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The  predictions  of two mathematical  models  describing  the transmission  dynamics  of  schistosome  infec-
tion  and the impact  of  mass  drug  administration  are  compared.  The  models  differ  in their  description
of  the  dynamics  of  the parasites  within  the  host  population  and  in  their  representation  of  the stages  of
the  parasite  lifecycle  outside  of  the  host.  Key  parameters  are  estimated  from  data  collected  in northern
Mozambique  from  2011 to 2015.  This  type of data  set  is  valuable  for  model  validation  as treatment  prior
to  the study  was  minimal.  Predictions  from  both  models  are  compared  with  each  other  and  with epi-
demiological  observations.  Both  models  have  difficulty  matching  both  the  intensity  and  prevalence  of
disease  in  the  datasets  and  are  only partially  successful  at predicting  the  impact  of  treatment.  The  models
athematical modelling also  differ  from  each  other  in their  predictions,  both  quantitatively  and  qualitatively,  of  the  long-term
impact  of 10  years’  school-based  mass  drug  administration.  We  trace  the  dynamical  differences  back  to
basic  assumptions  about  worm  aggregation,  force  of  infection  and  the dynamics  of  the  parasite  in  the
snail  population  in  the two  models  and  suggest  data  which  could  discriminate  between  them.  We also
discuss  limitations  with  the  datasets  used  and ways in  which  data  collection  could  be  improved.

© 2017  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
. Introduction

Mathematical and computational tools are essential for synthe-
izing information to understand epidemiological patterns, and for
eveloping and weighing the evidence base for decision-making

n public health policy. The field of mathematical model devel-
pment for the study of infectious disease epidemiology and
ontrol has been recently reviewed by Heesterbeek and colleagues
Heesterbeek et al., 2015). They document many examples where

odels have been influential in the formulation of public health
olicy, especially for directly transmitted viruses such as influenza
.

In recent years, efforts have been made to compare the
ehaviour of independently developed models, parameterized
ith standardized data, in order to understand the sometimes sub-
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stantial differences between their predictions. A prime example is
the HIV modelling consortium, which has had considerable suc-
cess in understanding the key features of HIV transmission and
identifying important biases in existing models (Eaton et al., 2015).
More formal, Bayesian methods are also being employed to cre-
ate weighted model ensembles which can generate more robust
predictions of epidemic progress (Lindström et al., 2015; Webb
et al., 2017). The Bill and Melinda Gates Foundation (BMGF) recently
funded a consortium of research groups to develop mathematical
models of the transmission dynamics and impact of control mea-
sures of certain neglected tropical diseases (NTDs) (http://www.
ntdmodelling.org). Two groups were funded to address each of
the chosen infectious diseases to allow comparisons of the pre-
dictions of different mathematical models relating to how various
control measures impact the prevalence and intensity of infection

in defined settings (Anderson et al., 2015; Gurarie et al., 2015;
Hollingsworth et al., 2015).

Studies of the transmission dynamics of the Schistosoma infec-
tions have a long history, dating back to the pioneering work of

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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eorge Macdonald. His models were the first to use differential
quations with mating probabilities to represent the dioecious
ature of these parasites and the fact that they cannot leave the
ost in the adult worm state to find a mate (Macdonald, 1965).
his is critical, as both female and male worms must be present
n the same host to create viable eggs to continue the parasite life
ycle. Prior to Macdonald’s studies, Nelson Hairston had employed
ife table analyses from population ecology in an attempt to quan-
ify reproduction and mortality throughout the two-host life cycle
f these digenean parasites (Hairston, 1962, 1965). More recent
ork in this field has been reviewed by Anderson and colleagues

Anderson et al., 2016).
The present paper considers two mathematical models to

escribe the transmission dynamics and control of the schisto-
ome parasites. One model is deterministic in structure, dividing
he host population into classes harbouring different burdens of
arasites (as originally described by Kostitzin, 1934) and includes
reater detail on the parasite life cycle, including the dynamics
f the intermediate snail host (Gurarie et al., 2015). The second
odel considers the dynamics of the adult worm in the human

ost, with a hybrid structure representing the probability distribu-
ion of parasites per host and the associated mating function (for a
egative binomial distribution with fixed value k and monogamous
ating) (Anderson et al., 2015). These two models have some sim-

larities, however, there are significant differences in the structure
nd methods employed in parameter estimation. These differences
re described in brief in the Methods section.

Model validation is based on a data set from a study of targeted
ass-drug administration (MDA; targeted by age group) strategies

erformed in northern Mozambique from 2011 to 2015. This data
et is particularly valuable for model validation as it was  carried out
n a population that had not previously been heavily treated. Formal
uantitative comparisons are made on the impact of a defined MDA
rogramme on infection prevalence and intensity over time.

. Methods

.1. Imperial college London (ICL) model

The model developed by the ICL team has an age struc-
ured deterministic partial differential framework with probability
lements for the description of parasite natural history and
ransmission (Anderson et al., 2015). Partial differential equa-
ions representing changes over time and age are employed
o describe the evolution of the mean worm burden (MWB)
n an age-structured population and the dynamics of a single
hared environmental reservoir of infection from the cercarial
tage released by the snail intermediate host (See Supplementary
nformation 1). It assumes that the parasite is dioecious and monog-
mous, has density-dependent egg production and a degree of
arasite aggregation across hosts defined by the negative binomial
NB) probability distribution with a fixed k value. A stochastic indi-
idual based analogue of this model has recently been described
here the parasite distribution within the human host popula-

ion is dynamic over time and age group, but the mean predictions
f replicated runs of the stochastic model well match the deter-
inistic predictions described in this paper (Farrell et al., 2017). In

he model, it is assumed that the age-intensity profiles are gener-
ted by age-dependent exposure to the aquatic cercarial stages in
he environment and not through acquired immunity. Though the

odel has a continuous age structure, the outputs can be grouped

nto programmatically meaningful categories (such as school-aged
hildren; SAC 5–14 years of age and adults ≥15 years of age) which
orm the basis of the individuals to be targeted in a treatment pro-
ramme.
ics 18 (2017) 29–37

2.2. Case western reserve university (CWRU) model

The CWRU model employs a stratified worm burden (SWB)
approach based on the model originally developed by Kostitzin
(1934) for age-structured host communities (Gurarie et al., 2010).
In this approach, each community and population group is sub-
divided into worm burden strata with transitions among strata
determined by the rate of worm accumulation, i.e. human force of
infection (FOI, �), and worm mortality (natural or drug-induced).
The system accommodates essential features of in-host biology:
worm mating, density-dependent reduction in fecundity, and irreg-
ular (over-dispersed) egg release from tissue into human urine or
stool. The worm distribution within hosts is not constrained by
any prescribed function, and the resulting patterns are typically
Poisson-like. To account for overdispersed test results it is assumed
that the egg output by fertilized female worms and individual hosts
in the CWRU model follows a negative binomial distribution with
small aggregation parameter k (see Gurarie et al., 2016; Hubbard
et al., 2002).

Each demographic group has a specific set of parameters (FOI �,
maximal fecundity, density-dependent loss in fecundity and aggre-
gation k). The model predicts egg release by individual hosts, their
worm burden strata and aggregate host communities as functions
of age-dependent FOIs and in-host (biological) parameters. The
egg-release function serves a double role. It allows simulation of
the outcome of a typical diagnostic test for sampled groups and
communities, as is used in model calibration. It also gives esti-
mates of the force of snail infection, and thereby gives transmission
coefficients (“human-to-snail” and “snail-to-human”) in coupled
human-snail systems. The snail model utilizes a logistic model of
population growth and SEI infection with susceptible [S], prepatent
[exposed; E] and patent [infected; I] compartments, with known
or calibrated local environmental carrying capacity, snail growth,
death and proliferation, and estimated patency for transmission.
An important novel feature of snail system is nonlinear(saturated)
FOI as functions of human infectivity. The complete human-snail
model is a deterministic system of differential equations, with the
host population stratified according to age and burden, with a cor-
responding 3-compartment snail component.

For the modelled Mozambique communities, the demographic
categorization consisted of 3 age groups: Pre-SAC 0–5 years of
age, SAC 5–14 years of age, and adults >15 years of age, where
each group was represented by its own  SWB  with age-specific
parameters. A complete set of human-snail population/infection
data across all demographics could allow for detailed local calibra-
tion based on algebraic relations between state variables and model
parameters (for example, see Gurarie et al., 2010, 2016). In the case
of incomplete data sets, one has to fill in missing demographic/snail
inputs by comparison with other, better sampled communities. In
the present analysis, the CWRU model employed such methodology
for Mozambique communities using some biological parameters
previously calibrated from data from another S. haematobium con-
trol study in Kenya (the Msambweni study, Gurarie et al., 2015).
This aspect of the model is described in full in Supplementary Infor-
mation 2.

2.3. Key model differences

Model development was conducted separately and based on
the details of the S. haematobium life cycle and known population
processes (Anderson and May, 1991). A summary of differences
between the models is outlined in Table 1. Some parameter values

were derived from the published literature, such as the adult worm
life expectancy and the density-dependent relationship between
worm burden and egg output, whilst others were derived through
parameter estimation based on observed epidemiological pattern
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Table  1
Model comparison.

Model structure ICL model CWRU model

Simulation framework Deterministic-probabilistic Deterministic-probabilistic
Implementation language R Mathematica/Python
Age-related exposure to infection Relative exposure estimated from age-stratified infection

intensity data
Baseline test data provides relevant SAC parameters, the
other (untested) younger/older age groups are estimated
via community dynamic simulations (Y1-Y3)

Distribution of individual predisposition to
heavy or light infection

No individual-level propensity Age-specific biological (in-host) parameters: worm
fecundity, egg-release aggregation

Age-related contribution to the reservoir of
infection in the environment

Assumed to be identical to exposure to infection Age-specific exposure/contamination, and the resulting
human-snail transmission coefficients

Distribution of contributions to reservoir of
infection among individuals

No individual-level contributions No individual contribution, but age-specific contributions

Acquired immunity to infection Assume no acquired immunity Assume no acquired immunity
Coverage and compliance Structured by age group Structured by age group
Demographic data source Data collected in SCORE project Data collected in SCORE project
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Reproductive model Mating function for dioecious mo

s recorded in age stratified age-intensity and age prevalence
urves. This was conducted separately by the two  groups but based
n a common source of data; namely, a cluster-randomized trial
f MDA-based control of S. haematobium infection in Mozambican
ommunities. The two models are similar in their account of human
ost demography and an age-dependent force of infection result-

ng in a characteristic age profile of infection. Both models can be
raced back to an approach studied by Kostitzin (1934) in which the
arasite burden is described in terms of the number of hosts with a
iven number of worms. Processes of parasite acquisition and death
hen determine the dynamics of the number of hosts with a given
umber of worms.

The two models can be broken down into two basic sub-models;
 description of the parasite burden within the hosts and a model
f the dynamics of infectious material outside the host in the envi-
onment and within the snail vector. Both models have significant
ifferences in each of these areas (see relevant supplementary

nformation files for model details). In the examples shown below,
he parameter values match those used to fit to the baseline of the
opuito data, since both models achieve a reasonable fit for this
ata.

The two within-host models diverge in their treatment of the
istribution of parasites across the population. The CWRU model
as no explicitly prescribed worm distribution and instead makes
he worm burden strata

{
hm (t)

}
dynamic variables (termed strat-

fied worm burden model, SWB, for this reason). The model treats
ll hosts of a given age as having the same force of infection. Anal-
sis of the set of equations governing the worm burden strata
how an approximately Poisson distribution of worms over the
ost population, with additional heterogeneity arising from age
ependent effects. The ICL model includes an additional source of
eterogeneity, drawing contact rates from a gamma  distribution
nd leading to a NB worm burden across the host population with
xed (estimated) aggregation parameter k. Such distributions of
chistosomes have been observed in autopsy data (Cheever, 1968).

A key difference between the two sub-models is in the degree
f heterogeneity among hosts. The mean host burden in the two
odels are of the same order, with ICL having a mean of 22 worms

er person and CWRU having approximately 36 worms  (Fig. 1A).
ig. 1B shows that the relationship between mean worm bur-
en and egg output is very similar in the two cases, implying
hat the CWRU model generates more egg output at equilibrium.
he different approaches to host heterogeneity lead to quite dif-

erent worm burden distributions. While the ICL model gives a
ighly over-dispersed distribution, the CWRU model gives a more
oisson-like distribution with greater aggregation. This difference
as several potential consequences. Firstly, the two models are
ous parasite Mating count for dioecious monogamous parasite, with
age-specific fecundity and crowding. Low cut-off worm
burden for mating success

liable to give different assessments of infection prevalence for the
same mean worm burden. For the ICL model, the prevalence is a
function of the mean worm burden and aggregation parameter
of the negative binomial distribution. The prevalence is known to
be insensitive to changes in mean worm burden when prevalence
is high (Anderson et al., 2014). For the CWRU model, the preva-
lence (fraction of persons shedding eggs) is a function of mean
intensity and aggregation parameter of the negative binomial dis-
tribution assumed for the egg release process from mated worms.
This function rather saturates at high intensity values. A second
consequence, the assessment of morbidity, is discussed in the con-
clusion.

For the environmental part of the two models, there are also
considerable differences. In the CWRU environmental sub-model,
the dynamics of the snail population are described by a combined
growth-SEI transmission model, using a 3-component system of
ODEs. The ICL sub-model is based on a very simple description of
infectious material in the environment. Material is expelled into the
environment from the hosts and is subject to linear decay over time.
This simplification is justified on the basis of timescale arguments;
the timescale of infectious processes in snails is much shorter than
that of the worms’ lifespans in the host and therefore merit a much
less detailed description. However, it should also be noted that
the CWRU approach potentially introduces new nonlinearities and
types of behaviour not present in the ICL one. Additionally, any
treatment interventions that include an element of molluscicide
can be explicitly modelled within the CWRU framework, but only
approximated in the ICL model.

Fig. 2 shows the bounce back from a single round of treatment
in both models assuming 86% coverage of SAC. Fig. 2A shows the
response of egg output in school-aged children and in the infec-
tious reservoir state in the ICL model. Fig. 2B shows egg output and
susceptible, pre-patent and patently infected snails in the CWRU
model. The infection intensity profiles are broadly similar, quanti-
tatively and qualitatively, with the exception that the initial rate of
recovery is higher in the CWRU model. The response of the envi-
ronmental sub-model is clearly different. For the ICL model, the
reservoir responds within a few months with a 20% drop and then
recovers over the next 5 years. The CWRU snail model is less sen-
sitive to the drop in egg output showing 12% drop in patent snail
prevalence over ten months. Since the reservoir state and the patent
snail population govern the underlying force of infection experi-
enced by hosts in the community, the CWRU model effectively has

a constant force of infection, at least in response to a single round
of treatment focusing on SAC.



32 J.E. Truscott et al. / Epidemics 18 (2017) 29–37

Fig. 1. Details of the two  within-host models. A) Distribution of worm burdens among hosts for the two  models. Bin sizes match the stratification of worm burdens within
the  CWRU model. B) Mean measureable egg output as a function of mean worm burden. (parameter values based on Copuito fit).
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ig. 2. Recovery (bounce-back) from single round of treatment (parameter values b
he  comparison). A) ICL model, showing egg intensity for school-age children and res
nd  the three variables of the snail infection sub-model as percentages of the total 

.4. Data

The data used for calibration and testing of the models were
aken from a multi-centre randomized trial of S. haematobium con-
rol performed in Cabo Delgado Province from 2011 to 2015. This
ommunity-based trial, performed by the Schistosomiasis Con-
rol Initiative and the Catholic University of Mozambique with
he support of the Schistosomiasis Consortium for Operational
esearch and Evaluation (SCORE), examined the relative impact of
ommunity- vs. school-based drug delivery and the effects of yearly
s. every other year treatment over a four year period (Ezeamama
t al., 2016). Impact of treatment was assessed by testing a random
ample of one hundred 9–12 year olds in each community at base-
ine and 12 months after each round of treatment. For the present

odel comparison exercise, individual-level data from two differ-
nt villages were used to calibrate and test the models. These were
elected from Arm 4 of the parent control study for which MDA
as given as school-based therapy each year for four years. Dur-

ng each treatment cycle, children who were not enrolled in school
ere encouraged to participate and the total number of treatments
elivered to SAC was recorded by the programme team.

The transmission models were fitted to data coming from indi-
idual villages, on the assumption that the village is taken to be the
mallest independent disease transmission unit. A number of data

uality issues arose during our processing of the data for this pur-
ose. In particular, these involved uncertainty about exact ages in

 region that does not have birth records and uncertainty about the
on Copuito fit with 86% coverage assumed among SAC for both models to facilitate
r status against time. B) CWRU model, showing egg intensity for school-age children
ation.

size of the target population. In order to approximate programme
treatment coverage (doses delivered to SAC/total SAC), population
estimates for resident SAC were derived as a 30% fraction of the total
population, developed by extrapolation of the 2007 Mozambique
government population census figures to the programme’s starting
year, 2011. School enrollment was  determined to be low in these
villages (30–40%). It was also apparent that in-school children had
a consistently higher rate of MDA  participation than out-of-school
SAC.

In addition, several irregularities became evident during our
analysis of the available data. For example, in some village data
sets, there was an increase in the intensity and/or infection preva-
lence after an initial round of treatment, clearly indicating transient
effects such as migration or immigration that are not accounted for
by the two models due to lack of robust information on these effects.
Such villages were excluded and from those remaining, the villages
of Catambo and Copuito were chosen as they were exhibiting the
typical epidemiological patterns of S. haematobium infection. Refer
to Table 2 for a summary of the data used to fit the models.

2.5. Parameter fitting methodology

2.5.1. ICL model

A parameter direct fit to the Mozambique data proved impos-

sible due to the inconsistencies and missing data described above.
Instead more reliable data from a prior study were used to pro-
vide an age profile and parameters through a Markov Chain Monte
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Table  2
Mean egg intensity, prevalence and coverage data and population sizes used to
parameterise the models.

Mean intensity (eggs/10 mL)  ages 9–12 years Catambo Copuito

Year 1 (eggs/10 mL)  53.8 108
Year 2 (eggs/10 mL)  11 40
Year 3 (eggs/10 mL)  43 43.8

Prevalence (%)
Year 1 89 96
Year 2 61 59
Year 3 29 57

School-based treatment coverage (%)
Year 1 57 50
Year 2 42 22
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Sample sizes within school-aged children
Year 1 85 73
Year 2 82 51

arlo (MCMC) fit. The model was then successfully fitted to base-
ine Mozambique egg intensity data in the 9–12 year age group by
arying R0.

However, the available treatment coverage data is more prob-
ematic. It was immediately clear from the data in Table 2 that given
he high efficacy of praziquantel against S. haematobium, the quoted
overage in year 1 is insufficient to account for the drop in mean
ntensity between year 1 and 2. The data shows that coverages are
alculated using the total number of SAC as the denominator, as
stimated from a census, not those who attended school. Since it
s unclear what the correct denominator should be, its value was
stimated from the data from year 1 and 2 with the value carried
orward to calculate the coverage for treatment in year 3. This value
as then used to split the SAC model population into two  sub-
opulations within the model; one representing children within
he programme, receiving treatment and the other outside of the
chool system, not being treated.

The fitted model was  simulated through the second round of
reatment to give a prediction for the intensity of infection among
–12 year olds within the treatment programme at the year 3 time
oint, which could then be compared to the observed value in each
illage.

.5.2. CWRU model
The human part of the coupled human-snail system consists of 4

emographic groups; Pre-SAC (children), SAC (school age attending
chool), SACN (school age not attending school), and O (old/adult).
roups SAC, SACN are known fractions of total school-age pool S,
nd it was assumed they are identical in terms of risk/exposure
nd their in-host biology. Hence, SAC and SACN contribute equally
o transmission. The only difference between the two  was that SAC
ere subject to regular MDA/monitoring, while SACN remained out

f reach.
The general strategy of the calibration scheme was that

nknown model parameters were estimated using a Bayesian sta-
istical approach (see Supplementary Information 2 for details).
pecifically, school-based egg test data from two  consecutive years
baseline year and the first follow up year) were used to specify
our unknown model parameters relating to snail prevalence and
eproduction, relative contact rates, and within host relative worm
ecundity of different age groups with respect to the SAC group.
urthermore, baseline intensity and infection prevalence data of
he SAC group were used in intermediate dynamic steps to spec-
fy within-host worm fecundity and rate of worm accumulation for

his age group and consequently for other age groups using relative
alues of fecundity and contact rates.

The CWRU model then used a Markov Chain Monte Carlo
MCMC) approach to draw samples from the posterior distribu-
ics 18 (2017) 29–37 33

tions of unknown parameters. To validate the model and fitting
procedures, posterior distributions of unknown parameters were
used to generate an ensemble of SAC prevalence time series by
running dynamic MDA  simulations through year 3 and incorpo-
rating the influence of treatment coverage in year 1 and 2. Model
infection prevalence estimates and their credible intervals in year 3
were then compared with the observed SAC prevalence. The cred-
ible intervals reflect the confidence level for prevalence estimates
given the data and the model. A summary of parameters and values
for both models can be found in Table 3.

3. Results and discussion

For both groups, the models were used to attempt to predict the
infection prevalence and intensity of the host population in year
3, for two  villages, Catambo and Copuito. Data from the first two
years were used for parameterization of the models.

The ability of the ICL model to match the observed data dif-
fers markedly between the two villages studied (see Figs. 3 C and
4 C ). In the case of Copuito village, the projection for year 3
mean egg/10 mL  urine matches the observed data very well. The
fitted value for coverage of SAC captured within the treatment pro-
gramme  is approximately 86%. A value this high is well within the
expectation of a well-organised school-based control programme.

The error bars in Figs. 3 C and 4 C reflect the 95% predictive
interval for the model’s prediction of the mean egg count, given a
sampled population matching that which underlies the data. The
high degree of uncertainty arises from two  sources; uncertainty as
to how many worms  individuals harbour for a given mean female
worm burden and the variability across measurements in egg count
per 10 ml, given a particular number of worms. Within the ICL
model formulation, both of these uncertainties are described by
negative binomial distributions and hence compound to give a neg-
ative binomial with a very high variance to mean ratio and low k
value. This suggests that predictions in terms of mean measured
egg outputs will generally not be very precise (although they may
be accurate within a given sample) unless very large samples are
involved including multiple sampling of the same urine collection
from an individual. Figs. 3 A and 4 A shows the predictions of the
ICL model for the evolution of prevalence, given a model fitted to
egg intensity data. The fit to the data is clearly quite poor in general.
For Copuito, prevalence at the end of years 1 and 2 are just within
the predictive interval of the model, but the baseline is far from
the model estimate. The model behaviour is also characterised by
much smaller changes in prevalence in response to treatment than
the CWRU model (see below). This relative insensitivity to changes
in underlying worm burden is a feature of the negative binomial
distribution, as already discussed.

The CWRU model is calibrated using school-based SAC preva-
lence data from the two  villages, which assumes that these reported
data are unbiased estimates and that the reported coverage data
estimate coverage among the school-attending SAC group. By
neglecting small coverage levels in other age groups and among
non-school attenders, the CWRU model used the first two  rounds
to calibrate unknown model parameters and predict prevalence
among school-attending SAC in year 3.

The CWRU approach gives a reasonable prevalence estimate
among school-attending SAC in year 3 for Copuito at 0.69 (CI:
0.57-0.79) compared to 0.57, although it largely overestimates the
corresponding prevalence for Catambo at 0.55 (CI: 0.47-0.65) com-
pared to 0.29 (see Figs. 3 B and 4 B). The CWRU fitting procedure

takes the complete egg-test distribution data, rather than specific
test statistics (mean intensity, prevalence et al). While it assumed
no coverage outside SAC school-attenders, the results show a sim-
ilar pattern to the ICL model results, namely, good predictions for
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Table 3
Parameter values for Schistosoma haematobium used in making the model predictions.

Parameter ICL model CWRU model

Transmission intensity R0 = 1.6* No BRN is employed in model formulation, and infection
intensity is formulated via estimated (human-snail)
transmission coefficients

Level  of aggregation of parasites in host
population

Negative binomial, k = 0.24 No worm distribution pattern is prescribed, but arises
naturally through dynamic worm-strata variables

Aggregation parameter for the distribution of
repeated eggs counts

Not used in the current analysis Egg-release is Negative binomial with prescribed
(estimated) aggregation k=.01-.05

Density-dependent fecundity Exponential density dependence (�=0.005) Exponential E(̂-w/100), for worm burden w
Adult  worm life expectancy, L 4 years 4-5 years
Praziquantel drug efficacy 94% 80%
Relative contribution/exposure to

environmental reservoir of infection
0.3* (ages 0-5),
1* (ages 5-10),
0.05* (ages 10 + )

Estimated values
Ages 0-5: .5-.6
Ages 15 +: .45-.5

Average survival of infectious agents in
environmental stage

4 months Determine by snail population/infection dynamics with
prepatent period = 2 month

Prepatent period None 2-months for snails, none for humans
Female worm fecundity 5.2 egg/worm/10 mL  specimen 30 egg/worm/10 mL  specimen

*Indicates derived from parameter fitting.

Fig. 3. Catambo model fits and predictions. A) ICL model fit and predictions for year 3 egg prevalence including 95% predictive interval for the measured prevalence across the
sample  of approximately 100 individuals. Model fitted to corresponding egg intensity data. B) CWRU model fit and predictions for year 3 prevalence. Broken lines represent
9 ns for
c d pre
p

C
(

3
T
f

5%  credible intervals due to parameter uncertainty. C) ICL model fit and predictio
ounts  across the sample of approximately 100 individuals. D) CWRU model fit an
arameter uncertainty.

opuito but underestimating intensity level in year 3 for Catambo
see Figs. 3 D and 4 D).
In the case of Catambo village, the model predictions for the year
 mean egg intensity are very different from the observed values.
he fitted coverage value in this case is approximately 95% and that
or the second round approximately 80%, leading to a predicted
 year 3 egg intensity including 95% predictive interval for the mean measured egg
dictions for year 3 intensity. Broken lines represent 95% credible intervals due to

intensity of around 10 eggs/10 mL,  in contrast to an observed value
of 43 eggs/10 mL.  However, the increase in intensity in this village

between year 2 and 3, by a factor of 4, is difficult to understand. For
a parasite with a relatively long lifespan, rates of change of parasite
burden would be far too slow to allow a bounce back close to the
equilibrium value within a single year
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Fig. 4. Copuito model fits and predictions. A) ICL model fit and predictions for year 3 egg prevalence including 95% predictive interval for the measured prevalence across the
sample  of approximately 100 individuals. Model fitted to corresponding egg intensity data. B) CWRU model fit and predictions for year 3 prevalence. Broken lines represent
9 ns for
c d pre
p
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5%  credible intervals due to parameter uncertainty. C) ICL model fit and predictio
ounts  across the sample of approximately 100 individuals. D) CWRU model fit an
arameter uncertainty.

A possible explanation is that the make-up of the sampled pop-
lation has changed to include a previously untreated, heavily

nfected group in year 3. As is apparent from data quality issues
iscussed in the Methods section, the data available was  frequently

nsufficient to clearly assess what proportion the treated SAC repre-
ented within the community as a whole (uncertain denominators)
nd whether those aspects of the treatment programme may  have
hanged as the programme proceeded year by year. Were the same
ndividuals treated each year, or were they different? Sampling
rom the untreated, non-school attending school-aged population
ould dramatically increase the measured mean infection inten-

ity among 9–12 year olds. Given the structure of the school-based
reatment programme, this may  well have occurred. This highlights
he importance of collecting precise data on who is treated and who
s sampled post-treatment.

The ICL group used the first two rounds of egg intensity data
n part to estimate what coverage level was most likely each year
o give the observed pattern. While this approach leads to a rea-
onable fit for predictions for Copuito in year 3, more reliable data
n coverage should be informing the estimation of the biological
arameters of the model, rather than the other way  around.

Fig. 5 compares the response of the two models to long term
argeted MDA. A program of 10 years of MDA  targeted at SAC is sim-

lated and the figure shows the impact on intensity (eggs/10 ml)
nd on the mean force of infection experienced by hosts as indicated
y the infectious reservoir (ICL) and the patent snail population
CWRU), respectively. The decline in egg output is markedly greater
 year 3 egg intensity including 95% predictive interval for the mean measured egg
dictions for year 3 intensity. Broken lines represent 95% credible intervals due to

for the ICL model than for the CWRU model and is primarily a result
of the small change in force of infection in the latter model. In the ICL
model, infectious reservoir status and hence FOI  drops by more than
90% over the 10 year intervention and elimination appears likely
within the next 10 years. The response in the CWRU model is con-
solidated within a couple of years and remains constant throughout
the remainder of the intervention. Bounce back post-treatment is
also much faster for the CWRU model for the same reason. Ini-
tial response to treatment is also informative of model dynamics.
Given a linear relationship between worms  and egg output, a drop
of around 70% in egg output would be expected. The response in
egg output of the ICL model to the first round of treatment is closer
to 50%. The drop in worm burden increases the net egg output of
the remaining worms, a result of the density dependent fecundity
which is responsible for the model’s stable endemic equilibrium.
In the case of the CWRU model, the drop in egg output exceeds
the 70%. This indicates that the endemic equilibrium in this model
is not a product of density dependent fecundity of parasites in the
host. It almost certainly reflects the non-linear impact of the lack of
mating pairs of worms  in hosts after treatment leading to lower egg
production than would be expected from the loss of worms alone.

The ICL group feel that, particularly when dealing with data of
poor quality, egg intensity data has certain advantages over preva-

lence. Although more parameters are required to link to the basic
worm-centred dynamic model (the egg output per female worm, or
ideally a full model of the egg count diagnostic protocol), it reduces
the reliance on prevalence data that is very dependent on the source
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ig. 5. Impact of 10 years of MDA, focused on SAC with 75% coverage for A) the ICL
nd  grey lines indicate relative mean force of infection experienced by hosts, being
nails.

nd quality of population size information and the magnitude of the
egative binomial aggregation parameter, k. In the current dataset,
opulation data often came from entirely different sources to infec-
ion data, such as censuses rather than the detailed demography of
he study villages, and the process of calculating prevalence com-
ounds the biases in the numerator and denominator rather than
educing them.

Different egg-test outputs can be employed in model cali-
ration, depending on its structure, including mean intensity,
revalence and/or other statistics. For the ICL model mean test

ntensity provides the natural input. The CWRU model employs
omplete egg-test data via simulated “random egg release” by SWB
roups/communities. A combined “mean and prevalence” data may
eem advantageous compared to any one choice. However, it’s not
lear (it would require additional study to determine) how much
ndependent information and uncertainty is contained in a typical
est dataset.

. Conclusion

The key model differences identified in the methods section
ccount for some of the differences observed between the two
odels. The CWRU model has a noticeably faster bounce back

rom infection than the ICL model and this is almost certainly a
onsequence of the nonlinear force of snail infection. The ICL envi-
onmental model has a larger and relatively long-lasting response
o the drop in worm burden. The fits to the Copuito data suggest that

 more responsive environmental sub-model gives a more accu-
ate disease bounce back. These differences also suggest that the
odels would not come to the same conclusions about the possibil-

ty of elimination, with the ICL model allowing easier elimination.
his conclusion is demonstrated by the impact of MDA  shown in
ig. 5. The differences in the responses of the force of infection to
ong-term treatment lead to qualitatively different results, in terms
f the impact on egg output during treatment, the probability of
limination and the speed of bounce back after the intervention is
nterrupted.

The negative binomial distribution with fixed aggregation of
he ICL model causes estimates of prevalence based on fitting
o intensity data to generally underestimate at the baseline and
lso to underestimate the change generated by treatment (See
igs. 3 and 4A). However, as already discussed, apparent problems
ith the accuracy of the prevalence data may  be partly responsible
or this effect. A further important aspect of the large difference in
ariance between the two models is predictions of morbidity. There
s a very large discrepancy in the prevalence of high burden individ-
als between the two models, with the CWRU having a great deal
el and B) the CWRU model. Back lines show the egg intensity in the SAC age group
e relative status of the infectious reservoir and B) the relative abundance of patent

less. Given that morbidity is primarily a consequence of very high
worm burdens and the associated high production of eggs, the two
models will give highly divergent pictures of the amount of morbid-
ity predicted and likely lead to different conclusions as to the cost
effectiveness of any regime of treatment. It is a feature of these
models, then, that the description of prevalence is closely linked to
the ability of the model to account for morbidity in a community.
Such differences between models clearly need to be analysed and
resolved if models are to be used to inform policy. Direct obser-
vations of worm burden is not possible; what data there is (from
animal models and post-mortem in humans) suggest aggregated
distributions (Cheever, 1968; Crombie and Anderson 1985). The
different relationships between prevalence and intensity in the two
models and their different responses to treatment should be resolv-
able given high quality matching prevalence/intensity data across a
treated age group. Differences in force of infection across a number
of years of MDA  are potentially detectable by long-term monitoring
of the abundance of infectious snails.

The gathering of reliable monitoring and evaluation (M&E) data
from national treatment programmes is clearly an expensive and
time-consuming undertaking. Any attempt to create a definitive
record of patterns of treatment and monitoring will always be
undermined by issues of migration, seasonal movements of labour
and issues of compliance. However, the authors suggest that a few
key pieces of data would improve the capacity of models to offer
accurate descriptions of disease progress and help in the design of
drug coverage programmes to eliminate parasite transmission or
morbidity in children and adults.

A key requirement for data that is to be used with models fore-
casting outcome scenarios, after a defined treatment programmes
is accurate denominator information on the population sizes in
various groupings such as school-aged children, those attending
school, and village population size. This impacts assessment of cov-
erage rates directly, but is also essential for any attempt to model
the dynamics of prevalence over time and under treatment. Often,
national treatment programmes do not routinely collect egg inten-
sity data across different age groups. As such, prevalence is the only
epidemiological data collected longitudinally. Model predictions
can only be as reliable as the data that informs them, therefore,
detailed denominator data is key. This is one of the limitations of
present-day MDA  programmes (see review by Shuford et al., 2016).
The collection of egg intensity data, while more labour intensive,
helps to reduce the need for accurate prevalence data. Access to

programme protocols and reports on implementation, if available,
would be extremely useful in interpreting these often large and
complex datasets on the impact of MDA  on schistosome prevalence
and intensity across different age classes.
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Effective treatment coverage levels will be key in achieving the
oals of WHO-recommended preventive chemotherapy (PCT) pro-
rammes (World Health Organization, 2006, 2012). The WHO’s NTD
trategic and Technical Advisory Group recommends a systematic
rogramme of M&E  surveys of both population size and treatment
ptake, in order to provide a clear distinction between flaws in

mplementation (low coverage) vs. the greater biological risk of
ersistent infection and reinfection. Currently, in many regions of
ndemic infection, these guidelines are not well adhered to. We
ope the work presented here will help to highlight the funda-
ental importance of careful and accurate data collection to inform
odelling studies as part of ongoing efforts to improve the design,
onitoring and implementation of NTD control programmes.
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