued between
discharge and follow-up, where Clostridiales mem-
bers (Faecalibacterium, Blautia, and other unclas-
sified members of Ruminococcaceae and
Lachnospiraceae) became more abundant, similar
to the GM of the healthy subjects. This is also in
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agreement with previous observations where sev-
eral obligate anaerobes related to Clostridiales,
such as C. butyricum, R. bromii, and
R. intestinalis, were reported to be enriched in
healthy children as compared to those suffering
from kwashiorkor in Western Africa.9 Similarly,
B. breve has also found to be enriched in kwa-
shiorkor cases,9 but in the present study, no sig-
nificant (p = .36) differences were found among
the healthy controls and children with SAM.

The observed normalization of the GM is likely
due to improved nutrition3 in response to the ther-
apeutic foods given during in- and outpatient treat-
ment that contain high-quality protein and high
amounts of micronutrients to replenish micronu-
trient deficiencies and support catch-up growth of
the children. The micronutrients may also support
development of a GM with a composition beneficial
for the child.16 A study from Bangladesh in 64
children with SAM4 found their GM maturity
index to be reduced compared to healthy subjects.
Treatment with therapeutic foods improved the
GM maturity. However, it did not reach the level
of healthy children and eventually regressed after
cessation of therapeutic food treatment.4 Similarly,
in a detailed study of 13 Malawian twin pairs dis-
cordant for edematous malnutrition (Kwashiorkor)
it was found that treatment with ready-to-use ther-
apeutic food (RUTF) resulted in a transient matura-
tion of the GM.3 These changes in GM in children
with SAM treated with RUTF could provide
a protective barrier to readmission from SAM in
the future, but it remains to be investigated how
stable the changes are.

Diarrhea, edema, and GM

Diarrhea is a well-known morbidity factor and
indicator of poor prognosis in children with
SAM.17–19 We found the presence of diarrhea at
hospital admission to be associated with reduced
number of observed species, as well as reduced
relative abundance of species belonging to
Bacteriodaceae and Lachnospiraceae and higher
relative abundance of Moraxellaceaea and
Enterobacteriaceae. Others have reported transi-
ently reduced GM maturity in children with diar-
rhea in Bangladesh4 and an association with
moderate to severe diarrhea and lower GM

diversity in children below 5 years in four low-
income countries.20

Distinct features of the GM were associated with
non-edematous compared to edematous SAM at
admission, with non-edematous children having
significantly fewer observed species. A similar
finding has been made in an earlier cohort of
children with SAM from the same hospital.10

Several factors could explain the lowered number
of observed species seen in relation to non-
edematous SAM. It is hypothesized that longer
starvation of the GM in non-edematous SAM
may lead to a lower GM diversity. The non-
edematous children also tend to have more infec-
tions when they are admitted to hospital.21,22 They
may, therefore, have been treated with more anti-
biotics from health clinics before hospital admis-
sion leading to a lower number of observed
species. The abundance of taxa normally asso-
ciated with Sub-Saharan African children not suf-
fering from disease such as Prevotellaceae
members23 was also significantly higher in chil-
dren admitted with edematous SAM compared to
non-edematous SAM and closer to the abundance
observed in the healthy subjects.

Responders vs non-responders

The probiotic strains LGG and BB-12 have in
previous studies been found to colonize the gut
transiently after oral administration. Recovery of
both strains depends on the dose administered and
vary between individuals.24,25 We detected each
strain in approximately half of the fecal samples
from children randomized to receiving the probio-
tics. The observed recovery is in line with recovery
obtained with BB-1224 and slightly lower recovery
than previously observed for LGG25 in previous
studies.

There were no significant differences in β-
diversity among individuals considered as pro-
biotic high- and non-responders. However, the
mean number of observed species was 4.8 higher
among responders compared to placebo at dis-
charge. At follow-up, the number of observed
species in responders was 6.4 and 4.5 higher
compared to non-responders and placebo,
respectively. This indicates that in the case of
SAM, LGG, and BB-12 may influence GM α-
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diversity. Responders had lower cumulative inci-
dence of diarrhea during outpatient treatment
compared to probiotic non-responders, which
could indicate a better gut colonization and
stronger interaction with the immune system.26

Yet, we were unable to identify malnutrition-
related factors associated with being
a responder/non-responder. As described above,
non-responders are also reported in healthy
volunteers for both LGG and BB-12 and being
a non-responder, may therefore, be very common
and not related to malnutrition.24,25

Strengths and limitations

A particular strength of the present study is the
large sample size compared to other studies inves-
tigating the effect of re-feeding and probiotic
administration to children suffering from SAM.
However, in this context, it is a limitation, that
the number of included children without disease
(healthy subjects) is relatively small. At the differ-
ent sampling time points we obtained samples
from 60-80% of the enrolled children. Possibly
the mothers/caregivers with the most ill children
were those with lowest compliance which might
skew the sample set toward the most ill children
being under-represented. However, it should be
noted that most missing samples are due to failure
to pass stool/collect stool within the specified
timeframe.

Conclusion

GM diversity and composition change over the
course of rehabilitation from SAM and approach
the GM of apparently healthy subjects as treatment
progresses. Further, our study supports that non-
edematous and edematous SAM are associated
with GM compositional differences, which might
have implications for future GM targeted treat-
ments. Finally, using probiotics alongside the stan-
dard treatment protocol for SAM reduces the
incidence of days with diarrhea after discharge.
This may be partly mediated by the observed
increase in the number of observed species seen
in the children, where the administered probiotics

could be detected at discharge and follow-up
(“Responders”). Although the effect of probiotics
on the GM was modest and previous studies have
shown that nutritional interventions may only lead
to transient improvements of the GM, the results
indicate a potential direction for future research
and management of SAM.

Materials and methods

Ethics statement

Before study initiation, ethical approval was
obtained from the School of Medicine Research
and Ethics Committee at Makerere University,
Kampala, and a consultative approval was pro-
vided by The National Committee of Health
Research Ethics in Denmark. Written informed
consent was obtained from all caregivers on behalf
of their children. In addition, clearance to conduct
the study was given by the Uganda National
Council of Science and Technology and the
Ugandan National Drug Authority. Further details
have been described elsewhere [11]. The study was
registered at www.isrctn.com, ISRCTN16454889.

Study design, patients, and study procedures

The study is a prospective study nested in
a randomized, double-blind, placebo-controlled
trial assessing the effect of probiotics on diarrhea
among children with SAM. The trial was conducted
at Mwanamugimu Nutrition Unit, Mulago National
Referral Hospital, Kampala, Uganda between
March 2014 and September 2015. Children admitted
to Mulago Hospital with SAM generally have multi-
ple medical complications and the case fatality rates
are high (approx. 20%). Children between 6 and 59
months with SAM were eligible for the probiotic
trial. SAM was defined as mid-upper-arm circum-
ference (MUAC) < 11.5 cm, weight-for-height
z-score (WHZ) < −3 SD or bipedal pitting edema.
Caregivers also had to provide written informed
consent and be willing to return for follow-up.
Children were excluded if they were in shock, had
severe respiratory distress, an admission weight
below 4.0 kg, obvious congenital anomalies or if
they had been admitted with SAM the previous 6
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months. Controls included apparently healthy 22
children aged 6–59 months with WHZ > −1 and
living in communities similar to the children
admitted with SAM.

Standard treatment was provided to all children
according to the Integrated Management of Acute
Malnutrition guidelines for Uganda27 with adapta-
tion from the WHO guidelines.28 In addition, one
daily dose of a combination of two probiotic
strains BB-12 and LGG or placebo was given.
The total probiotic dose was 10 billion colony-
forming units [CFU] per day with half of each
strain (Chr. Hansen A/S, Hørsholm, Denmark).
The probiotic/placebo supplement was adminis-
tered from hospital admission to discharge and
throughout an outpatient treatment period of
8–12 weeks, depending on the nutritional recovery
rate of each child. More detailed information
about the study is reported elsewhere.13

Sample collection, processing, and DNA
extraction

Fecal samples were collected at admission, dis-
charge, and after 8 weeks of outpatient treatment.
Admission samples were collected from the time
of admission to day 3 of hospitalization; discharge
and 8-week follow-up samples were collected on
the day of discharge/follow-up or the day before.
During hospitalization, stool was collected in plas-
tic bags and stored for maximum 1 h before the
contents of the stool bags were emptied into 2-ml
DNAse free cryotubes. The cryotubes were imme-
diately frozen in liquid nitrogen. Outpatient sam-
ples were collected in the children’s home up to
one day before a follow-up visit. Caregivers trans-
ferred stool to a lidded 10-ml plastic vial contain-
ing 5-ml RNA-later (Qiagen GmbH, Hilden,
Germany). Caregivers were asked to fill stool up
to a mark ensuring an approximate 5:1 ratio of
RNA-later and stool. When samples were received,
the 10-ml plastic vial was centrifuged at 1,300–-
2,200 × g for 10 min. RNA-later was discarded and
the stool was re-suspended in 2-ml TE buffer.
One ml was transferred to a 2-ml DNAse free
cryotube and immediately frozen in liquid nitro-
gen and stored at −80°C. Samples were shipped on
dry ice to Denmark for further processing and
analysis.

Fecal samples were centrifuged at 13,000 × g for
10 min at room temperature and ~200 mg of the
fecal pellet was used for DNA extraction using the
PowerSoil® DNA Isolation Kit (MOBIO
Laboratories, Carlsbad, CA, USA), following the
instructions of the manufacturer, but with minor
modifications. Briefly, prior DNA extraction, sam-
ples were placed into the PowerBead tubes and heat
treated at 65°C for 10 min and then at 95°C for 10
min. Subsequently, solution C1 was added and bead-
beating performed in FastPrep (MP Biomedicals,
Santa Ana, CA, USA) using 3 cycles of 15 s each, at
a speed of 6.5 m.−1 The remaining DNA extraction
procedure followed the manufacturer’s instructions.

High-throughput 16S rRNA gene amplicon
sequencing

GM composition was determined by high-
throughput 16S rRNA gene amplicon sequencing.
The primers designed with adapters Nextera Index
Kit® (Illumina, CA, USA) targeted the V3-V4 region
(~466 bp) and the amplicon library preparation,
purification and sequencing were performed as pre-
viously described.29 Briefly, the amplification profile
(1st PCR) followed: Denaturation at 95°C for 2 min;
33 cycles of 95°C for 15 s, 55°C for 15s and 68°C for
40 s; followed by final elongation at 68°C for 5 min,
while barcoding (2nd PCR) was performed at 98°C
for 1min; 12 cycles of 98°C for 10 s, 55°C for 20 s and
72°C for 20 s; elongation at 72°C for 5 min. The
amplified fragments with adapters and tags were
purified using AMPure XP beads (Beckman
Coulter Genomic, CA, USA). Prior to library pooling
clean constructs were quantified using a Qubit
Fluorometer (Invitrogen, Carlsbad, CA, USA) and
mixed in approximately equal concentrations to
ensure even representation of reads per sample fol-
lowed 250 bp pair-ended MiSeq (Illumina, CA,
USA) sequencing.

Processing of HTS data

The raw dataset containing pair-ended reads with
corresponding quality scores were merged and
trimmed using settings previously described.29 De-
replicating, purging from chimeric reads and con-
structing de novo Operational Taxonomic Units
(OTU, with 97% similarity) was conducted using
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the UPARSE pipeline.30 The green genes (v13.8) 16S
rRNA gene collection was used as a reference
database.31

Statistical analyses

For abundance-based analyses (β-diversity), contin-
gency tables (based on OTUs/phylotypes summar-
ized to species level) were normalized with
cumulative sum scaling (CSS32). The influence of
explanatory variables over GM composition was
evaluated through the Constrained Analysis of
Principal Coordinates (CAP) on Bray–Curtis dis-
tances, while using the ANOVA-like permutation
tests (1,000) to determine the significance of each
effect.33 Through CAP, top discriminant GM features
were selected based on a minimum absolute index of
0.15 along the canonical axes; (i) mean differences
between such discriminant features was performed
with two-tailed Student’s t-test and corrected for
Type I error with False Discovery Rate (FDR).

For mean species diversity (α-diversity) samples
were randomly rarefied to 10,000 sequences each,
and the number of observed species determined as
a function of sequence depth. Differences in α-
diversity were determined by either (i) non-
parametric using 999 Monte Carlo permutations
or (ii) by mixed linear models (MLM) in order to
correct for the co-founding effect of age.

Days with diarrhea during outpatient treatment
were evaluated using cumulative incidence func-
tion (CIF)34 within placebo, probiotic responders
and probiotic non-responders subjects, whereas
differences in cumulative incidence rates were
assessed with the Gray’s test.35

Data availability

The accession number of the sequencing-data reported in this
paper is ENA: PRJEB29297. Sequencing metadata are avail-
able on request.
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