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Abstract: Osteoarthritis (OA) induced microenvironmental alterations are a common and unavoidable phenomenon that greatly 
exacerbate the pathologic process of OA. Imbalances in the synthesis and degradation of cartilage extracellular matrix (ECM) have 
been reported to be associated with an adverse microenvironment. Stem cell therapy is a promising treatment for OA, and 
mesenchymal stem cells (MSCs) are the main cell sources for this therapy. With multispectral differentiation and immunomodulation, 
MSCs can effectively regulate the microenvironment of articular cartilage, ameliorate inflammation, promote regeneration of damaged 
cartilage, and ultimately alleviate OA symptoms. However, the efficacy of MSCs in the treatment of OA is greatly influenced by 
articular cavity microenvironments. This article reviews the five microenvironments of OA articular cavity, including inflammatory 
microenvironment, senescence microenvironment, hypoxic microenvironment, high glucose microenvironment and high lipid envir-
onment, focus on the positive and negative effects of OA microenvironments on the fate of MSCs. In this regard, we emphasize the 
mechanisms of the current use of MSCs in OA treatment, as well as its limitations and challenges. 
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Introduction
Articular cartilage contains a variety of cell types, consisting of chondrocytes, synoviocytes, endothelial cells, mesench-
ymal stem cells (MSCs), and immune cells.1,2 These cellular components form a normal articular cavity microenviron-
ment and maintain articular cartilage homeostasis.2 In pathological states, unfavorable transformation undergoes in the 
articular microenvironment. The oxidative stress balance in chondrocytes and subchondral bone is destroyed, and the 
synthesis and degradation of extracellular matrix (ECM) are disrupted, leading to the occurrence of osteoarthritis (OA).3,4

OA is the leading cause of disability in the older people without radical treatments.5,6 In recent years, MSCs therapy is 
proved to be a promising therapy for OA treatment. MSCs can effectively regulate the microenvironment of articular cavity, 
ameliorate inflammation, promote cartilage regeneration and repair, and ultimately alleviate the symptoms of OA.7,8

MSCs are a class of pluripotent stem cells, which originate in the mesoderm and have the capacity for self-renewal 
and multilineage differentiation, including chondrogenic, osteogenic, and adipogenic potential.9 Besides, MSCs also have 
immunomodulatory, homing, and anti-inflammatory properties,10 which support their versatility as bone tissue therapeu-
tic agents.11 The efficacy, safety and reliability of MSCs therapy in OA treatment has been demonstrated in numerous 
clinical trials and preclinical studies.12–14 However, the efficacy of MSCs is affected by the microenvironment of the 
articular cavity, and hostile articular microenvironment can impair the bioactivity of MSCs.15 Therefore, altering the 
adverse articular cavity microenvironment may be an effective strategy for OA treatment.16
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The microenvironment in which stem cells live is also called as the stem cell niche. It maintains critical stem cell 
properties. This microenvironment contains a variety of elements from systemic and localized sources, including cellular 
and ECM components.17 Within the ecological niche, stem cells can interact with other cells as well as the ECM, 
releasing soluble signals that regulate stem cells function, thereby maintaining tissue homeostasis and promoting damage 
repair.18 In brief, the stem cell niche provides a special microenvironment for stem cells, enabling them to remain in an 
undifferentiated state. Factors released by cells in the stem cell niche direct the stem cells fate by activating relevant 
intracellular signaling pathways.19 However, the microenvironment of OA lesions deviates greatly from the stem cell 
niche under physiological conditions, exerting considerable impacts on the local therapeutic effects of stem cells. 
Therefore, research on such impact is also an important basis for us to improve stem cell treatment methods.

This paper reviews the properties and roles of MSCs and the relationship between MSCs and the microenvironment 
of OA, focusing on the positive and negative effects of the five microenvironments of the OA articular cavity 
(inflammatory microenvironment, senescence microenvironment, hypoxic microenvironment, high glucose microenvir-
onment and high lipid microenvironment) on MSCs fate. The mechanisms of MSCs as a treatment for OA and their 
interactions and challenges are highlighted (Figure 1).

Inflammatory Microenvironment
Accumulating evidence suggests that chronic low-level inflammation contributes to the accelerated the progression of 
OA.20–22 Such process involves activation of the innate immune response.23,24 In OA microenvironment, pro- 
inflammatory cytokines induce degradation of the ECM. The accumulated degraded products or cartilage fragments 
are considered to be damage-associated molecular patterns (DAMPs). DAMPs activate pattern-recognition receptors 
(PRRs), including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and receptor for advanced glycosylation end- 
products (RAGEs), the innate immune system is then activated.25,26 PRRs stimulate fibroblast-like synoviocytes (FLS), 
macrophages, and chondrocytes to produce and release various pro-inflammatory factors into synovial fluid. This results 
in loss of chondrocyte phenotype and ECM degradation. Ultimately, an inflammatory microenvironment conducive to 
cartilage disease is formed.27,28

Immune Cells in the Inflammatory Microenvironment
Under physiological conditions, macrophages maintain microenvironmental homeostasis by phagocytosis of pathogens 
and debris in senescent tissues, whereas in OA articular cavity, abnormally activated macrophages may exacerbate joint 

Figure 1 Regulation of MSCs fate by OA microenvironment. 
Notes: Inflammatory microenvironment, senescence microenvironment, hypoxic microenvironment, high glucose microenvironment, and high lipid microenvironment in 
OA articular cavity alter the fate of MSCs and affect the therapeutic effect of MSCs.
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destruction.29 Macrophages have two main polarization states: M1 macrophages and M2 macrophages.30 Macrophage 
polarization to phenotype-1 macrophages enhances the pathological process of OA by driving inflammation, whereas 
phenotype-2 macrophages are anti-inflammatory and facilitate rapid tissue repair.31,32 It has been found that mediators 
released by damaged chondrocytes provide a pro-inflammatory microenvironment to promote M1 polarization.33 M1 
macrophages can produce interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), matrix metalloproteinases (MMPs), and 
other inflammatory cytokines, which release matrix metalloproteinases to promote the degradation of cartilage matrix.34 

Neutrophils arrive at the injury site immediately after OA injury and form a local neutrophilic infiltration in the joint.35,36 

The progression of OA is also associated with the expansion of pathogenic T lymphocytes and MSCs have been shown to 
successfully prevent T cells proliferation.37,38

MSCs in the Inflammatory Microenvironment
MSCs inhibit the inflammatory microenvironment by decreasing pro-inflammatory factors and inhibiting B cells 
infiltration.39 Through influencing the interaction of B lymphocytes and T lymphocytes, MSCs influence the adaptive 
immune system.30 Specifically, MSCs can directly bind to the PD-9 receptor on B cells, thereby preventing B cells from 
activating into plasma cells.40 Moreover, MSCs can also upregulate PD-1 receptors on Tregs to enhance Tregs-mediated 
immunosuppression.41 The anti-inflammatory cytokine IL-10 secreted by MSCs can induce the transformation of 
macrophages from M1 to M2, mediating anti-inflammatory effects.42 MSCs exert immunosuppressive effects by 
converting pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages, thereby attenuating the macro-
phage-induced inflammatory microenvironment.43 MSCs or MSCs conditioned medium significantly reduced the number 
of infiltrating neutrophils and alleviated the progression of OA.44

Inflammatory Microenvironment and MSCs Fate
The inflammatory microenvironment in which MSCs reside affects their self-renewal, multilineage differentiation and 
proliferation capabilities.45 The Wnt/β-catenin pathway regulates the differentiation of MSCs.46 In inflammatory micro-
environment, mitochondrial autophagy is inhibited by activating Wnt/β-catenin pathway. Thus, damaged mitochondria 
accumulate continuously in MSCs and impair their differentiation.47 Inflammatory factors in the inflammatory micro-
environment activate the Wnt/β-catenin pathway, leading to decreased differentiation ability of MSCs.48 In inflammatory 
microenvironment, the cartilage protective effect of human umbilical cord mesenchymal stem cells (hucMSCs) was 
weakened, which impaired the repair effect of hucMSCs15 (Figure 2).

Although most of the evidence suggests the adverse effects of the inflammatory microenvironment on MSCs, the 
inflammatory microenvironment also enhances the anti-inflammatory effects of MSCs. MSCs exert their biological 
effects by releasing exosomes.49 For example, IL-1β-induced MSCs exosomes significantly enhanced their anti- 

Figure 2 The inflammatory microenvironment in OA. 
Notes: Chronic low-grade inflammation releases DAMPs, activates PRRs to release pro-inflammatory factors to impair the cartilage repair effect of MSCs.
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inflammatory activity in osteoarthritic cells SW982 compared to MSC-Exo.50 In a double-damage rabbit OA model, 
intraarticular injection of human adipose-derived stem cells (hADSCs) reduced joint effusion, which helped to attenuate 
the inflammatory microenvironment in the joint cavity and promote cartilage repair.51 In vitro inflammatory exposure 
enhances the immunomodulatory capacity of MSCs, and the resulting secretome can protect chondrocytes from 
catabolism.52 Hypoxia and inflammatory microenvironment can protect MSCs from damage in harsh microenvironments, 
thereby increasing the survival, homing, and paracrine capacities of MSCs in vitro and in vivo.53 Inflammation and lesion 
sites trigger enhanced MSC homing for tissue remodeling and repair.54,55

Overall, the different fates of MSC in the inflammatory microenvironment may be related to their status.

Senescence Microenvironment
The process of organismal senescence is accompanied by cellular senescence, which caused by a sustained DNA damage 
response, telomere dysfunction, stem cells exhaustion, and impaired intercellular communication.56 Senescent cells 
accumulate in osteoarthritic joints and release factors called senescence-associated secretory phenotype (SASP), which 
include the pro-inflammatory cytokine IL-6 and IL-8, monocyte chemotactic protein 1 (MCP1), and ECM proteases.57,58 

The transcriptional activation of a SASP program affects the microenvironment in which senescent cells reside and 
reinforces cellular senescence.59 SASP can accelerate cell senescence and deteriorate the neighboring cells function.56

Senescence Microenvironment and MSCs Fate
MSCs are critical cells for maintaining tissue homeostasis and organization during tissue and organ injury.60 The exhaustion of 
stem cells is the marker of aging.61 Senescent MSCs are able to function in the surrounding environment and regulate MSCs 
niche.62 The functional capacity and their number of MSCs declines with age.63,64 During aging, MSCs experience functional 
degeneration and gradual loss of stemness, with subsequent changes in the fate of MSCs and aberrant differentiation.65 

Accumulation of senescent MSCs in the articular cavity may aggravate the process of OA.66 Senescence OA-MSCs cause 
senescence, inflammation and fibrosis in cartilage.67 Studies have found that MSCs isolated from OA patients are influenced by 
aging-driven OA inflammation and nutritional microenvironment, resulting in diminished cartilage anabolism and enhanced 
cartilage catabolism.68 Recent studies have shown that injection of senescent MSCs in the joint cavity of young mice drives an 
OA-like phenotype.69 In the senescence microenvironment, MSCs lose stemness and inhibit chondrogenic differentiation, and the 
paracrine role of MSCs is also affected.69 Compared with MSCs from young donors, senescent donor-expanded MSCs exhibit 
increased expression of senescence markers, elevated levels of inflammation, decreased immunoregulatory function, and reduced 
proliferation and differentiation.70,71 Aging MSCs contribute to the establishment and maintenance of an inflammatory environ-
ment in stem cell niche. In senescent MSCs, SASP effect factor IL-1α and IL-8 induce early senescence of MSCs in a NF-κb 
dependent manner through paracrine.72 There is a correlation between MSCs aging and the age-related disease OA, which is 
accelerated by enhanced m6A levels and down-regulated expression of the demethylation enzyme ALKBH5 during MSCs 
aging.73

Hypoxic Microenvironment
Due to the lack of blood supply, articular cartilage is located in a hypoxic environment throughout life.74 Hypoxia- 
inducible factor (HIF) is a core factor in inducing hypoxia gene and regulating cellular oxygen environment, mediating 
chondrocyte adaptation to the hypoxic microenvironment.75 HIFs are heterodimers of heterogeneous proteins polymer-
ized from two distinct subunits, the oxygen-sensitively regulated α subunit (HIF-1α, HIF-2α & HIF-3α) and the 
structurally expressed HIF-1β subunit.76 The most important members of the HIFs protein family are HIF-1α and 
HIF-2α. In hypoxic environment, HIF-1α undergoes activation and enters the nucleus, where it binds to the subunit to 
form an active HIF-1α transcription factors, which are involved in autophagy and apoptosis, promotion of chondrocyte 
phenotype and maintenance of chondrocyte viability.77 Unlike HIF-1α, HIF-2α is mainly involved in promoting the 
expression of chondrocytes catabolic factors, up-regulates the expression of the apoptotic gene Fas, increasing chon-
drocyte apoptosis, and exacerbating inflammatory responses, leading to more severe articular cartilage destruction.78
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Hypoxic Microenvironment and MSCs Fate
In the past, it was thought that hypoxia is beneficial for MSC, numerous studies have shown that cultured under hypoxic 
conditions would exhibit enhanced MSCs proliferative potential and stemness.79–81 Since the oxygen concentration of tissue is 
less than 5%, cell culture of MSCs under hypoxic environment can mimic in vivo microenvironment and help to maintain the 
physiological processes of MSCs from differentiation, proliferation, and metabolic homeostasis.82 Hypoxia can induce 
upregulation of pluripotent markers of MSCs, enabling MSCs to maintain their function.83 Hypoxic microenvironment 
maintains the undifferentiated phenotype of MSCs.84 In addition, HIF acts as the regulatory molecule of the hypoxic 
microenvironment to control the differentiation and fate of MSCs.85 Isolation and amplification of bone marrow mesenchymal 
stem cells (BMSCs) under hypoxic environments can up-regulate the expression of chondrogenesis genes and enhance the 
chondrogenic differentiation of BMSCs.86 Different oxygen concentrations had different effects on adipose tissue-derived 
MSCs (ADSCs).87 In vitro, hypoxic preconditioning of MSCs can up-regulate the expression of MSCs chemokine receptors 
CXCR4, CXCR7 and CX3CR1, which contributes to the migration and tissue repair of MSCs.88

Despite the prevailing view that hypoxia is beneficial to stem cells, it can also adversely affect MSCs. Chronic 
hypoxia predisposes BMSCs from patients with cyanotic congenital heart disease (CCHD) to premature senescence, 
possibly due to dysbiosis of the intestinal flora, which induces the accumulation of D-galactose.89 It was shown that 
hypoxic microenvironment in osteonecrosis zone led to hypoxia-induced apoptosis in transplanted BMSCs. Under 
hypoxic condition, the expression of the pro-apoptotic gene Bax was increased, whereas down-regulation expression 
of apoptosis inhibitor Bcl-2, leading to apoptosis in more than 70% of BMSCs.90 Notably, severe hypoxia inhibits the 
adhesion and mobility of BMSCs, which limits their use.91 The hypoxic microenvironment also leads to increased 
cellular oxidative stress, leading to senescence of MSCs and affecting MSCs differentiation.92,93

High Glucose Microenvironment
Obesity and the related disease have been shown to be risk factors for developing OA.94 Diabetes mellitus (DM) is an 
obesity-related disease, which is characterized by hyperglycemia, which chronically affects the physiological function of 
the cells involved and leads to their damage.95 High blood glucose levels in patients are involved in a variety of complex 
pathologic events, including a rise in ROS, cellular stress, and inflammatory cytokines.96,97 Hyperglycemia also induces 
the production and accumulation of advanced glycosylation end products (AGEs), which adversely affects and irrever-
sibly alters the microenvironment in which the cells live.

High Glucose Microenvironment and MSCs Fate
MSC-based cell therapy treatments are promising for treating diabetes, but the microenvironmental stress in patients with 
hyperglycemia can significantly inhibit the survival time of MSCs in human bodies, which ultimately affects their 
therapeutic efficacy. In vitro, the high glycemic microenvironment also affected the culture efficiency of MSCs.

In diabetic patients, the number of circulating MSCs is reduced, causing an insufficient number of MSCs migrate to the injury 
site, and the regeneration and repair of target tissue is impaired.98 The diabetic microenvironment impaired the therapeutic effect 
of MSCs infusion on bone reduction, which is attributed to the fact that the hyperglycemic condition inhibited MSC-T-cell 
interactions through the AMPK pathway and reduced the anti-inflammatory capacity of MSCs.99 The high glucose microenvir-
onment down-regulated the AKT-Sirt1-TWIST pathway and inhibited TWIST exacerbated high glucose-induced apoptosis in 
MSCs but promoted osteogenic differentiation of MSCs.100 A recent study showed that hAD-MSCs cultured in high glucose had 
reduced immunosuppressive capacity, which was associated with significant reductions in the levels of IDO, IL-10, and 
complement factor levels, as well as a significant increase in immune proteasome activity.95 Exposure of AGEs to the diabetic 
environment leads to stem cell dysfunction. The increase of AGEs inhibits the proliferation of MSCs, induces apoptosis of MSCs 
and prevents the differentiation of MSCs to adipose, cartilage, and bone.101 AGE-BSA induces chemokine/cytokine production 
through activation of ROS-p38-mediated pathways. These chemokines/cytokines have inhibiting effects on the growth and 
migration of MSCs.102 In most cases, the articular cavity microenvironments are crosstalk with each other. High glucose induces 
BMSCs to produce ROS through activating NADPH oxidase. ROS activates autophagy by upregulating ATGs expression and 
induces BMSCs senescence.103 High glucose and hypoxia upregulate HIF-1α expression, which promotes inflammation and 
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oxidative stress.104 In stable state, MSCs depend on glycolysis, have low ROS content, and high ROS levels can damage proteins 
and DNA at the telomere level, inducing replicative aging, also known as stress-induced premature aging.105 These results suggest 
that the articular cavity microenvironments are much more complex than previously thought.

High Lipid Microenvironment
Excessive lipid accumulation is a hallmark of obesity-related pathologies.106 Abnormally high lipid levels promote the 
release of inflammatory mediators and induce macrophage polarization toward the inflammatory M1 phenotype, causing 
an inflammatory response in the body.107 Previous studies have suggested that obesity promotes excessive lipid 
deposition in non-adipose tissues, which leads to lipotoxicity and tissue dysfunction.108 Recent evidence suggests that 
articular cartilage accumulates lipids during the aging process, and lipid accumulation in cartilage was found to be 
positively correlated with the severity of knee OA (kOA).109

High Lipid Microenvironment and MSCs Fate
Abnormal lipid levels in vivo interfere with MSCs function, affect MSCs homing, and inhibit tissue regeneration.110 

Multispectral differentiation capacity of MSCs is key to their use as clinical regenerative therapy for kOA. Studies have 
shown an inverse correlation between adipogenesis and osteogenesis in MSCs. The presence of fat may increase 
adipocyte proliferation, differentiation, and fat accumulation while inhibiting osteoblast differentiation and bone 
formation.111 The lipid-lowering agent lovastatin inhibits adipogenesis and stimulates osteogenic differentiation by 
inhibiting peroxisome proliferator-activated receptor γ2 (PPARγ2) and increasing Runx2 expression in BMSCs.112

Although lipid accumulation affects multiple functions of stem cells, exosomes secreted by MSCs also play a role in 
inhibiting lipid accumulation. HucMSCs attenuate injury associated with lipid deposition, collagen deposition, or inflam-
mation in vivo and in vitro.113 HucMSCs-derived exosomes ameliorate inflammation, abnormal lipid accumulation, and 
mitochondrial oxidative stress in non-alcoholic steatohepatitis (NASH) mice.114 Notably, MSCs survival, proliferation, and 
terminal differentiation are associated with ROS regulation, and ROS affects MSCs adipogenesis or osteogenic differentia-
tion by modulating the MSCs differentiation signaling cascade response.115 Obesity is an important cause of the formation 
of a high glucose and high lipid microenvironment, and the accumulation of excess lipids in diabetic bone tissue causes 
changes in the bone marrow microenvironment, which reprograms bone metabolism.116 Moreover, intermittent hypoxia is 
an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD).

Conclusion and Discussion
This paper reviews five kinds of articular cavity microenvironments that affect the fate of MSCs. MSCs play 
a therapeutic role in damaged articular cartilage, including ameliorate inflammation, chondrogenic differentiation, 
proliferation, migration and tissue repair. As shown in Table 1, the microenvironment of the articular cavity largely 
determines the fate of MSCs. A healthy articular cavity microenvironment can regulate the proliferation and differentia-
tion of MSCs, enabling MSCs to function normally in immunomodulation and tissue repair. In a diseased articular cavity 
microenvironment, the function of MSCs is compromised and instead aggravates the process of OA.117

In fact, the articular cavity microenvironments are crosstalk with each other, and the mechanism of determining the 
fate of MSCs by the microenvironment is very complex, which is need more research to change the articular cavity 
microenvironment to make it more suitable for the survival of MSCs. For the time being, organoids may be useful in 
helping to study the effects of the microenvironment on MSCs. Organoids are self-assembled 3D structures in vitro, 
mainly generated from primitive tissues or MSCs, that can be used to mimic the complex microenvironments corre-
sponding to organs.118 The articular cavity microenvironments of different OA patients vary to a large extent, and the 
development of 3D organoids can help personalize treatment for different patients and achieve precision medicine.118 As 
a clinical disease, OA’s joint microenvironment is far more complex than we imagined. According to individual 
differences in patients’ microenvironment, treatment methods also need to be personalized. By detecting the joint fluid 
of OA patients and analyzing what kind of microenvironment the joint cavity is in, it is helpful to realize the symptomatic 
treatment of OA for different joint cavity microenvironments in the future.
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