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Abstract
Inter-discharge interval distribution modeling of the motor unit firing pattern plays an important role in electromyographic
decomposition and the statistical analysis of firing patterns. When modeling firing patterns obtained from automatic pro-
cedures, false positives and false negatives can be taken into account to enhance performance in estimating firing pattern
statistics. Available models of this type, however, are only approximate and use Gaussian distributions, which are not strictly
suitable for modeling renewal point processes. In this paper, the theory of point processes is used to derive an exact solution to
the distribution when a gamma distribution is used to model the physiological firing pattern. Besides being exact, the solution
provides a way to model the skewness of the inter-discharge distribution, and this may make it possible to obtain a better fit
with available experimental data. In order to demonstrate potential applications of the model, we use it to obtain a maximum
likelihood estimator of firing pattern statistics. Our tests found this estimator to be reliable over a wide range of firing condi-
tions, whether dealing with real or simulated firing patterns, the proposed solution had better agreement than other models.

Keywords Electromyography (EMG) · Inter-discharge interval (IDI) · Motor unit firing pattern · Motor unit potential train

1 Introduction

Analysis of the motor unit (MU) firing pattern provides
invaluable information for EMG analysis [1–5] and the
automation and evaluation of EMG decomposition [6–11].
The firing pattern under certain physiological conditions
can be modeled as a renewal point process, and this
approach has been demonstrated in physiological studies to
be adequate [1–4, 7]. When a firing pattern is modeled as
a renewal point process, the inter-discharge intervals (IDIs)
are independent and equally distributed following a certain
probability density function (PDF).

Two kinds of error may arise when the MU firing pattern
is obtained from automatic decomposition methods [12–
16]: false negatives, which are firings not detected in the
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decomposition process; false positives, which are firings not
belonging to the MU but included in its firing pattern, i.e.,
classification errors. In the literature, there are models of
IDI PDF that take into account false negatives [17, 18] and
false positives [19]; all of these models assume a Gaussian
model for the physiological IDI PDF.

Instead of a Gaussian distribution, a more suitable dis-
tribution for modeling the physiological IDI PDF is the
gamma distribution [4]. This is so because the gamma distri-
bution has nonnegative support, whereas the Gaussian dis-
tribution extends into negative values. Thus, models based
on a Gaussian distribution can generate calculated IDIs that
are negative, while measured IDIs can never be negative
[20]. Additionally, the gamma distribution allows for some
degree of skewness in the IDI PDF, which may enable mod-
els based on the gamma distribution to better reflect reality
since physiological evidence indicates that the IDI PDF
shows low-to-moderate skewness [2, 5, 21].

More importantly, the only published model that accom-
modates false positives [19] provides only an approximation
of the IDI PDF. In the current paper, we show that, by apply-
ing statistical analysis to model the superposition of renewal
point processes [22], it is possible to derive an exact solution
of the IDI PDF that incorporates not just false positives but
also false negatives.
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The aim of the present study is to derive an exact IDI
PDF model that takes into account false negatives and false
positives, and in which a gamma distribution is used to
model physiological IDIs. This paper presents the mathe-
matical derivation of the model, and evaluates its usefulness
in the context of estimation of MU firing pattern statistics.

2Methods

2.1 Derivation of themodel

2.1.1 Firing pattern and false negatives

The MU firing pattern can be interpreted as a point pro-
cess whose events take place in instants {tk} [1]. An MU
firing pattern of short duration (< 10 s), under constant
contraction conditions [3], and for which any possible MU
synchronization is neglected, can be modeled as a renewal
process [1]. In such a model, the physiological IDIs, calcu-
lated as {τk} = {tk+1 − tk}, are independent and identically
distributed following the same PDF, fT,1(τ ) (Fig. 1a).

A shifted gamma distribution, sometimes referred to as
the Pearson type III distribution, of the IDI PDF is proposed
in [4, 21] as a model that enables incorporation of a
degree of skewness in the IDI PDF (Fig. 2a). The analytical
expression is as follows:

fT,1(τ ) = Gam(τ − α; ρ, β)

=
⎧
⎨

⎩

0 , τ ≤ α

(τ − α)ρ−1

�(ρ)βρ
exp

(
α − τ

β

)

, τ > α
(1)

where α is the location parameter, β is the scale parameter,
and ρ is the shape parameter. These three parameters allow

independent control of the physiological IDI mean μ, stan-
dard deviation σ , and skewness γ . The exact relationships
between the parameters and the IDI PDF moments are [4] as
follows:

α = μ − 2σ

γ
; β = σγ

2
; ρ = 4

γ 2
. (2)

To incorporate false negatives, the resulting point process
is modeled as a thinned version [20] of the physiological
MU firing pattern (Fig. 1b). In this way, individual firings
can be regarded as being independently detected with prob-
ability p; hence, the probability that a firing go undetected
is 1 − p. When a firing is not detected, the result will be a
new IDI that is the summation of consecutive IDIs includ-
ing undetected firings. The probability of not detecting n−1
consecutive firings but detecting the nth equals p (1 −
p)n−1. Hence, the IDI PDF including false negatives can
be expressed [4, 17, 18] as follows:

fT (τ) =
∞∑

n=1

p (1 − p)n−1fT,n(τ ) (3)

where fT,n(τ ) is the PDF of the IDIs obtained by
summation of n consecutive IDIs.

For the gamma model, the summation of n gamma-
distributed independent variables with equal β also follows
a gamma distribution [23] that is calculated as follows:

Xi ∼ Gam(xi; ρi, β) ⇒ Y =
n∑

i=1

Xi

∼ Gam

(

y;
n∑

i=1

ρi, β

)

(4)

where xi = τ − αi and y = τ − ∑n
i=1 αi . Given that

all the IDIs are independent and identically distributed

Fig. 1 Schematic representation of the MU firing pattern point pro-
cess with false negatives and false positives: a physiological MU firing
pattern with firings in instants {tk} (black circles) and IDIs calculated
as {τk} = {tk+1 − tk}; b detected MU firing pattern where some of
the firings are not detected, i.e., false negatives, leading to some IDIs

being replaced by their summation; c detected MU firing pattern where
some detection errors are included, i.e., false positives (white circles),
leading to some physiological IDIs being split into two or more new
IDIs



Med Biol Eng Comput (2019) 57:1159–1171 1161

0 100 200 300 400 500
IDI,  (ms)

0

0.01

0.02

0.03

P
D

F
, f

T
,1

(
)

(a)

0 100 200 300 400 500
IDI,  (ms)

0

0.005

0.01

0.015

0.02

P
D

F
, f

T
(

)

(b)

0 100 200 300 400 500
IDI,  (ms)

0

0.005

0.01

0.015

0.02

P
D

F
, f

S
(

)

(c)

Fig. 2 IDI PDFs of a MU firing pattern with parameters μ = 100,
σ = 15, and γ = 1, and detection parameters p = 0.6, and e = 0.1: a
IDI PDF of the original physiological MU firing pattern fT,1(τ ); b IDI
PDF of the thinned process fT (τ), after detection with probability p.

Note that lost firings lead to side lobes of the PDF with means in nμ,
and increasing standard deviation

√
nσ ; (c) IDI PDF of the superposed

process fS(τ), obtained by joining the thinned process fT (τ) and the
Poisson process fE(τ) modeling false positives

according to (1), the summation of n IDIs is distributed as
follows:

fT,n(τ ) = Gam(τ − nα; nρ, β) . (5)

Hence, Eq. 3 can be developed to obtain the IDI PDF of
the thinned gamma process (Fig. 2a) as follows:

fT (τ) =
∞∑

n=1

p (1 − p)n−1Gam(τ − nα; nρ, β) . (6)

Note that, according to Eq. 2, the mean IDI for each of
the fT,n(τ ) PDFs is as follows:

μT,n = nμ = n(α + βρ) (7)

while the mean IDI of the MU firing pattern process after
incorporating false negatives is as follows:

μT = μ

p
= α + βρ

p
. (8)

2.1.2 Superposition of renewal processes

The possibility of false positives can be incorporated into
the model by regarding the occurrence of false positives as a
superposed point process [19]. The work of Cox and Smith
[22] allows exact calculation of the PDF intervals between
successive events of a superposition of renewal processes.

Given a renewal point process with intervals between
successive events distributed according to f (τ), it is
straightforward that

FC(τ) = 1 − F(τ) = 1 −
∫ τ

0
f (t)dt (9)

where F(τ) is the cumulative distribution function and
FC(τ) is the complementary cumulative distribution
function or survival function.

The delay function is defined as the PDF of the intervals
measured from a fixed time to the immediately preceding
event [22]. The equilibrium delay function, g(τ), is the

delay function a long time after the beginning of the process,
and can be obtained [22] as follows:

g(τ) = FC(τ)

μ
(10)

where μ is the mean IDI of the process. This equation can be
reversed and combined with Eq. 9 to obtain [22] as follows:

f (τ) = −μ
dg(τ)

dτ
. (11)

We can define the complementary cumulative delay,
GC(τ), as follows:

GC(τ) =
∫ ∞

τ

g(t)dt = 1 −
∫ τ

0

FC(t)

μ
dt . (12)

From this definition, we can elicit two relationships
needed in later calculations as follows:

dGC(τ)

dτ
= −FC(τ)

μ
(13)

d2GC(τ)

dτ 2
= f (τ)

μ
(14)

The equilibrium delay functions are necessary because
the superposition of N independent renewal point processes
leads to a new renewal point process [22] where the
complementary cummulative delay is as follows:

GC(τ) =
N∏

i=1

GC
i (τ ) . (15)

2.1.3 Firing pattern and false positives

If we neglect MU synchronization, firings from different
MUs are independent. Hence, if a false positive is a random
firing from a MU firing pattern other than that under
analysis, the false positive error process can be modeled as
a Poisson point process [19] with the following:

fE(τ) = λ exp(−λτ) (16)

FC
E (τ) = exp(−λτ) (17)
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GC
E(τ) = exp(−λτ) (18)

where λ is the intensity of the false positive point process
and can be calculated as follows:

λ = 1

μE

= ep

μ
(19)

where μE is the mean IDI between false positives and e is
the ratio of false positive firings to true positive firings. The
equality of FC

E (τ) and GC
E(τ) is due to the memorylessness

of the Poisson point process [24].
When only two processes defined by PDFs fT (τ) and

fE(τ) are superposed, reversing Eq. 14 and applying Eq. 15
leads to the IDI PDF of the superposed process (Fig. 1c) as
follows:

fS(τ) = μS

d2GC
S (τ)

dτ 2
= μS

d2

dτ 2

[
GT

S (τ)GC
E(τ)

]
(20)

where the mean IDI for the superposed process is as follows:

μS = μ

p (1 + e)
. (21)

Deriving Eq. 20 gives the following:

fS(τ) = μS

[

GC
E(τ)

d2GC
T (τ)

dτ 2
+ GC

T (τ)
d2GC

E(τ)

dτ 2

+2
dGC

T (τ)

dτ

dGC
E(τ)

dτ

]

(22)

and substituting Eqs. 13 and 14 into Eq. 22 leads to the
following:

fS(τ) = μS

μT μE

[
μEfT (τ)GC

E(τ) + μT fE(τ)GC
T (τ)

+ 2FC
T (τ)FC

E (τ)
]

. (23)

Incorporating Eqs. 16, 17, and 18 into Eq. 23 enables
calculation of the IDI PDF of any MU firing pattern,
independently of its model, when superposed to a Poisson
process modeling false positives. The resulting equation is
as follows:

fS(τ)= ep exp(−λτ)

μ(1 + e)

[
μ

ep
fT (τ)+eGC

T (τ)+2FC
T (τ)

]

.

(24)

The survival function of the thinned process can be
calculated as (Appendix A.1) follows:

FC
T (τ) =

∞∑

n=1

p (1 − p)n−1FC
T,n(τ ) (25)

where (Appendix A.2)

FC
T,n(τ ) =

⎧
⎨

⎩

1 , τ ≤ nα

1

�(nρ)
�

(

nρ,
τ − nα

β

)

, τ > nα .
(26)

The complementary cumulative delay of the thinned
process can be calculated as (Appendix A.3) follows:

GC
T (τ) = 1

μT

∞∑

n=1

p (1 − p)n−1μT,nG
C
T,n(τ ) (27)

where (Appendix A.4)

GC
T,n(τ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − τ

nμ
, τ ≤ nα

1

�(nρ)

[

(nα − τ)�

(

nρ,
τ − nα

β

)

+ β�

(

nρ + 1,
τ − nα

β

)]

, τ > nα .

(28)

Finally, Eqs. 25 and 27 make it possible to develop Eq. 24
so that we can obtain the exact PDF of the MU firing
pattern with a gamma model taking into account both false
negatives and false positives (Fig. 2c) as follows:

fS(τ)= p

μ

e

1+e
exp

(−ep

μ
τ

) ∞∑

n=1

p (1−p)n−1Kn(τ) (29)

where

Kn(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 + ep

(

n − τ

μ

)

, τ ≤ nα

1

�(nρ)

[
μ

ep

(τ − nα)nρ−1

βnρ
exp

(
nα − τ

β

)

+
(

2 + ep

μ
(nα − τ)

)

�

(

nρ,
τ − nα

β

)

+ ep β

μ
�

(

nρ + 1,
τ − nα

β

)]

, τ > nα .

(30)

2.2 Model-basedmaximum likelihood estimation

To test the usefulness of the IDI PDF model provided in
Eqs. 29 and 30, a maximum likelihood estimator (MLE)
of the model parameters was implemented. In essence,
the MLE of the model parameters (μ̂, σ̂ , γ̂ , p̂, ê) can be
obtained for a given set of IDIs, {τk}Kk=1, by applying
optimization techniques [18, 19] to maximize the following:

L(μ, σ, γ, p, e|{τk}Kk=1) = ln
K∏

k=1

fS(τk; μ, σ, γ, p, e). (31)

The only limit that needs to be specified before being
able to perform a numerical optimization of Eq. 31 is the
truncation of the infinite summation in Eq. 29. Given that
the nth term of the summation is weighted by p (1 −p)n−1,
the truncation error is related both to N (the upper limit
of the truncated summation) and p. Even with a detection
probability as low as p = 0.2, the weight of the 30th
component, K30(τ ), is just 3 · 10−4, which, being 646
times smaller than the weight of the first component, is
negligible in practical terms. Thus, by truncating the infinite
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summation after the 30th component (N = 30), precise
numerical calculation of Eq. 29 is possible; smaller values
of N may be chosen if it is deemed appropriate to trade
precision for calculation speed.

In the current implementation, optimization was per-
formed using Matlab’s patternsearch algorithm (MATLAB,
The MathWorks, Inc., Natick, MA, USA) running on an
Intel i7-2640M 2.8 GHz PC. Computation times for the
MLE were always under 100 ms.

Parameter values chosen for the initial point from which
optimization proceeds were similar to those used in other,
previous estimation approaches (Table 1). μ̂ is initialized
as the sample mode of the IDIs [18, 19, 25]; the most
frequent value is expected to be close to the peak of the
distribution, which is expected to be close to the real mean
(Fig. 2c). σ̂ is initialized as 0.2 times the sample mode
of the IDIs [18, 19, 25], which leads to a coefficient of
variation in the middle of the physiological range (from
0.1 to 0.3 [1]). γ̂ is initialized to 0.2, in anticipation of a
nonsymmetrical PDF with moderate skewness. p̂ is initial-
ized to 0.5 [18], a value in the lower range of the expected
detection probability for automatically detected firing
patterns [26, 27]. ê is initialized to 0.05 [18, 19], which is a
value in the middle of the range of the expected false pos-
itive rates for automatically detected firing patterns [26].

While in Eqs. 29 and 30, the solution is given in terms
of μ, α, β, ρ, p, and e, a single set of parameters, such
as (μ, σ, γ, p, e) or (α, β, ρ, p, e), can be used as the
parameter-space for MLE optimization. If optimizing in the
(μ, σ, γ, p, e)-space (hereafter, moment-space), the values
of the IDI PDF parameters can be obtained by applying
Eq. 2. Conversely, if optimizing in the (α, β, ρ, p, e)-space
(hereafter, parameter-space), the IDI PDF moments can be
obtained by applying as follows:

μ = α + βρ ; σ 2 = ρβ2 ; γ 2 = 4/ρ. (32)

2.2.1 Log-likelihood curves

To evaluate any differences between the two optimization-
space approaches, we carried a case-study simulation of

Table 1 Ranges and values for the IDI PDF parameters

Par. Typical range Optim. range Initial guess Sim. point

μ 30–160 msa [0, ∞) mode(τi ) 100

σ 5–25 msa [0, ∞) 0.2 mode(τi ) 20

γ − 0.50–2b [0.001, ∞) 0.2 0.5

p 0.3–0.8 [0, 1] 0.5 0.7

e < 0.1 [0, 1] 0.05 0.1

a (see [1, 2]); b (see [5])

the sensitivity of log-likelihood as a function of the model
parameters. In this experiment, a total of 100 MU firing
patterns were simulated with μ = 100, σ = 10, γ = 0.5,
p = 0.7, and e = 0.05. For each simulation trial, a synthetic
MU firing pattern was generated as a gamma renewal
process with μ, σ , and γ and with enough discharges to fill
10 s. To model false negatives, each individual discharge
had a probability 1 − p of being discarded. Additionally,
false positives were modeled as extra firings, drawn at a
rate λ = ep/μ, with a uniform distribution over the 10-
s temporal span. Log-likelihood curves for each trial were
calculated for a range of values for each parameter above
and below the parameter’s real value while keeping the
remaining parameters constant at their real value. In this
way, the effect of IDI sample variability on log-likelihood
maxima for each parameter was evaluated.

2.2.2 Simulated MU firing patterns

Estimation performance was tested with four simulation
experiments. In all of these experiments, μ was kept
fixed at 100 ms. In each run of each experiment, one
of the other four parameters of the model, (σ, γ, p, e)

was varied to take one of six different values, while the
other three parameters were kept fixed at the simulation
point values (Table 1). For each combination of the four
parameters, 3 series of 1,000 trials were carried out. Firing
patterns with false positives and negatives were simulated
by means of the same procedure as that described in the
previous section. Estimations of parameters were obtained
by independently applying MLE with a Gaussian model
[19] and a gamma model. Estimation with the gamma
model was performed twice: once in the moment-space
and once in the parameter-space. Each model was tested
with one of the three independent simulation series. For
each estimation result, the normalized error was calculated.
Given the small number of IDIs in 10-s simulations, the
actual values of p and e (that is, the values based on
occurrence in the simulated patterns) were recalculated [19],
after counting the false positives and false negatives of the
simulated MU firing patterns, as T P/(T P + FN) and
FP/T P respectively, where T P stands for the number of
true positives, FN is the number of false negatives, and FP

is the number of false positives.
The sample distributions of the estimates for each

parameter combination were tested for bias by means
of a one-sample t test (significance level: α = 0.01).
The variances of the distributions were also tested with
a one-sided F test for equal variance (significance level:
α = 0.01), which indicates whether the variance of one
distribution is significantly larger than that of another. This
latter test was performed for the three MLE methods in pairs
and in both senses (A bigger than B and B bigger than A).
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The results were then arranged to determine if the variance
of a given method is significantly larger than that of just one
of the other methods or both of them.

2.2.3 Real MU firing patterns

The algorithm was tested with 84 EMG signals of a
10-s duration recorded from the human vastus lateralis
muscle with concentric needle electrodes during constant
low-force isometric contractions. The study was approved
by the Clinical Research Ethics Committee of Navarra.
Informed consent was obtained from all subjects. The
EMG signals were completely decomposed in the EMGLab
environment [28]. The signal to interference ratio (SIR) [29]
of the decomposed signals was calculated as a measure
of the completeness of the decomposition. Only MU
firing patterns with high-amplitude MUPs with a clearly
distinguishable shape were accepted for the study. The
decomposability index (DI) [15] of the decomposed MUPs
was calculated as a measure of the MUP distinguishability.
Nonstationary signals and signals without reliable and
complete decomposition were discarded from the analysis,
reducing the sample to 103 MU firing patterns.

Normality of the IDI sample of the MU firing patterns
was tested with a Lilliefors test (significance level: α =
0.005); only 72 of the 103 MU firing patterns were found to
be compatible with a Gaussian IDI distribution. The mean,
standard deviation, and skewness of sample IDI statistics
were calculated for each of the MU firing patterns.

Each of the 103 real MU firing patterns was corrupted
by simulating a detection process of the individual firings
with probability p, and adding false firings according to a
uniform distribution over the 10-s span in a proportion e.
The corruption process of each firing pattern was repeated
independently five times for each combination of ten
different values of p between 0.5 and 1, and ten different
values of e between 0 and 0.5. In this way, we obtained
51500 corrupted MU firing patterns simulated to cover
100 different (p, e) combinations. Each of these trials was
subjected to MLE estimation with a Gaussian model and
to MLE estimation with a gamma model in the parameter-
space in order to obtain estimates of μ̂ and σ̂ , and, with the
gamma model, additionally γ̂ . In view of results obtained
from the experiments described in the previous section (see
Section 3.2), the moment-space version of gamma-based
MLE method was not included in the analysis. The resulting
parameter estimates were tested, with the Kolmogorov-
Smirnov goodness-of-fit test (significance level: α = 0.05),
to determine whether they were in agreement with the null
hypothesis that the complete MU firing pattern conformed
to a Gaussian distribution with the estimated parameters
μ̂ and σ̂ , or to gamma distribution with the estimated
parameters μ̂, σ̂ , and γ̂ .

The percentage of Kolmogorov-Smirnov tests in which
the Gaussian and gamma model estimates were not rejected
were calculated for each of the 100 (p, e) combinations.
These percentages were calculated independently within
the two MU firing pattern sets defined by the results of
the Lilliefors test. To provide a comparison of the gamma
and Gaussian models, we calculated the difference in
the percentage of Kolmogorov-Smirnov rejections between
both models.

3 Results

3.1 Log-likelihood curves

The log-likelihood curves are depicted in Fig. 3. Curves fall
into three groups: first, curves with clear maxima within
the estimation range, such curves occurred for parameters
such as μ, α, β, and ρ; second, curves with shallower
variation within the estimation range, these curves were
found for parameters such as σ , p, and e. Finally, curves
that were almost flat, such as curves for γ . Directly related
to shallowness in log-likelihood curves variation is the
dispersion of the solutions (points in Fig. 3) around the
real value, i.e., the standard deviation of the normalized
estimation error (values in the legends in Fig. 3). This is the
explanation of the higher spread of the results for some of
the parameters: in decreasing order of standard deviation,
γ (SD[εγ ] = 0.830), e (SD[εe] = 0.318), σ (SD[εσ ] =
0.100), and p (SD[εp] = 0.070). The results for the other
four parameters had standard deviations below 0.040.

Although these results relate to estimation in a single
point of the optimization-space, they suggest that the MLE
optimization procedure performed better in the parameter-
space than in the moment-space.

3.2 SimulatedMU firing patterns

Results of the experiments testing estimation performance
are depicted in Fig. 4, with the estimated parameters
arranged in rows and the varying parameters arranged in
columns.

In terms of μ̂ (Fig. 4a–d), and σ̂ (Fig. 4e–h), the
Gaussian model presents bias in 45/48 cases, and tended
to underestimate these parameters more severely with
increasing σ , γ , and e, and decreasing p. The gamma model
in the moment-space also presented bias, in 32/48 cases,
although this bias is not so noticeable in the percentile plots.
The gamma model in the parameter-space was only biased
in 15/48 cases. In terms of variance, the Gaussian model
had larger variance in 2/96 tests; the gamma model in the
moment-space, in 44/96 tests; and the gamma model in
the parameter-space in 64/96 tests. The three algorithms
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Fig. 3 Log-likelihood curves (dotted lines) obtained for 100 realiza-
tions of a MU firing pattern with fixed parameters μ = 100, σ = 10,
γ = 0.5, p = 0.7, and e = 0.05, when independently varying each
parameter from the real solution (dashed lines). The maxima of the
curves (points) correspond to the MLE for the parameter given the

firing pattern realization. The curves are depicted as a function of: a
the IDI mean μ; b the IDI standard deviation σ ; c the IDI skewness γ ;
d the detection probability p; e the location parameter α; f the scale
parameter β; g the shape parameter ρ; and h the false positive to true
positive ratio e

provided values of μ̂ within ± 5% of the real value, and
values of σ̂ within ± 15% of the real value.

Regarding γ̂ (Fig. 4i–l), note that the Gaussian model
does not provide an estimate of this parameter. The gamma
model in the moment-space was biased in 24/24 cases,
tending to overestimate the parameter. The gamma model
in the parameter-space was biased in 19/24 cases, although
this bias is not so noticeable in the percentile plots. The
moment-space model had larger variance in 18/24 tests,
while the parameter-space model had larger variance in only
3/24 tests. The two gamma models provided values of γ̂

within ± 100% of the real value.
In the case of p̂ (Fig. 4m–p), the gamma model in

moment-space showed lower bias than the other models
(22/24, 6/24, and 16/24 biased cases for the Gaussian,
gamma in moment-space, and gamma in parameter-space,
respectively). Although the Gaussian model tended to
underestimate the parameter, for high values of e, it
overestimated. In terms of variance, the Gaussian model
had larger variance in 8/48 tests, the gamma model in the
moment-space in 13/48 tests, and the gamma model in the
parameter-space 14/48 tests. The three algorithms provided
values of p̂ within ± 5% of the real value.

For ê (Fig. 4q–t), all the models were essentially biased
(21/24, 15/24, and 17/24 biased cases for the Gaussian,
gamma in moment-space, and gamma in parameter-space,
respectively). In terms of variance, the gamma models
were clearly superior to the Gaussian model (39/48,

6/48, and 6/48 cases of larger variance for the Gaussian,
gamma in moment-space, and gamma in parameter-space,
respectively). The three algorithms provided values of ê

within ± 50% of the real value, with the best results being
obtained in low σ and high p conditions.

3.3 Real MU firing patterns

Histograms of the SIR of the decomposed EMG signals, and
DI of the MUs are depicted in Fig. 5. The SIR is always
greater than 27 (5th percentile is 38.4 and median value is
72.7) indicating the completeness of the decomposition. The
DI is always greater than 5 (5th percentile is 7.5 and median
value is 21.3) indicating the distinguishability of the MUPs
from which the MU firing patterns are extracted [15].

Histograms of the physiological IDI sample statistics
of the 103 real MU firing patterns analyzed are depicted
in Fig. 6. The observed values are in accordance with
physiological studies reporting IDI means in the (30, 160)

ms interval [1, 2], IDI standard deviations in the (5, 25) ms
interval [1, 2], IDI coefficients of variance in the (0.1, 0.33)

interval [1], and IDI skewness in the (− 0.5, 2) interval [5].
The Lilliefors test rejected a hypothesis of normality in 44
of the 103 complete MU firing patterns; in the remaining 59
patterns, normality was not rejected.

Results of Kolmogorov-Smirnov tests of goodness-of-fit
of the Gaussian and gamma models’ estimates are depicted
in Fig. 7. The Gaussian model’s estimates fell into two
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Fig. 4 Normalized error of the (a-d) IDI mean, εμ, (e-h) IDI SD, εσ ,
(i-l) IDI skewness εγ , (m-p) detection probability, (q-t) εp , and false
positive proportion, εe, for the four simulation experiments: a, e, i,
m, and q varying the IDI SD, σ ; (b), (f), (j), (n), and (r) varying
the IDI skewness εγ ; c, g, k, o, and s varying the detection proba-
bility, p; d, h, l, p, and t varying the false positive ratio, e. For each
of the simulation experiments, the results of MLE estimation with the
Gaussian model (light gray) are compared with those of MLE estima-
tion with the gamma model in the moment-space, (μ, σ, γ ), (medium
gray) and with those of MLE estimation with the gamma model in the
parameter-space, (α, β, ρ), (dark gray). In each case, the results are
summarized with the median value and the 0.25 and 0.75 percentiles

(grayed rectangles), and the 0.15 and 0.85 percentiles (whiskers) of
the 1,000 simulations carried out for each parameter combination.
Rejection of the hypothesis that there is no bias is marked with a
small symbol under each of the distribution’s boxplots (circle, trian-
gle, and square for Gaussian, gamma in moment-space, and gamma
in parameter-space, respectively). Rejection of the hypothesis that the
variance is not greater is marked with a small symbol (same ones
as before) over each of the distribution’s boxplots, the symbol being
doubled if the variance is significantly larger than that of the other
two methods. The omission in the first set of results in t is only
apparent and corresponds to the divergence of the normalized error
when e = 0

distinct regions (Fig. 7a, d): first, when e < 0.3, the lower
the e and the higher the p, the better the estimate; second,
when e > 0.3, the estimate quality was almost independent
of p and degradation of estimation was mainly a result of

an increase in e. In the case of the gamma model (Fig. 7b,
e), there was no differentiation of behavior as a function of
e, and it was generally the case that the lower the e and the
higher the p the better the estimate. These observations are
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Fig. 5 Evaluation of the
supervised decomposition: a
histogram of the SIR of the
decomposed EMG signals; b
histogram of the DI of the
decomposed MUPs. In both
histograms, the 5th percentile
(dashed line) and the median
value (solid line) of the sample
are depicted
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corroborated by the figures for the differences in rejection
percentages (Fig. 7c, f), which indicate that the main
advantage of the gamma model over the Gaussian model
in this respect appeared when e > 0.3 and this advantage
increased as e increased.

For both models, there was a general loss in esti-
mate quality when dealing with MU firing patterns whose
normality had been rejected by the Lilliefors test. Quan-
titatively, normality-rejected firing patterns resulted in,
on average, 15–20% more rejected estimates than did
nonnormality-rejected firing patterns. With regard to the dif-
ferences in estimate rejection percentages between models,
the advantage of the gamma model over the Gaussian model
was 5–10% greater when dealing with normality-rejected
firing patterns than when dealing with nonnormality-
rejected ones (Fig. 7c, d).

4 Discussion

4.1 Mathematical model of theMU firing pattern

The IDI PDF model that we developed in Section 2.1
and that assumes a gamma distribution for physiological
IDIs has two important advantages over previous models:

firstly, it is based on an exact analytical calculation, and
this enables calculation of the PDF with unprecedented
precision; secondly, it introduces a skewed distribution to
model an IDI distribution. Several important features stem
from each of these advantages.

The exactness of the model allows it to be used with-
out restricting the values of its parameters. The validity of
the earlier model [19] was restricted to conditions in which
e < 0.2, that is, to circumstances in which false positives
represented less than 17% of the overall IDIs. This limi-
tation was due to the loss of precision for higher values
of e. The existence of this shortcoming was corroborated
in the present study; in experiments with both simulated
and real signals, estimates with the Gaussian model wors-
ened with increasing e (Fig. 4d, h, p, and t), and the
goodness-of-fit plummeted as e increased beyond 0.3
(Fig. 7a, d). While this limitation may not be troublesome
with some decomposed MU firing patterns of high quality
[26, 27], it can be a severe problem with recordings taken
under conditions of medium-to-high force muscle contrac-
tion, where it is not always possible to completely identify
all the discharges due to superposition, and algorithms
generally make more classification errors [10, 11]. As
demonstrated in our experimental results, the current model,
being exact, can be employed even in high e environments:
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Fig. 6 Histograms of the physiological IDI sample statistics of the
103 real MU firing patterns that were analyzed: a IDI mean, μ; b IDI
standard deviation, σ ; c IDI skewness, γ ; and d IDI coefficient of vari-
ance, σ/μ. The observed values are in accordance with physiological

studies, which report IDI means in the (30, 160) ms interval [1, 2],
IDI standard deviations in the (5, 25) ms interval [1, 2], IDI coeffi-
cients of variance in the (0.1, 0.33) interval [1], and IDI skewness in
the (−0.5, 2) interval [5]
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Fig. 7 Summary of the Kolmogorov-Smirnov goodness-of-fit tests
for the 103 real MU firing patterns when these patterns were cor-
rupted with different combination values of p between 0.5 and 1
and e between 0 and 0.5, and with the MU firing patterns pre-
viously classified according to the results of the Lilliefors nor-
mality tests on the complete trains: a percentage of not-rejected
estimations for the Gaussian model with the normality-not-rejected
trains; b percentage of not-rejected estimations for the gamma
model in the parameter-space with the normality-not-rejected trains; c

difference of percentage of not-rejected estimations between the
gamma model in the parameter-space and the Gaussian model with
the normality-not-rejected trains; d percentage of not-rejected esti-
mations for the Gaussian model with the normality-rejected trains; e
percentage of not-rejected estimations for the gamma model in the
parameter-space with the normality-rejected trains; f difference of per-
centage of not-rejected estimations between the gamma model in the
parameter-space and the Gaussian model with the normality-rejected
trains

estimates showed neither significantly more bias nor greater
variance when e increased (Fig. 4d, h, p, and t), and
the goodness-of-fit remained dependent on both p and e,
even for e > 0.3 (Fig. 7b, e).

The use of a gamma model instead of a Gaussian
model for the physiological MU firing pattern has two
main benefits. On the one hand, the gamma distribution is
strictly nonnegative and hence can be legitimately used as an
inter-event distribution of a renewal point process in Eq. 1
[20]. The Gaussian distribution, because it allows inter-
event values to be negative, can not be used unless suitably
modified. Although the Gaussian distribution is commonly
used because of the simplicity of the equations [4, 17–19],
it is never formally correct.

In addition, use of a gamma distribution allows for a
certain degree of skewness that may better reflect what
is known about real MU firing patterns than a symmetric
(zero skewness) distribution [4]. Although experimental evi-
dence is not conclusive, different researchers have reported
a small-to-moderate degree of skewness in the IDI distri-
bution [2, 5, 21]. Whether a product of firing dynamics [5]

or of unsteadiness in recording conditions [3, 4], variability
needs to be accommodated, and accepting the possibility of
a degree of skewness in the IDI distribution can help in this
respect.

4.2 Application toMU firing pattern estimation

In the set of real signals employed in the experiments
reported here, a moderate degree of skewness was observed
to be present (Fig. 6c) in MU firing patterns obtained in
recording conditions that would traditionally be regarded
as providing firing pattern stationarity [25]. Furthermore,
over 40% of the MU firing patterns (44/103) were not
compatible with the normality assumption in the Lilliefors
test, and the Kolmogorov-Smirnov goodness-of-fit test
consistently indicated that gamma model estimates had
better fit than Gaussian model estimates (Fig. 7c, f).

With optimization procedures, special care must be taken
to select the most appropriate parameter-space to evaluate
(29). In our simulation experiments using the gamma model,
results suggest that the parameter-driven MLE performed
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better than the moment-driven MLE in terms of the bias
but worse in terms of the variance (Fig. 4). Summarizing,
the gamma model in the moment-space was biased in
77/120 cases while the gamma model in the parameter-
space was biased in 67/120 cases; significantly larger
variance occurred in 81/216 cases and in 107/216 cases,
respectively.

From the results obtained in the simulation experiments,
we can ensure that, for the same amount of data available
(length of the MU firing pattern), IDI PDF mean and
standard deviation estimates obtained from the gamma
model are less prone to bias than the estimates obtained
from the Gaussian model at the cost of an increased
variance. Hence, the relative amount of data to obtain
reliable estimates of the gamma model parameters when
applied to EMG decomposition should be of no relevance,
given that it is has been shown to be superior to the Gaussian
model-based estimates in 10 s recordings, which are typical
in this kind of experiments. However, the stationarity
requirement can be more problematic, given that IDI PDF
asymmetry can arise from the nonstationarity of the MU
firing pattern [4, 30]. Hence, careful assessment of MU
firing pattern stationarity is always needed when trying to
apply a stationary model to MU firing pattern parameter
estimation [4].

4.3 Further applicability of themodel

Applicability of the IDI PDF model presented here is not
limited to MU firing statistics estimation: the model can be
useful in many statistically rigorous calculations concerning
MU firing patterns, for example, in the development
of EMG decomposition algorithms and in evaluation of
EMG decomposition. Many automatic algorithms for EMG
decomposition incorporate IDI PDF models [11, 13–15,
28], and IDI PDF statistics have been used to validate
the MU firing patterns extracted by automatic EMG
decomposition methods [27] and to derive a rigorous a
posteriori calculation of EMG decomposition accuracy [7].

Besides being applied into new frameworks, new IDI
PDF models can be easily implemented from Eq. 24 to
accommodate other distributions for the physiological MU
firing pattern, such as the Weibull distribution [30]. The
resulting models will then incorporate modeling of both
false negatives and false positives. In the same way, if
a simpler, truncated-Gaussian model that overcomes the
negative support of the distribution is developed, a Gaussian
IDI can be implemented, reducing the physiological model
parameters to μ and σ .

Although a Poisson distribution is a general and effective
approach to model the false positive error process PDF [7,
19], it may not fulfill the criteria used during EMG signal
decomposition. Hence, the false positive error process PDF

could also be refined to fit the particular restrictions of
a specific EMG decomposition algorithm, e.g., in [19],
a correction to include a minimum allowable IDI value
has been incorporated in terms of a truncation of the
distribution.

5 Conclusions

The presented IDI PDF model based on a gamma
distribution is exact, is strictly nonnegative, and allows
the introduction of a controlled degree of skewness into
the physiological IDI distribution. Our test experiments
demonstrate the feasibility of deriving an accurate MLE of
physiological and detection parameters, and indicate that
such a MLE can provide better results than previous models
can.
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Appendix

A.1 Calculation of FCT (τ )

Calculation of the survival function of the thinned process
is straightforward taking into account (6), as follows:

FC
T (τ) =

∫ ∞

τ

fT (t)dt =
∫ ∞

τ

∞∑

n=1

p(1 − p)n−1fT,n(t)dt

=
∞∑

n=1

p(1 − p)n−1
∫ ∞

τ

fT ,n(t)dt

=
∞∑

n=1

p(1 − p)n−1FC
T,n(τ ) (33)

A.2 Calculation of FCT,n (τ )

As fT,n(τ ) is a piecewise-defined function, calculation
of the corresponding survival function must also be done
piecewise. Given Eq. 5 and applying Eq. 9, when τ ≤ α

FC
T,n(τ )

∣
∣
∣
τ≤α

= 1 −
∫ τ

0
0 dt = 1 (34)

http://creativecommons.org/licenses/by/4.0/
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when τ > α

FC
T,n(τ )

∣
∣
∣
τ>α

=
∫ ∞

τ

(τ − nα)nρ−1

�(nρ)βnρ
exp

(
τ − nα

β

)

dt

= 1

�(ρ)
�

(

nρ,
τ − nα

β

)

(35)

A.3 Calculation of GC
T (τ )

Calculation of the complementary cumulative delay of the
thinned process is straightforward taking into account (12)
and (33), as follows:

GC
T (τ) =

∫ ∞

τ

FC
T (t)

μT

dt

= 1

μT

∫ ∞

τ

∞∑

n=1

p (1 − p)n−1FC
T,n(t)dt

= 1

μT

∞∑

n=1

p (1 − p)n−1μT,n

∫ ∞

τ

FC
T,n(t)

μT,n

dt

= 1

μT

∞∑

n=1

p (1 − p)n−1μT,nG
C
T,n(t)dt (36)

A.4 Calculation of GC
T,n (τ )

As FC
T,n(τ ) is a piecewise-defined function, calculation

of the corresponding survival function must also be done
piecewise. Given Eq. 26 and applying Eq. 12, when τ ≤ α

GC
T,n(τ )

∣
∣
∣
τ≤α

= 1 −
∫ τ

0

1

nμ
dt = 1 − τ

nμ
(37)

On the other hand, when τ > α

GC
T,n(τ )

∣
∣
∣
τ>α

=
∫ ∞

τ

1

nμ�(ρ)
�

(

nρ,
τ − nα

β

)

dt

= 1

nμ�(nρ)

[

(nα − τ)�

(

nρ,
τ − nα

β

)

+ β�

(

nρ + 1,
τ − nα

β

)]

(38)
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