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Abstract

The role of podocytes in the development and progression of glomerular disease has been extensively investigated in the
past decade. However, the importance of glomerular endothelial cells in the pathogenesis of proteinuria and
glomerulosclerosis has been largely ignored. Recent studies have demonstrated that endothelial nitric oxide synthatase
(eNOS) deficiency exacerbates renal injury in anti-GBM and remnant kidney models and accelerates diabetic kidney damage.
Increasing evidence also demonstrates the importance of the glomerular endothelium in preventing proteinuria. We
hypothesize that endothelial dysfunction can initiate and promote the development and progression of glomerulopathy.
Administration of adriamycin (ADR) to C57BL/6 mice, normally an ADR resistant strain, with an eNOS deficiency induced
overt proteinuria, severe glomerulosclerosis, interstitial fibrosis and inflammation. We also examined glomerular endothelial
cell and podocyte injury in ADR-induced nephropathy in Balb/c mice, an ADR susceptible strain, by immunostaining, TUNEL
and Western blotting. Interestingly, down-regulation of eNOS and the appearance of apoptotic glomerular endothelial cells
occurred as early as 24 hours after ADR injection, whilst synaptopodin, a functional podocyte marker, was reduced 7 days
after ADR injection and coincided with a significant increase in the number of apoptotic podocytes. Furthermore,
conditioned media from mouse microvascular endothelial cells over-expressing GFP-eNOS protected podocytes from TNF-
a-induced loss of synaptopodin. In conclusion, our study demonstrated that endothelial dysfunction and damage precedes
podocyte injury in ADR-induced nephropathy. Glomerular endothelial cells may protect podocytes from inflammatory
insult. Understanding the role of glomerular endothelial dysfunction in the development of kidney disease will facilitate in
the design of novel strategies to treat kidney disease.
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Introduction

Diabetic and non-diabetic glomerular diseases remain the major

cause of chronic and end-stage renal disease [1]. Proteinuria is an

indicator of kidney disease and is largely caused by glomerular

disease, such as diabetes or glomerulonephritis [2]. Numerous

studies have focused on the roles of podocytes, the glomerular

basement membrane (GBM) and mesangial cells in the pathogen-

esis of proteinuria and glomerulosclerosis [3–5]. The importance

of glomerular endothelial cells in glomerular injury has been

largely ignored. Recent studies have demonstrated that endothelial

nitric oxide synthatase (eNOS) deficiency exacerbates renal injury

in anti-GBM [6] and remnant kidney models [7] and accelerates

diabetic kidney damage with features that resemble human

diabetic nephropathy (DN) [8–11]. In patients, eNOS polymor-

phisms that lead to decreased eNOS expression and activity have

been associated with advanced DN and progressive IgA nephrop-

athy [12–14]. Scavengers of endothelial nitric oxide (NO)-

production, such as asymmetric dimethyl-arginine or N-Nitro-L-

Arginine Methyl Ester (L-NAME) can acutely increase glomerular

permeability and induce proteinuria [15–17]. Collectively, these

studies suggest that endothelial dysfunction is involved in the

development of diabetic and non-diabetic glomerular injury and

renal fibrosis [18,19].

One of the most important mediators released by the

endothelium is NO. NO acts as a potent vasodilator, and also

inhibits inflammation, growth of vascular smooth muscle and

aggregation of platelets [20–23]. Dysregulation of NO has been

described in patients with DN, including increased NO expression

in early DN, followed by marked down-regulation. Henke et al.

[24] generated mice in which the nuclear factor kappa B (NF-kB)

suppressor IkBaD was induced in the endothelium using Cre/Lox

technology. When these mice were exposed to Angiotensin II

infusion, high salt and inhibition of endogenous NO production,

hypertension was not prevented. However, NF-kB suppression

markedly reduced renal injury as evidenced by decreased

proteinuria, renal inflammation and fibrosis [24]. This study

demonstrated a previously unappreciated role of the endothelium

in glomerular injury [25].

It is believed that the glomerular filtration barrier (GFB),

including the podocyte layer, the glomerular basement membrane

(GBM), and the endothelium, plays an essential role in regulating

glomerular permeability. Recent studies have demonstrated the

importance of the glomerular endothelium and its surface layer in
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preventing proteinuria [26]. Increasing evidence also demonstrates

that glomerular endothelial cell fenestrae are integral components

of the glomerular filtration barrier [27–31]. Reduction in

glomerular endothelial cell fenestration and an increase in

podocyte detachment are correlated with the severity of classical

DN lesions and renal function in type 1 diabetic patients [32].

Taken together, these studies from both structural and functional

viewpoints demonstrate that glomerular endothelial dysfunction

plays a critical role in the pathogenesis of progressive renal disease,

suggesting that endothelial function is also a key determinant of

susceptibility to nephropathy.

In the present study we hypothesize that endothelial dysfunction

can initiate and propel the development and progression of

glomerulopathy. We tested whether eNOS deficiency promotes

endothelial injury and drives the development of adriamycin

(ADR)-induced nephropathy in C57BL/6 mice, an ADR-resistant

strain. We also examined and compared podocyte and glomerular

endothelial cell injury in ADR-induced nephropathy in Balb/c

mice, an ADR-susceptible strain. Finally we investigated whether

the conditioned medium from mouse microvascular endothelial

cells over expressing eNOS can protect podocytes from TNF-a-

induced injury in vitro.

Materials and Methods

Experimental Animals
Wild-type C57BL6/J and Balb/c mice (8 weeks old) were

purchased from Monash Animal Services, Monash University,

Australia. Breeding pairs of eNOS knockout mice were purchased

from Jackson Laboratories (Bar Harbor, ME) and maintained at

Monash Animal Services. All experiments were performed with

the approval of a Monash University Animal Ethics Committee,

which adheres to the ‘‘Australian Code of Practice for the Care

and Use of Animals for Scientific Purposes.’’ Five C57BL/6 male

mice and six Balb/c male mice per group were used in each

experiment.

To establish the animal model of adriamycin (ADR)-induced

nephropathy, wild type, eNOS knockout and Balb/c mice received

a single intravenous injection of ADR (10.5 mg/kg; Sigma, St.

Louis, MO). Control mice were treated with an equivalent

intravenous volume of normal saline (NS) vehicle. Mice were killed

at 24 hours, 72 hours, 1 week, 2 weeks, and 4 weeks after ADR or

NS injection. Cardiac blood, urine and kidney tissue were

collected for analysis. Six mice per group were used in these

studies.

Blood Pressure Measurements
Systolic blood pressure (BP) was measured using a tail-cuff

sphygmomanometer (Visitech BP2000; Visitech Systems, Apex,

NC). Animals were trained and accustomed to the machine, and

all measurements were performed at the same time of day.

Measurements of creatinine and protein in blood and
urine

Mice were housed in metabolic cages, with free access to chow

and water on the days of urine collection. Protein from 24 hour

urine samples and serum creatinine levels were measured using a

DC Protein Assay kit (Bio-Rad, Gladesville, New South Wales,

Australia) and Creatinine Assay kit (Cayman Chemical, Ann Abor,

MI), according to instructions supplied.

Cell Culture
Mouse podocyte cell culture. Podocytes between passage

10 and 15 were maintained in RPMI 1640 medium supplement

Figure 1. Pathological characterization of ADR-induced nephropathy in C57BL/6 mice with eNOS deficiency. PAS staining of sections
from NS (A&C) and ADR-injected (B&D) wild type (A&B) and eNOS-deficient (C&D) mice at day 28. Masson trichrome staining of sections from NS
(E&G) and ADR-injected (F&H) wild type (E&F) and eNOS-deficient (G&H) mice at day 28. eNOS-deficient mice with ADR-induced nephropathy
exhibited well developed exudative (fibrin-cap) lesions, glomerular sclerosis, interstitial fibrosis and inflammation at day 28. Original magnifications,
400 X.
doi:10.1371/journal.pone.0055027.g001
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with 10% fetal bovine serum (FBS) and 1% streptomycin/

penicillin solution [33]. Cells were propagated in 10 U/ml murine

IFNc at 33uC and then differentiated by culture for 7 days at 37uC

in the absence of IFNc [34]. Differentiated podocytes showed

prominent cytoplasmic processes and expressed synaptopodin.

Figure 2. Functional characterization of ADR-induced nephropathy in C57BL/6 mice with eNOS deficiency. A: Ratio of urinary protein/
creatinine; B: Body weight; C: Ratio of kidney /body weight; D: Serum creatinine and E: Systolic blood pressure in NS- and ADR-injected mice. Two-
way ANOVA; n = 5, data are means 6 SD.
doi:10.1371/journal.pone.0055027.g002

Glomerular Endothelial Cell Injury
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Mouse microvascular endothelial cell (MMEC) culture

and generation of eNOS over-expression MMECs. MMECs

were purchased from ATCC (Manassas, VA ) and cultured in 5%

CO2 atmosphere at 37uC in Dulbecco’s modified Eagle’s medium

(Life Technologies BRL, Gaithersburg, MD) containing 10% FBS.

To generate eNOS over-expression in MMECs, MMECs were

transfected with pcDNA3-eNOS-GFP plasmid (Addgene Plasmid

22444) using FuGENE HD (Roche, Hawthorn, Austrialia). Seven

days after transfection, two rounds of fluorescence activated cell

sorting (FACS) (FACsDiva, Flowcore, Clayton, Australia) were

employed to obtain eNOS-GFP-positive and eNOS-GFP-negative

MMECs.

MMEC conditioned mediae. NOS-GFP-positive and

eNOS-GFP-negative MMECs were separately seeded into 6

well-tissue culture plates at a density of 36106 cells/well. The

cells were incubated for 12 hours then washed three times with

PBS prior to fresh media being added to the cells. The supernatant

was collected 24 hours later and is referred to as eNOS-GFP-

positive and eNOS-GFP-negative media, respectively.

TNF-a treated podocyte cell culture. Podocytes were

seeded in 6 well-plates at a density of 16106 cells per well and

cultured initially at 33uC (propagating condition) prior being

cultured at 37uC (differentiating condition). Five days after

differentiation had commenced, conditioned media was added to

the cells. The medium was changed to 0.1% FBS on day 7.

Podocytes were stimulated with 10 ng/ml TNF- a for 36 hours

before harvesting.

Figure 3. Extracellular matrix products in ADR-induced nephropathy in C57BL/6 mice with eNOS deficiency. Collagen IV (A–D) and
fibronectin (E–H) staining sections from NS- (A, C, E & G) and ADR-injected (B, D, F & H) wild type (A, B, E & F) and eNOS-deficient (C, D, G & H) kidneys
at day 28. Graph showing quantification of the area of staining for collagen IV and fibronectin. One-way ANOVA, n = 5, data are means 6 SD. ***: vs
WT NS, WT ADR and eNOS KO NS, P,0.001.
doi:10.1371/journal.pone.0055027.g003
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Histological assessment
A coronal slice of kidney tissue was fixed in 4% paraformal-

dehyde and embedded in paraffin. Tissue was cut at 4 mm and

stained with hematoxylin, PAS, and Masson’s trichrome. The

degree of glomerulosclerosis and interstitial fibrosis were measured

using Image J software (http://rsb.info.nih.gov/ij/). The percent-

age of glomerulosclerosis was calculated by dividing the total area

of PAS positive staining in the glomerulus by the total area of the

glomerulus. Interstitial fibrosis was quantified by dividing the area

of trichrome stained interstitium by the total cortical area. The

mean value of 20 randomly selected glomeruli or five cortical fields

was determined for each section. Five sections were selected from

each kidney.

Antigen Retrieval
Paraffin tissue sections (4 mm) were incubated at 60uC overnight

before dewaxing with 2 changes of xylene and 100% ethanol.

Tissue sections were immersed in sodium citrate buffer (10 mM

sodium citrate, pH 6.0) and heated up in a pressurized cooker to

100uC for 10 minutes. Tissue sections were cooled down to room

temperature and prepared for standard immunofluorescence

staining procedure.

Confocal Microscopy
Renal sections were blocked with PBS containing 1% BSA and

incubated with rabbit anti-synaptopodin (1:800) (Sysy antibody,

Germany) or rat anti-CD31 (1:100) overnight at 4uC. Sections

Figure 4. Glomerular endothelial cell and podocyte damage in ADR-induced nephropathy in C57BL/6 mice with eNOS deficiency.
Time course of glomerular endothelial cell CD31 (A–E) and podocyte synaptopodin (F–J) staining sections from NS-treated kidneys at day 28 (A&F),
ADR-treated kidneys at days 3 (B&G), 7 (C&H), 14 (D&I) and 28 (E&J). Graph showing quantification of the area of CD31(K) and synaptopodin (L)
staining. One-way ANOVA, n = 5, data are means 6 SD. Vs NS day 28, * P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0055027.g004
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were probed with goat anti-rabbit or goat anti-rat with Alexa Fluor

555 conjugate (1:2000; Molecular Probes, Eugene, OR). Sections

were counterstained with 4, 6-diamidino-2 phenylindole (DAPI) to

visualize nuclei and mounted with Fluorescence Mounting

Medium (Dako Cytomation). Sections were analyzed with an

Olympus Fluoview 1000 confocal microscope (Olympus, Tokyo,

Japan), FV10-ASW software (version 1.3c; Olympus), oil UPLFL

60x objective (NA1.25; Olympus) at x2 or x3 digital zoom.

Contrast and brightness of the images were adjusted further in

ImageJ.

TUNEL Assay
Apoptotic assays were performed by TdT mediated X-dUTP

nicked labeling (TUNEL) reaction using ApopTagH Fluorescein In

Situ Apoptosis Detection Kit (Merck Millipore, Kilsyth, Vic,

Australia). Apoptotic endothelial cells and podocytes were

identified by double labelling using TUNEL and anti-CD31 or

anti-synaptopodin. Goat anti-rat Alexa Fluor 555 conjugate

(1:2000) and goat anti-rabbit Alexa Fluor 555 conjugate (1:2000)

were used. Sections were counterstained with DAPI.

Western blotting
Kidney tissues and cell culture samples were sonicated and lysed

in 0.4 ml RIPA lysis buffer. The tissue and cell extracts were

centrifuged at 3000 rpm and 4uC for 30 minutes to remove cell

debris. The protein concentrations were measured by modified

Lowry protein assay using BSA as a protein standard (DC protein

assay kit, Biorad). Proteins were electrophoresed through a 10%

SDS-PAGE gel before transferring to a PVDF membrane. After

blocking for 30 minutes at 4uC in blocking buffer (5% skim milk

powder in PBS with 0.1% Tween 20), the membrane was

incubated overnight with rabbit anti-synaptopodin (1:8000) or

rabbit anti-eNOS (1:4000) (Santa Cruz Biotechnology, Inc). The

membrane was washed and incubated for 30 minutes at room

temperature with a goat anti-rabbit antibody conjugated with

HRP. After further washing, the membrane was detected with

ECL kit (Amersham Pharmacia Biotech, Arlington, IL, USA). a-

tubulin and GAPDH were used as internal controls and detected

by mouse anti-a-tubulin antibody conjugated with HRP and

mouse anti-GAPDH antibody conjugated with HRP. Western

blotting images were captured by Kodak 4000 mm and density of

the bands was quantitated by using ImageJ (http://rsb.info.nih.

gov/ij/).

Statistical Analyses
Data are mean 6 SD with statistical analyses performed using

one way or two-way ANOVA from GraphPad Prism 5.0

(GraphPad Software, San Diego, CA) and post test Tukey analysis

when appropriate. P,0.05 was considered statistically significant.

Results

Characteristics of ADR-Induced Nephropathy in C57BL/6
mice with eNOS deficiency

In normal saline (NS)-treated wild type and eNOS-deficient

C57BL/6 groups, glomeruli and tubulointerstitium histology were

Figure 5. Apoptosis in glomerular endothelial cells and podocytes in ADR-induced nephropathy in C57BL/6 mice with eNOS
deficiency. Apoptotic glomerular endothelial cells (A&B) and podocytes (D&E), triple labeled with terminal deoxynucleotidyl transferase-mediated
digoxigenin-dNTP nick end-labelling (TUNEL; A, B, D and E, green), anti-CD31 (A&B, red) and anti-synaptopodin (D&E, red), were detected at days 3 (B)
and 7 (E) after ADR injection in eNOS-deficient mouse kidneys. Positive apoptotic cells (B&E) were counterstained with DAPI nuclear staining. Sections
from NS-treated kidneys (A&D) were used as controls. Quantification of CD31+/TUNEL+ glomerular endothelial cells (C) and synaptopodin+/TUNEL+

podocytes in glomeruli (F). Original magnification, 600 X. Magnification in insets, 12006. One-way ANOVA, n = 5, data are means 6 SD. ***: vs NS
day 28, P,0.001.
doi:10.1371/journal.pone.0055027.g005
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normal (Fig. 1A&C, E&G). A single dose of ADR administration

at 10.5 mg/kg body weight in wild type C57BL/6 mice did not

induce any significant injury in kidneys (Fig. 1B&F). However, in

the ADR-treated eNOS-deficient group, PAS (Fig. 1D) and

Masson trichrome staining (Fig. 1H) demonstrated severe histo-

pathological changes including glomerular and tubulointerstitial

damage, massive cast formation, glomerulosclerosis, and tubulo-

interstitial fibrosis. Overt proteinuria appeared 7 days after ADR

administration and persisted thereafter (Fig. 2A). In eNOS-

deficient mice, the mean body weight decreased quickly after

ADR administration and the tendency persisted until day 14, after

which body weight recovered gradually (Fig. 2B). Kidney/body

ratio in eNOS-deficient mice with ADR treatment increased at

day 3, peaked at days 7 and 14 then returned to normal at day 28

(Fig. 2C). Serum creatinine continuously increased following ADR

injection in eNOS-deficient mice and peaked at 4 weeks, the

experimental end-point (Fig. 2D). In eNOS-deficient mice, high

blood pressure persisted during the whole study but there was no

significant change in blood pressure between NS-treated and

ADR-treated groups (Fig. 2E). Immunostaining demonstrated that

the production of collagen IV (Fig. 3 A to D & I) and fibronectin

(Fig. 3E to H & I) was significantly increased in ADR-treated

Figure 6. Glomerular endothelial cell and podocyte injury in ADR-induced nephropathy in Balb/c mice. (A) Western blotting detected
expression of CD31 and synaptopodin in NS-treated and ADR-treated kidneys in Balb/c mice. (B) Quantification of CD31/a-Tubulin and synaptopodin/
a-Tubulin in Western blotting. Immunostaining of CD31+ (glomerular endothelial cells) (D) and synaptopodin+ (podocytes) (F) in ADR-induced
nephropathy. NS-treated kidneys were used as normal controls (C&E). Quantification of CD31 (G) and synaptopodin (H) staining in NS-treated and
ADR-treated kidneys. One-way ANOVA, n = 6, data are means 6 SD. *P,0.05.
doi:10.1371/journal.pone.0055027.g006

Glomerular Endothelial Cell Injury
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eNOS-deficient kidneys compared with NS-treated eNOS-defi-

cient, NS-treated wild type and ADR-treated wild type kidneys.

These results demonstrated that ADR administration in eNOS-

deficient C57BL/6 mice leads to progressive renal fibrosis that by

4 weeks resembles chronic renal failure with marked functional

impairment and severe histopathological alterations. These results

suggest that endothelial dysfunction may lead to the development

and progression of chronic kidney disease.

Figure 7. Apoptotic glomerular endothelial cells and podocytes in ADR-induced nephropathy in Balb/c mice. Apoptotic glomerular
endothelial cells (A&B) and podocytes (D&E), triple labeled with terminal deoxynucleotidyl transferase-mediated digoxigenin-dNTP nick end-labeling
(TUNEL; A, B, D and E, green), anti-CD31 (A&B, red) and anti-synaptopodin (D&E, red), were detected at days 1 (B) and 7 (D) after ADR injection in
Balb/c mouse kidneys. Positive apoptotic cells (B&D) were counterstained with DAPI nuclear staining. Sections from NS-treated kidneys (A&C) were
used as controls. Quantification of CD31+/TUNEL+ glomerular endothelial cells and synaptopodin+/TUNEL+ podocytes in glomeruli (E). Original
magnification, 600 X. Magnification in insets, 1200 X. One-way ANOVA, n = 6, data are means 6 SD. Vs NS day 7, *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0055027.g007
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Glomerular endothelial cell injury precedes that of
podocytes after ADR administration in eNOS-deficient
C57BL/6 mice

To compare ADR-induced injury in glomerular endothelial

cells with that in podocytes in mice with eNOS deficiency, CD31

and synaptopodin staining were performed. The loss of CD31 was

evident 3 days after adriamycin administration then persisted until

day 28 (Fig. 4A to E & K) while the expression of synaptopodin

was significantly reduced 7 days after ADR administration (Fig. 4F

to J & L), suggesting that glomerular endothelial cells with eNOS

deficiency are more susceptible to injury than podocytes and that

endothelial dysfunction plays a critical role in the development

and progression of ADR-induced nephropathy. To quantify the

rate of apoptosis in glomerular endothelial cells and podocytes,

TUNEL was performed in conjunction with CD31 and synapto-

podin staining. Positive cells in 50 glomeruli of at least five animals

of each group were counted. As expected, the number of

glomerular endothelial cells undergoing apoptosis (CD31+/

TUNEL+) peaked at 3 days after adriamycin was administered,

then gradually decreased at days 7 and 14 (Fig. 5A to C).

However, the number of podocytes undergoing apoptosis peaked

at 7 days after adriamycin treatment (Fig. 5D to F), demonstrating

that adriamycin-induced glomerular endothelial cell injury

precedes that of podocytes in eNOS-deficient mice, suggesting

that endothelial dysfunction may result in podocyte injury.

Glomerular endothelial dysfunction precedes podocyte
injury in ADR-induced kidney damage in Balb/c mice

It is believed that ADR-induced nephropathy is initiated by

podocyte injury followed by overt proteinuria, glomerulosclerosis,

tubulointerstitial fibrosis and inflammation in ADR-susceptible

mice [35,36]. In an attempt to address the role of endothelial

dysfunction in the development and progression of ADR-induced

podocyte injury, the expression of eNOS and synaptopodin were

examined by Western blotting in kidneys from Balb/c mice.

Interestingly, the down-regulation of eNOS was significantly

Figure 8. eNOS overexpression protecting podocytes from TNF-a-induced loss of synaptopodin. GFP eNOS – positive (GFP-eNOS+) and
GFP-eNOS – negative (GFP-eNOS2) MMECs were obtained by FACS (A). Confocal microscopy of GFP in GFP-eNOS2 (B) and GFP-eNOS+ (C) MMECs. (D)
Western blotting using anti-eNOS and anti-GFP antibodies to detect endogenous eNOS and overexpression of GFP-eNOS in GFP-eNOS2 and GFP-
eNOS+ MMECs. (E) Conditioned media from GFP-eNOS2 and GFP-eNOS+ MMECs was added to podocytes in the presence or absence of TNF-a,
western blotting demonstrated expression levels of synaptopodin 36 hours after TNF-a stimulation. (F) Quantification of expression levels of
synaptopodin by western blotting. One-way ANOVA, data are means 6 SD.
doi:10.1371/journal.pone.0055027.g008
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earlier than that of synaptopodin being prominent 24 hours and

7 days after ADR administration, respectively (Fig. 6A&B).

Confocal microscopy demonstrated that CD31 (Fig. 6C, D & G)

and synaptopodin (Fig. 6E, F & H) were significantly decreased

7 days after ADR treatment. TUNEL demonstrated that glomer-

ular endothelial cells (CD31+/TUNEL+) and podocytes (synapto-

podin+/TUNEL+) undergoing apoptosis could be detected as

early as 24 hours in glomerular endothelial cells (Fig. 7C & E) but

at 7 days in podocytes (Fig. 7D & E) after ADR treatment

compared with NS treatment. This suggests that glomerular

endothelial dysfunction and damage precede podocyte injury in an

ADR-susceptible mouse strain.

eNOS overexpression in endothelial cells protects
podocytes from TNF-a-induced injury

To further investigate the role of glomerular endothelial cells in

the development and progression of podocyte injury, mouse

microvascular endothelial cells (MMECs) over-expressing GFP-

tagged eNOS were generated. MMECs expressing GFP-tagged

eNOS (GFP-eNOS+) were selected by FACS while GFP-

eNOS2MMECs were used as a negative control (Fig. 8A).

Confocal microscopy demonstrated that the majority of the

cultured GFP-eNOS+ MMECs expressed GFP-tagged eNOS

(Fig. 8C) compared with GFP-eNOS2MMECs (Fig. 8B). Western

blotting also confirmed the expression of GFP-eNOS and

endogenous eNOS in MMECs (Fig. 8D). Conditioned medium

from GFP-eNOS+ MMECs and GFP-eNOS2MMECs were

added to podocytes in the presence or absence of TNF- a.

Western blotting demonstrated that TNF-a significantly induced

loss of synaptopodin in podocytes under conditioned medium from

GFP-eNOS2MMECs while conditioned medium from GFP-

eNOS+ MMECs protected podocytes from TNF-a-induced loss

of synaptopodin (Fig. 8E&F), suggesting that eNOS over

expression in MMECs may protect podocyte from inflammatory

insult.

Discussion

In the present study using two mouse strains C57BL/6, an ADR

resistant strain, and Balb/c, an ADR-susceptible strain, we have

demonstrated that one of the important factors in driving ADR-

induced nephropathy is the level of expression of eNOS. eNOS

deficient C57BL/6 mice when treated with ADR developed overt

proteinuria, persistent glomerular endothelial cell and podocyte

injury, progressive glomerulosclerosis, tubulointerstitial fibrosis

and inflammation. These results suggest that endothelial dysfunc-

tion may play a critical role in the development and progression of

chronic kidney disease. We also demonstrated that glomerular

endothelial cell injury precedes that of podocytes after ADR

treatment in both ADR-resistant and ADR-susceptible strains.

Using a reciprocal approach we demonstrated that conditioned

medium from MMECs over expressing eNOS protected podo-

cytes from TNF-a-induced injury, suggesting that glomerular

endothelial cells may also play a protective role in the pathogenesis

of chronic kidney disease.

Adriamycin, a putative podocyte toxin [37], induces rapid

production of reactive oxygen species and advanced glycation end-

products (AGEs) and upregulation of Receptor for AGEs (RAGE)

[38]. Guo et al [38] demonstrated that RAGE-deficient mice were

protected from ADR-induced podocyte injury, albuminuria and

glomerulosclerosis, suggesting that ADR-induced nephropathy is

initiated at least partially through RAGE. However, they did not

show whether ADR also induced glomerular endothelial cell injury

as RAGE is expressed in both podocytes [39] and glomerular

endothelial cells [40] though at low levels. Pathological insults,

such as ADR treatment [34] and diabetes [40] can significantly

increase RAGE expression in both podocytes and glomerular

endothelial cells. The interaction of AGEs and RAGE can

significantly reduce eNOS mRNA and protein expression in

human umbilical vein cords endothelial cells [41]. The present

study demonstrated that eNOS deficiency makes C57BL/6 mice,

a strain resistant to ADR, susceptible to ADR-induced nephrop-

athy. In Balb/c mice, a susceptible strain, the reduction of eNOS

and glomerular endothelial dysfunction appeared as early as

24 hours after ADR treatment, suggesting that both podocyte and

glomerular endothelial cell injury contributes to the development

and progression of glomerulopathy.

In this study we used a low dose of ADR (10.5 mg/kg). Using a

high dose of ADR (25 mg/kg) in C57BL/6 mice Jeansson et al

[42] demonstrated a 80% reduction in the thickness of the

glomerular endothelial surface layer and significant loss of charge

density and size selectivity of the glomerular barrier. They did not

show long-term pathological changes in ADR-treated kidneys.

Their study suggests that the glomerular endothelial cells may

contribute to the development and progression of proteinuric renal

diseases. Our study further demonstrated that glomerular endo-

thelial cell dysfunction preceded podocyte injury and that

glomerular endothelial cells underwent apoptosis earlier than

podocytes, further supporting the notion that besides podocytes,

glomerular endothelial cells also play an important role in

glomerulopathy.

Earlier studies [43,44] have shown that mice with eNOS

deficiency had significantly elevated blood pressures associated

with increase in renin activities. In the present study, ADR

treatment did not further alter the increased blood pressures

compared with NS treatment in eNOS-deficient mice, suggesting

that high blood pressure may contribute to the initiation of ADR-

induced kidney injury but ADR-induced kidney damage per se did

not have an impact on blood pressure.

Podocytes and glomerular endothelial cells cross-talk through

the secretion of cytokines and growth factors [45–48]. Sison et al

[46] elegantly demonstrated through the use of genetically

modified animals that vascular endothelial growth factor-A

(VEGF-A) secreted by podocytes binds to VEGFR2 on adjacent

endothelial cells to participate in kidney development and to

maintain endothelial cell survival and function. Davis et al [47]

demonstrated that podocyte-specific expression of angiopoietin-2

induced apoptosis of the glomerular endothelial cells and

proteinuria but the podocytes and the GBM remained intact.

Slater et al [48] demonstrated that co-culture of human glomer-

ular endothelial cell under laminar shear stress with podocytes

resulted in an increase in phosphorylation of Vasodilator-

stimulated phosphoprotein at S157 and S239 in podocytes and a

decrease in podocyte barrier resistance. These results suggest that

glomerular endothelial cells under stress may release mediators to

cross-talk with podocytes thus influencing podocyte behaviour. In

our study podocytes cultured with conditioned media from

MMECs over-expressing eNOS were resistant to TNF-a-induced

loss of synaptopodin, providing direct evidence that glomerular

endothelial cells may protect podocytes from inflammatory insult

through secreting mediators or change their production of a

variety of cytokines, proteoglycans and growth factors. What

mediators are released from endothelial cells and the exact

mechanisms on how endothelial cells influence podocytes requires

further investigation.

The other cell type that needs to be considered in the

glomerulus is the mesangial cell which expresses nitric oxide

(NO) receptors [49]. Mesangial cells require NO to survive and
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regulate their function [50,51]. In fact, eNOS deficiency also has

an impact on mesangial cells, as evidenced by mesangiolysis [6–8].

The interaction between glomerular endothelial cells and mesan-

gial cells warrants further investigation.

In conclusion, our study demonstrated that endothelial

dysfunction and damage precedes podocyte injury in ADR-

induced nephropathy. In addition, glomerular endothelial cells

may protect podocytes through secreting mediators. Understand-

ing the role of glomerular endothelial dysfunction in the

pathogenesis of glomerular injury and sclerosis will greatly aid in

the design of novel therapeutic approaches for slowing the

progressive of renal disease.
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