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1  |  INTRODUC TION

Fungi constitute the second largest group of all organisms based on 
global richness estimates with an estimated 3.8–6 million predicted 

species, playing fundamental ecological roles as decomposers of or-
ganic matter, pathogens, and symbionts (Baldrian et al., 2021; Stajich 
et al.,  2009). Fungal identification is essential for communication 
purposes and to gain biological insights into the causes, nature, and 

Received: 11 January 2022 | Revised: 29 April 2022 | Accepted: 23 May 2022

DOI: 10.1111/1755-0998.13651  

R E S O U R C E  A R T I C L E

Dnabarcoder: An open-source software package for analysing 
and predicting DNA sequence similarity cutoffs for fungal 
sequence identification

Duong Vu1  |   R. Henrik Nilsson2  |   Gerard J. M. Verkley1

1Westerdijk Fungal Biodiversity Institute, 
Utrecht, The Netherlands
2Department of Biological & 
Environmental Sciences, Gothenburg 
Global Biodiversity Centre, University of 
Gothenburg, Göteborg, Sweden

Correspondence
Duong Vu, Westerdijk Fungal Biodiversity 
Institute, Uppsalalaan 8, 3584CT Utrecht, 
The Netherlands.
Email: d.vu@wi.knaw.nl

Handling Editor: Kin-Ming (Clement) Tsui

Abstract
The accuracy and precision of fungal molecular identification and classification are 
challenging, particularly in environmental metabarcoding approaches as these often 
trade accuracy for efficiency given the large data volumes at hand. In most ecological 
studies, only a single similarity cutoff value is used for sequence identification. This is 
not sufficient since the most commonly used DNA markers are known to vary widely 
in terms of inter- and intraspecific variability. We address this problem by presenting 
a new tool, dnabarcoder, to predict local similarity cutoffs and measure the resolving 
powers of a biomarker for sequence identification for different clades of fungi. It was 
shown that the predicted similarity cutoffs varied significantly between the clades 
of a recently released ITS DNA barcode data set from the CBS culture collection of 
the Westerdijk Fungal Biodiversity Institute. When classifying a large public fungal 
ITS data set—the UNITE database—against the barcode data set, the local similarity 
cutoffs assigned fewer sequences than the traditional cutoffs used in metabarcoding 
studies. However, the obtained accuracy and precision were significantly improved. 
Our study showed that it might be better to extract the ITS region from the ITS bar-
codes to optimize taxonomic assignment accuracy. Furthermore, 15.3, 25.6, and 
26.3% of the fungal species of the barcode data set were indistinguishable by full-
length ITS, ITS1, and ITS2, respectively. Except for these indistinguishable species, 
the resolving powers of full-length ITS, ITS1, and ITS2 sequences were similar at the 
species level. Nevertheless, the complete ITS region had a better resolving power at 
higher taxonomic levels.
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consequences of environmentally induced changes such as climate 
changes, spatially and temporarily, for maintaining and improving 
our health and the natural environment.

The accuracy and precision of fungal identification are chal-
lenging as fungi have simple body plans with often morphologi-
cally and ecologically obscure or inconspicuous structures (Lücking 
et al., 2020, 2021). In addition, continuous progress in fungal tax-
onomy results in a constant stream of reclassifications and new 
names, which complicates informed decisions on fungal taxonomic 
delineation. To date, less than a few percent of the estimated num-
ber of extant fungal species have been described. Environmental 
metabarcoding via high-throughput sequencing has added a new 
dimension to assessing fungal biodiversity (Taberlet et al.,  2012). 
The metabarcoding approach targets specific genetic markers, bar-
codes, to provide a taxonomic profile of the environmental commu-
nity at hand. The nuclear ribosomal internal transcribed spacer (ITS) 
region was chosen as a universal DNA barcode for fungi (Schoch 
et al.,  2012). Sequences in metabarcoding are typically handled 
in one of two main ways. In the operational taxonomic unit (OTU; 
Blaxter et al., 2005) approach, sequences are grouped into approx-
imate species-level units using sequence similarity, often at 97%–
98.5%. A representative sequence of each OTU is then used for 
taxonomic identification. In the amplicon sequence variant (ASV; 
Callahan et al., 2017) approach, all unique sequences are retained 
and are subjected to taxonomic identification. The present study 
targets the taxonomic identification step and thus pertains to OTU 
and ASV based approaches alike. Taxonomic identification is typ-
ically accomplished by sequence similarity-based searches against 
a reference corpus. These searches usually make use of threshold 
values, so that a sequence that is at least 0.97 (97%) similar to a ref-
erence sequence over its full length adopts the species name of the 
reference sequence. In a study of global soils (Tedersoo et al., 2014), 
the cutoffs of 0.98, 0.9, 0.85, 0.8, and 0.75 were tentatively used for 
species, genus, family, order, and class identification, respectively. 
However, different BLAST algorithms (Altschul et al., 1997) and dif-
ferent barcode data sets can yield different similarity cutoffs.

As more and more fungal DNA barcodes were being generated, it 
gradually became clear that the use of a single, static threshold value 
taxonomic identification was problematic. Threshold values that 

worked well in some parts of the fungal tree of life over- or under-
estimated species boundaries in other parts of the tree (Abarenkov 
et al., 2016; Vu et al., 2016, 2019). In Vu et al. (2014), we proposed 
a method to predict similarity cutoffs for sequence identification 
which was applied to two barcode data sets of yeast and filamen-
tous fungal strains preserved in the CBS collection at the Westerdijk 
Fungal Biodiversity Institute. Except for species-level predictions 
having a confidence measure of ~0.8, at more inclusive (higher) tax-
onomic levels, the prediction confidence was lower. Vu et al. (2014) 
thereby lent further weight to the claims of Nilsson et al. (2008) and 
others that using a single sequence similarity in environmental se-
quencing and mycology at large may serve to mask and erode sig-
nificant taxonomic resolution and mycological explanatory power. 
Different clades will require different similarity cutoffs if resolution 
and explanatory power are to be maximized.

In this paper, we present dnabarcoder, a tool to help predict a 
global similarity cutoff for taxonomic identification of sequences 
in a barcode data set as well as local similarity cutoffs for differ-
ent clades of the data set. It also contains other components for the 
analysis, visualization, and classification of barcode data to decide 
the best similarity cutoffs for fungal sequence identification. For 
a similarity cutoff in a clade, a confidence measure is computed to 
evaluate the resolving power of the barcode in that clade. For the 
evaluation, dnabarcoder was used to predict similarity cutoffs of 
the filamentous fungal CBS ITS barcode data set of Vu et al. (2019) 
and to classify the general FASTA release of the UNITE database 
(Abarenkov et al.,  2020; Nilsson et al.,  2019). These comparisons 
were done against the barcode data set with the predicted similar-
ity cutoffs and against the traditional cutoffs used in metabarcoding 
studies (Tedersoo et al., 2014). We also studied and compared the 
similarity cutoffs and resolving powers of the complete ITS region, 
the ITS1 spacer, the 5.8S gene, and the ITS2 spacer. This would con-
tribute significantly to the metabarcoding community as ITS2 is the 
main biomarker for sequence identification of the environmental 
samples. As for a real-life application of dnabarcoder, we reclassified 
the global soil metabarcoding data set (Tedersoo et al., 2014) against 
the CBS ITS barcodes with the predicted ITS2 similarity cutoffs to 
estimate taxon diversity and community structure of the global soil 
samples based on a curated culture collection.

F I G U R E  1  Flow chart of dnabarcoder. The rectangles in blue and green represent the components of dnabarcoder while the 
parallelograms in orange represent the input and output of those components. The components in blue analyse and predict local similarity 
cutoffs for a reference data set. The components in green classify a new data set against the reference data set with the predicted similarity 
cutoffs and verify the results
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2  |  MATERIAL S AND METHODS

Dnabarcoder consists of five components namely analysis, visu-
alization, prediction, classification, and verification (Figure  1). The 
components analysis, visualization, and prediction are designed to 
analyse and predict similarity cutoffs for a reference data set for se-
quence identification. This reference data set should come in the 
form of a FASTA file (Pearson & Lipman, 1988) and should contain 
barcode sequences from as many relevant species as possible. An 
auxiliary file must contain their full taxonomic classification in a tab-
delimited way (kingdom, phylum, class, and so on). The classification 
component is used to classify unidentified sequences (DNA bar-
codes, ASVs, or OTUs) provided in a FASTA file against the reference 
data set with the predicted similarity cutoffs, while the verification 
component verifies the classification results. These components are 
described below. For every function in a component of dnabarcoder, 
a figure is generated automatically to aid in the interpretation of the 
results.

2.1  |  Analysis and visualization

The analysis component of dnabarcoder seeks to examine the 
length, similarity variation, distribution, and taxonomic classifica-
tion of the sequences of the data set at different taxonomic levels. 
Sequences are compared using BLAST (Altschul et al., 1997). We 
used BLAST percent identity as a similarity measure because it 
is more intuitive for the researchers in the DNA barcoding and 
metabarcoding community to evaluate how similar two DNA se-
quences are. In addition, it was shown in Vu et al. (2014) that using 
Blast percent identity could achieve even a higher confidence 
measure than using BLAST E-value when clustering a data set 
of amidohydrolases protein sequences. A similarity score of two 
DNA sequences is calculated as the percentage of matches s if the 
BLAST alignment length l is greater than a given minimum length 
m. Otherwise, it is recomputed as s*l/m. This is to avoid the prob-
lem that a sequence comes out as similar to every other sequence 
due to its short length. Analysing sequence lengths is important to 
decide the minimum BLAST alignment length m for computing the 
similarity score of two DNA sequences. The similarity variation is 
computed as the minimum and median similarity scores for groups 
of sequences of the same taxon name at all taxonomic levels (spe-
cies, genus, family, order, class, and phylum). The similarity varia-
tion and distribution of the sequences based on taxa are visualized 
using Matplotlib (https://matpl​otlib.org/) while the taxonomic 
classification is visualized using Krona (Ondov et al., 2011).

The visualization component of dnabarcoder seeks to visualize 
2D/3D “embeddings” of the sequences based on DNA sequence 
comparisons using Matplotlib. The sequences can also be visual-
ized in an interactive web browser using DiVE (Vu et al., 2018) that 
allows the users to colour the data points based on taxa, zoom in 
on a group of interest, or filter the data points using the advanced 

search functionality. Sequences' coordinates in the sequence space 
are computed based on similarity scores using LargeVis (Tang 
et al., 2016). Together with the similarity variation, distribution, and 
taxonomic classification of the sequences, visualization helps the 
user to examine whether the data set is imbalanced and evaluate the 
predicted similarity cutoffs and classification results.

2.2  |  Prediction

The prediction component of dnabarcoder was designed to predict 
global and local similarity cutoffs for sequence identification based 
on taxonomic classification ranks. The method used for predicting a 
global similarity cutoff for a data set was proposed in Vu et al. (2014, 
2018) and applied to predict a similarity cutoff for yeasts and fila-
mentous fungi in Vu et al. (2016, 2019). At all taxonomic levels in turn, 
sequences are clustered with different thresholds. For a threshold, a 
confidence measure (the F-measure, Paccanaro et al., 2006) is com-
puted to evaluate the clustering result when comparing it with the 
clustering based on the taxon names of the sequences. This measure 
has been widely used in clustering approaches and its formula is de-
scribed as follows:

Given a set of sequences and taxonomic level, let T  =  (T1, …, 
Tm) be the groups of the sequences based on taxon names, and let 
G  =  (G1, …, Gk) be the groups of the sequences obtained by clus-
tering orthologous sequences. The confidence—F-measure function 
F(G,T)—is defined as follows:

where n is the number of the sequences, nGi
is the number of se-

quences in Gi, nTjis the number of sequences in Tj, and n(Gi ,Tj) is the 
number of sequences in Gi ∩ Tj for 1 ≤ i ≤ k and 1 ≤ j ≤ m.

The value of F (G,T) runs between 0 and 1. The higher the value of 
the confidence (F-measure), the closer is the grouping of sequences 
by sequence similarity to the grouping of the sequences based on 
taxon names. The global similarity cutoff is the threshold that has 
the highest confidence for sequence identification. For dnabarcoder, 
the connected components algorithm is used for clustering as it was 
shown to be accurate in Vu et al. (2014, 2018).

In the ideal situation, groups of sequences with the same taxon 
name are equally distant from each other (Figure  2a), and there-
fore, the predicted similarity cutoff has a high confidence measure 
that is close to 1. In reality, the distribution of fungal barcode se-
quences is not equal. In some clades (e.g., parts of Fusarium), the 
groups are closer to each other, while in the other clades (e.g., much 
of Agaricales), the groups are more distant (Figure 2b). Specifically, 
in some clades, the sequences are distributed widely (like the red 
ones in Figure 2b). It was shown in Vu et al. (2016, 2019) that except 
for the predicted similarity cutoff at the species level having a con-
fidence measure of ~0.8, at higher taxonomic levels, the prediction 

F(G, T) =
1

n

m
∑

j=1

nTj × max
1≤ i≤ k

(

2n(Gi ,Tj)

nGi
+ nTj.

)

https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/


2796  |    VU et al.

confidence was lower—at about ~0.6—which was explained by the 
currently imbalanced fungal taxonomic classification.

To overcome this problem, this study proposes the use of local 
similarity cutoffs for different clades of the data set instead of 
using only one global similarity cutoff for sequence identification. 
Suppose that we want to predict a similarity cutoff s to assign a se-
quence to a taxon name T at the taxonomic level l in Figure 2b. Let 
T1, T2, and T3 be the higher taxa of T in increasing order, and clades 
T1, T2, and T3 contain the sequences having the same taxon name 
T1, T2, and T3, respectively. Let s1, s2, and s3 be the local similarity 
cutoffs predicted for sequence identification at the taxonomic level 
l for clades T1, T2, and T3 with a confidence measure of f1, f2, and 
f3, respectively. Then the best local similarity cutoff s is the similarity 
cutoff among s1, s2, and s3 that has the highest confidence measure. 
The reason to consider also clades T2 and T3 into the prediction is 
to have an optimal solution for clades with some groups that cannot 
be identified by the current barcodes, or groups that are in need of 
reclassification (such as the red group in Figure 2b).

Formally, let T be a taxon name at a taxonomic level l, and let T1, 
…, Tm be the higher taxa of T in increasing taxonomic order. Let s1, …, 
sm be the local similarity cutoffs predicted for sequence identifica-
tion at level l of the clades T1, …, Tm with confidence measures of f1, 
…, fm, respectively. The best similarity cutoff for sequence identifi-
cation at level l of clade Ti is sk with i ≤ k ≤ m where fk = max(fi, …, fm). 
The best similarity cutoff to assign a sequence to the taxon name T 
is the best similarity cutoff predicted for sequence identification at 
level l of clade T1.

The users of dnabarcoder can select a taxonomic level to predict 
similarity cutoffs for sequence identification at that level. If higher 
taxonomic levels are not given, the global cutoff for the whole data 
set is predicted. Otherwise, the best similarity cutoffs predicted for 

all the clades of the data set of the given higher taxonomic levels are 
predicted. To arrive at an optimal prediction, only clades with num-
bers of sequences and groups greater than n and N, with n = 30 and 
N = 10 given as defaults, are selected. The output of this prediction 
is given as a JSON-formatted file (https://www.json.org/) which can 
be used as input for the classification of the sequences described 
in the next section. These similarity cutoffs can also be used for 
verifying the output of other classification tools (Vu et al.,  2020; 
Wang et al., 2007) to, for example, highlight and remove incorrect 
classifications.

2.3  |  Classification and verification

The last component of dnabarcoder was designed to classify a data 
set against a reference data set. Sequences are compared with the 
reference sequences to find their best match using BLAST. A se-
quence is classified to the taxon name of its best match if the ob-
tained similarity score to the best match is greater than or equal to 
the similarity cutoff predicted for that taxon name. The similarity 
cutoffs can be predicted by dnabarcoder or provided by the users. 
If other classification tools (Vu et al., 2020; Wang et al., 2007) are 
employed, the similarity cutoffs are used to verify the classification 
results to remove incorrect classifications. The accuracy and pre-
cision of classification are computed using Scikit-learn (Pedregosa 
et al., 2011).

To further verify the classification results, users can compute 
multiple sequence alignments and infer phylogenetic trees of the 
sequences with the reference sequences of the predicted taxon 
names. A sequence is considered verified if there are at least two 
reference sequences having the same predicted taxon name, and the 

F I G U R E  2  Global similarity cutoffs (a) versus local similarity cutoffs (b). Every small filled (coloured) circle represents a sequence. 
Sequences with the same taxon name are in the same colour at a taxonomic level l. Figure 2a illustrates the ideal situation that when the 
groups of sequences of the same taxon name are distant from each other, then this distance (represented by the double arrow) can be 
predicted with a high confidence measure. Figure 2b Illustrates the distribution of fungal sequences in a more authentic scenario when the 
distribution of the sequences is not equal. The groups in dark blue and dark brown are very close to each other (bottom right) and would 
require a high similarity cutoff while the remaining group would require a lower similarity cutoff. T1, T2, and T3 are taxa at the l + 1, l + 2, and 
l + 3 levels, respectively. The shaded ellipses represent clades of sequences with the same taxon name T1, T2, and T3. The similarity cutoff 
predicted to separate the groups in clade T1 would have a low confidence measure as the sequences in red are distributed widely. The best 
similarity cutoff to separate the groups in the clade T1 is the similarity cutoff having the highest confidence measure among the similarity 
cutoffs predicted for T1, T2, and T3

https://www.json.org/
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branch length of the sequence in the associated phylogenetic tree 
is shorter than or equal to the maximum branch length of the ref-
erence sequences. Clustal-Omega (Sievers et al., 2011) and IQ-tree 
(Nguyen et al., 2015) are used to compute multiple sequence align-
ments and infer phylogenetic trees, respectively. The phylogenetic 
analysis is intended as an internal verification step and should not be 
used to infer phylogenetic trees for publication.

2.4  |  Materials

2.4.1  |  The CBSITS barcode data set

We used the CBSITS data set (Vu et al.,  2019) representing 40% 
of the cultured filamentous fungi of the CBS collection preserved 
at the WI as a reference data set for the evaluation of dnabar-
coder. The whole ITS sequences were generated in a DNA barcod-
ing project (Vu et al., 2012) using the forward and backward ITS5 
and ITS4 primers, containing partial 18S, complete ITS1-5.8S-ITS2, 
and partial LSU sequences (Stielow et al., 2015). They were manu-
ally checked and curated by the experts at the WI and deposited 
to GenBank under the BioProject number PRJNA422523 (https://
www.ncbi.nlm.nih.gov/biopr​oject/​PRJNA​422523). The taxo-
nomic classifications of the CBSITS sequences were downloaded 
from the WI-CBS collection and MycoBank (Robert et al.,  2013) 
in October 2021 and are given in the Supporting Information file 
MBclassification.xlsx. To study the similarity cutoffs and resolv-
ing powers of different ITS regions, complete ITS, ITS1, ITS2, and 
5.8S sequences were extracted from the CBSITS data set using ITSx 
version 1.1.1 (http://micro​biolo​gy.se/softw​are/itsx). The obtained 
data sets were labelled as CBSITScomplete, CBSITS1, CBSITS2, and 
CBS5.8S, respectively.

2.4.2  |  The UNITE data set

The UNITE data set consisting of sequences of the UNITE general 
FASTA release (Abarenkov et al.,  2020) was classified against the 
CBSITS data set for the evaluation of dnabarcoder. To obtain a fair 
evaluation, sequences of the CBSITS data set that were also pre-
sent in the UNITE data set were removed from the latter, and all 
sequences were updated with the current names from MycoBank to 
reduce the impact of synonyms.

2.4.3  |  The global soil data set

As for an application of dnabarcoder, we reclassified the global soil 
data set of Tedersoo et al.  (2014) consisting of 50,589 of nonsin-
gleton OTUs against the CBSITS2 data set with the predicted ITS2 
similarity cutoffs to study the taxon diversity and community of 
the global soil samples based on a culture collection. The global 
soil samples were collected from 365 sites of 11 biomes Arctic tun-
dra (AT), Grassland and shrubland (GS), Dry tropical forests (DTF), 
Mediterranean (MED), Boreal forests (BF), Tropical montane for-
ests (TMF), Savannas (SAV), Southern temperate forests (STF), 
Temperate coniferous forests (TCF), Temperate deciduous forests 
(TDF), and Moist tropical forests (MTF) across the world. The se-
quences were obtained as OTU representatives with a threshold of 
0.98, and classified to the genus, family, order, and class levels based 
on the reference sequences of the UNITE + INSDC data set avail-
able at the time of the study with given thresholds of 0.9, 0.85, 0.8, 
and 0.75, respectively (Tedersoo et al., 2014). To optimize the accu-
racy of taxonomic identification, we extracted only the ITS2 regions 
from the global soil data set using ITSx. Out of the initial 50,589 
sequences, 42,626 remained.

TA B L E  1  Sequence and group numbers at each taxonomic level (species, genus, family, order, and class) of the CBS ITS, CBSITScomplete, 
CBSITS1, CBSITS2, CBS5.8S, UNITE, and global soil data sets

Data set Seq. no
Species 
level Genus level

Family 
level Order level Class level

Phylum 
level

CBSITS 11,715 Seq. no. 11,714 11,694 11,037 11,278 11,496 11,676

Group no. 5846 1658 412 134 36 10

CBSITS complete 7965 Seq. no. 7965 7908 7432 7656 7785 7895

Group no. 4294 1334 353 115 31 8

CBSITS1 11,680 Seq. no. 11,680 11,615 10,899 11,195 11,405 11,596

Group no. 6069 1644 399 130 36 10

CBSITS2 11,674 Seq. no. 11,674 11,609 10,897 11,190 11,400 11,590

Group no. 6064 1639 398 130 36 10

CBS5.8S 11,643 Seq. no. 11,643 11,578 10,866 11,159 11,369 11,559

Group no. 6053 1638 398 130 36 10

UNITE 47,214 Seq. no 26,500 36,505 40,746 43,755 44,592 45,358

Group no. 19,067 3743 829 292 82 20

Global soil 42,626 Seq. no 1864 14,258 21,687 33,006 39,375 39,376

Group no. 1397 984 293 150 72 19

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA422523
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA422523
http://www.mycobank.org/
http://microbiology.se/software/itsx
https://doi.org/10.15156/BIO/786368
https://doi.org/10.15156/BIO/786368
http://www.mycobank.org/
http://microbiology.se/software/itsx
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Table 1 shows the sequence and group numbers of all data sets 
at each taxonomic level (species, genus, family, order, and class).

2.5  |  Implementation

Dnabarcoder was implemented in Python (version 3.7) using Blastn 
(version 2.6.0). Matplotlib was used to interpret the results of all 
functions in dnabarcoder. For taxonomic classification, Krona was 
downloaded from https://github.com/marbl/​Krona/​wiki. For the 
visualization of sequences based on similarity scores, LargeVis 
(https://github.com/rugan​tio/Large​Vis-python3) and DiVE (https://
nlesc.github.io/DiVE) were installed. We used the scikit-learn li-
brary (https://sciki​t-learn.org/) to compute the accuracy and preci-
sion of the classification. For verification, Clustal-Omega v. 1.2.4 
and IQ-tree v. 1.6.1 were employed. The source code and manual 
of dnabarcoder are available at https://github.com/vuthu​yduon​g/
dnaba​rcoder. Dnabarcoder is licensed under the Apache Licence 
version 2.0.

3  |  RESULTS

We evaluated dnabarcoder through (1) analysing and predicting 
global and local similarity cutoffs for the reference CBSITS data set 
(Vu et al., 2019); (2) classifying the UNITE data set against the CBSITS 
data set with the predicted cutoffs and the traditional cutoffs used 
in metabarcoding studies; (3) comparing the obtained accuracies and 
precisions for the evaluation; (4) computing and comparing similarity 
cutoffs and resolving powers of full-length ITS, ITS1, and ITS2; and 
(5) as an application of dnabarcoder, we reclassified the global soil 
data set against the CBSITS2 data set using the predicted ITS2 simi-
larity cutoffs to estimate taxon diversity and community structure of 
the global soil samples.

3.1  |  Predicting similarity cutoffs for the 
filamentous fungal CBS ITS barcodes

3.1.1  |  Analysis and visualization of the CBS ITS 
data set

The taxonomic classification of the CBSITS data set figure is given 
in the supplementary file CBSITS.krona.html. The distribution of the 
sequences at all taxonomic levels are given in Figure S1, showing 
that the taxonomic classification of the CBSITS data set was imbal-
anced as the five largest groups at the genus, family, order, and class 
levels contained more than 17, 30, 49, and 89% of the sequences, 
respectively.

The CBSITS sequence lengths varied from 300–5600 bases. 
However, a majority of the ITS barcodes had lengths in the 400–800 
base interval (Figure S2). In particular, 99.5% of the barcodes had 
a sequence length greater than 400 bases. Thus, when comparing 

the sequences of the data set with BLAST, the minimum alignment 
length was set to 400.

Figure 3 shows that the minimum and median similarity scores 
within the groups of the CBSITS data set at all taxonomic levels 
varied significantly, ranging from 0.4–1 at the species level and 
from 0–1 at the higher taxonomic levels. However, the median val-
ues of these scores were high. At the species and genus levels, they 
were 1. At the family, order, and class levels, they were (0.8936 
and 0.9496), (0.8332 and 0.9212), and (0.3727 and 0.8343), 
respectively.

The visualization of the sequences based on similarity scores is 
given in Figure 4 in which sequences of the same taxonomic class 
have the same colour. Although the taxonomic classes were distinct 
from each other in the figure, some classes were closer to each other 
than the rest. These results suggest that it is unrealistic to expect 
any single cutoff threshold value to work equally well across the full 
fungal kingdom

3.1.2  |  Prediction of global and local similarity 
cutoffs for the CBSITS data set

Figure 5 shows the global similarity cutoffs for sequence identifi-
cation of the CBSITS barcode data set at all taxonomic levels. The 
sequences were clustered at thresholds ranging from 0.9 to 1 at 
the species level and from 0.7 to 1 at higher taxonomic levels, with 
a step size of 0.001. For each threshold, a confidence measure 

F I G U R E  3  The median (in blue) and minimum (in red) similarity 
scores computed for all groups of the reference filamentous 
fungal CBS ITS barcode data set at different taxonomic levels. The 
numbers above the bars are the median values of the associated 
similarity scores. The stars indicate the average values, whereas the 
horizontal lines indicate the median values of these similarity scores

https://matplotlib.org/
https://github.com/marbl/Krona/wiki
https://github.com/rugantio/LargeVis-python3
https://nlesc.github.io/DiVE
https://nlesc.github.io/DiVE
https://scikit-learn.org/
https://github.com/vuthuyduong/dnabarcoder
https://github.com/vuthuyduong/dnabarcoder
https://doi.org/10.15156/BIO/786368
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(F-measure, Paccanaro et al., 2006) was computed to evaluate the 
clustering result. Note that for the prediction at the species level, 
we removed 1373 sequences of (623, 10.65%) indistinguishable 
species (distinct species with identical ITS sequences; Abarenkov 
et al., 2016) that came out in the same group when clustering the 
barcode data set with a 100% similarity score, to reduce the im-
pact caused by these distinct species with identical ITS sequences 
on the prediction. The global similarity cutoffs predicted at the 
species, genus, family, order, and class level were 0.994, 0.955, 
0.936, 0.922, and 0.922, respectively. Except for the species level 
that had a confidence measure of 0.83, at the higher taxonomic 
levels, the obtained confidences were low (<0.66) which was also 
observed in Vu et al. (2019).

The local and best similarity cutoffs predicted for all clades 
of the CBSITS data set at all different taxonomic levels are given 
in Table S1. They are also given in the Supporting Information file 
CBSITS.cutoffs.json. Note that only the clades with more than 30 
sequences and 10 groups were selected for the prediction. Figure 6 
and Table S1 show that the local similarity cutoffs varied signifi-
cantly, viz. between 0.927–0.999 for the species level, 0.83–0.99 
for the genus level, and 0.83–0.936 for the family level. The corre-
sponding median values were 0.993, 0.935, and 0.895, respectively. 
For species identification, the confidence measures obtained for 
the predicted similarity cutoffs were high, between 0.704–1 with a 
median value of 0.8956. Specifically, genera such as Scytinostroma, 
Arthroderma, Sarocladium, Exophiala, Ramularia, Diaporthe, Epichloe, 

F I G U R E  4  The visualization of the 
sequences of the reference filamentous 
fungal CBS ITS barcode data set 
based on DNA sequence comparisons. 
Sequence comparisons were done 
using BLAST (Altschul et al., 1997). 
Based on the obtained similarity matrix, 
sequence coordinates were computed 
using LargeVis (Tang et al., 2016) and 
visualized using the mplot3d toolkit of 
matplotlib. The numbers on the axes are 
the tick values of the axes. Sequences 
were coloured based on class name. The 
unidentified sequences were coloured in 
black. The number of classes to display 
was set to 8. Note that sequences can also 
be visualized with DiVE, an interactive 
web-based visualization component of 
fMLC (Vu et al., 2018)

F I G U R E  5  The prediction of global similarity cutoffs for sequence identification at different taxonomic levels for the reference 
filamentous fungal CBS ITS barcode data set. The number of sequences and groups at the associated taxonomic level are given in 
parentheses. The global similarity cutoffs predicted for sequence identification at the associated taxonomic level are given to the right of the 
parentheses. The numbers above the curves are the highest confidence measures obtained for the global similarity cutoffs
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F I G U R E  6  The prediction of local similarity cutoffs for species, genus, and family identification in the genera, families, and orders of the 
reference filamentous fungal CBSITS data set, respectively. The numbers in parentheses are the numbers of sequences and groups of the 
associated clades. Only clades with more than 30 sequences and 10 groups were included in the prediction
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Vararia, Microascus, Hypomyces, Acremonium, Sporothrix, Peniophora, 
Rhizoctonia, Ophiostoma, Mycena, Pseudocercospora, and Mucor had 
small proportions of indistinguishable species (<6%) and high confi-
dence measures (>0.9), indicating that species in these genera were 
sequence-wise distinct from each other. For genus identification, 
the confidence values of the predicted similarity cutoffs varied be-
tween 0.5576–0.9563 with a median value of 0.7489. The family 
Agaricaceae had a very high confidence measure of 0.9563 for pre-
dicting a similarity cutoff of 0.893 for genus identification. For family 
identification, the confidence values of the predicted similarity cut-
offs varied between 0.611–0.8256, with a median value of 0.7345.

For order-level identification, the similarity cutoffs predicted for 
Sordariomycetes, Agaricomycetes, Dothideomycetes, Ascomycota, 
and Basidiomycota were 0.922, 0.869, 0.927, 0.922, and 0.869. The 
confidence values were 0.61, 0.5861, 0.673, 0.5957, and 0.61, re-
spectively. For class identification, the similarity cutoffs predicted 
for Ascomycota was 0.922 with a low confidence measure of 0.497, 
while for Basidiomycota, the similarity cutoff was 0.675 with a high 
confidence measure of 0.9614.

Most of the taxa (239/280, 85.36%) had a confidence measure 
greater than the global confidence measure predicted for the whole 
data set except for some genera such as Aspergillus, Calonectria, 
Colletotrichum, Chaetomium, Penicillium, and Talaromyces, and their 
higher classifications at the species level. This could be explained by 

the fact that these genera contained multiple subclades and species 
complexes that are indistinguishable by ITS (Abarenkov et al., 2016).

A total of 209/280 (74.64%) taxa had a similarity cutoff equal to 
the best similarity cutoff (with the maximum confidence measure). 
When considering only the taxa at the taxonomic level l + 1 for pre-
dicting similarity cutoffs for sequence identification at the taxonomic 
level l, only 28/110 (25.45%) taxa had a similarity cutoff different 
from the best similarity cutoff (see Table S2). Among them, except 
for the two families Mortierellaceae and Orbiliaceae that had a low 
confidence measure of 0.5905 and 0.5576 for predicting sequence 
identification at the genus level, the other taxa had a similarity cutoff 
less than 0.05 different from the best similarity cutoff. Predicting the 
best similarity cutoffs for the clades of very large data sets would be 
computationally very expensive, and our results suggest that using 
the similarity cutoffs predicted for the clades of the taxa at the imme-
diately higher taxonomic level would be a suitable alternative.

3.2  |  Accuracy and precision of the 
classification of the UNITE data set against the 
CBSITS data set

We classified the UNITE data set against the reference CBSITS 
data set using the global similarity cutoff predicted for the whole 

TA B L E  2  Accuracy and precision of classifying the UNITE general release data set against the reference filamentous fungal CBSITS 
barcode data set

Level Cutoff A_seqno A_accuracy A_precision B_seqno B_accuracy B_precision

Species 0.97 8529 0.5224 0.401 4738 0.7526 0.7953

0.975 7726 0.5441 0.4334 4583 0.7556 0.8026

0.98 7005 0.5633 0.4627 4401 0.7569 0.8073

0.985 6385 0.594 0.5 4217 0.7631 0.8182

0.99 5795 0.6183 0.5443 4019 0.7621 0.8187

0.995 4864 0.655 0.5999 3592 0.7706 0.8274

0.994 5089 0.6488 0.59 3720 0.7688 0.8279

best 5560 0.6518 0.5845 3892 0.7749 0.8285

Genus 0.9 18,576 0.745 0.4377 13,453 0.8231 0.7072

0.955 10,785 0.8561 0.6578 8924 0.8842 0.7952

best 13,408 0.828 0.6022 10,833 0.8661 0.7726

Family 0.85 24,693 0.8219 0.5513 20,739 0.8658 0.7775

0.936 12,778 0.9081 0.7658 11,513 0.9164 0.8429

best 15,205 0.8927 0.7289 13,518 0.9061 0.8289

Order 0.8 31,044 0.8732 0.5565 27,850 0.9202 0.8037

0.922 14,815 0.9491 0.776 14,043 0.9505 0.8405

best 18,809 0.9494 0.7604 17,971 0.9506 0.8296

Class 0.75 33,252 0.9038 0.5941 31,853 0.9057 0.7798

0.922 15,135 0.9689 0.8344 14,545 0.9691 0.8876

best 26,345 0.9774 0.7918 25,634 0.9776 0.8641

Notes: Similarity cutoffs for traditional (regular font), global (italics), and best local (bold) are shown for each taxonomic level. Columns prefixed with a 
refer to the number, accuracy, and precision of the classified sequences. Columns prefixed with B refer to the number, accuracy, and precision of the 
classified sequences whose taxon name was represented by at least one sequence in the CBSITS data set.
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barcode data set, the best local similarity cutoffs predicted for dif-
ferent clades of the data set, and the traditional similarity cutoffs 
used in metabarcoding studies. The traditional similarity cutoffs for 
sequences identification at the taxonomic genus, family, order, and 
class level were taken from Tedersoo et al.  (2014) which were 0.9, 
0.85, 0.8, and 0.75, respectively. At the species level, we employed 
the similarity cutoffs of 0.97, 0.975, 0.98, 0.985, 0.99, and 0.995 pro-
posed by UNITE for the species hypotheses (Koljalg et al.,  2013). 
The obtained accuracy and precision values were compared for the 
evaluation of dnabarcoder.

Table  2 shows the number of sequences (A_seqno), accuracy 
(A_accuracy), and precision (A_precision) obtained by classifying 
the UNITE data set against the CBSITS data set. When considering 
only UNITE sequences whose taxon name was represented by at 
least one sequence in the CBSITS data set, these values were des-
ignated B_seqno, B_accuracy, and B_precision, respectively. Table 2 
shows that the global similarity cutoffs had the highest accuracies 
and precisions obtained at most taxonomic levels but assigned 
the least numbers of sequences. The traditional cutoffs assigned 
much more sequences than the predicted cutoffs in most cases. 
However, the obtained accuracies and precisions were 7.08%–8.3% 
and 16.45%–20.39% lower than the ones obtained by the local cut-
offs at the genus and higher taxonomic levels. At the species level, 
the accuracies and precisions obtained by the similarity cutoffs 
ranging from 0.97 to 0.99 were 3.35%–12.94% and 4.02%–18.35% 
lower than the ones obtained by the local cutoff. The accuracy and 
precision obtained by the similarity cutoff of 0.995 were 0.32 and 
1.54% higher than the accuracy and precision obtained by the local 
similarity cutoff. However, 696 fewer sequences were assigned this 
way. Compared with the global cutoffs, the local similarity cutoffs 
assigned 1–24% more sequences with slightly lower accuracies and 
precisions (up to 2.81 and 5.6%).

Overall, the obtained precisions were low. They increased signifi-
cantly when considering only sequences that were represented by 
sequences with the same taxon name in the barcode data set. This 
shows that in addition to the complication that some sequences were 
annotated incorrectly (Bensch et al., 2020; Hofstetter et al., 2019), 
many species names were not updated but rather represented leg-
acy concepts, and it was also apparent that some species complexes 
were indistinguishable by the ITS region. The identification of other 

sequences suffered from the lack of available reference sequences. 
This highlights the necessity for publicly available, authenticated 
reference sequences such as those provided by the NCBI RefSeq 
Targeted Loci Project (Schoch et al., 2014).

The classification of the UNITE data set up to the class level using 
the predicted best cutoffs is given in the Supporting Information 
file UNITE.CBSITS_BLAST.krona.html file. The numbers of classi-
fied and unclassified sequences at each taxonomic level are given 
in Table 3.

To further verify the classification result of the sequences at the 
species level, multiple sequence alignments and phylogenetic trees 
were computed for the classified sequences with the reference se-
quences of the same taxon names. There were 2408 (43.32%) se-
quences without multiple sequence alignments because the number 
of relevant reference sequences was less than 3. A total of 2541 
(45.71%) sequences were verified as their branch length in the asso-
ciated phylogenetic tree was less than the maximum branch length 
of the reference sequences. The number of sequences with a branch 
length greater than the maximum branch length of the reference 
sequences was 610 (10.97%). The verifications based on multiple 
sequence alignments and phylogenetic trees of the classification re-
sults at the genus and higher taxonomic levels were not made due 
to time restraints.

3.3  |  The similarity cutoffs and resolving powers of 
complete ITS, ITS1, and ITS2

3.3.1  |  Analysis and visualization of the 
CBSITScomplete, CBSITS1, CBSITS2, and CBS5.8S 
data sets

The sequence lengths of the CBSITScomplete, CBSITS1, CBSITS2, 
and CBS5.8S data sets varied from 353–939, 5–779, 5–689, and 
119–159 bases in which 99.5, 99.957, 99.82, and 99.92% of the 
sequences had a length of more than 400, 50, 50, and 150 bases, 
respectively (Figure S3). When comparing the sequences, the mini-
mum BLAST alignment lengths of the CBSITScomplete, CBSITS1, 
CBSITS2, and CBS5.8S data sets were set to 400, 50, 50, and 150 
bases, respectively.

Similar to CBSITS, the minimum and median similarity scores 
within the groups of CBSITScomplete, CBSITS1, CBSITS2, and 
CBS5.8S at all taxonomic levels varied significantly (Figure S4), be-
tween 0.34– and 0.39–1 for CBSITScomplete at the species level 
and between 0–1 for the other data sets and at the higher taxo-
nomic levels, suggesting a wide range for a (complete ITS, ITS1, 
5.8S, and ITS2) similarity cutoff for fungal identification at all tax-
onomic levels. The distributions of the sequences of the data sets 
based on BLAST similarity scores are given in Figure S5. Again, it 
was shown that it is unrealistic to expect any single cutoff thresh-
old value for the complete ITS region, the ITS1 spacer, the 5.8S 
gene, and the ITS2 spacer to work equally well across the full fun-
gal kingdom.

TA B L E  3  Number of classified and unclassified sequences of 
the UNITE data set against the CBS ITS data set with the best local 
cutoffs at each taxonomic level

Level
Number of classified 
sequences

Number of 
unclassified 
sequences

Species 5560 (11.78%) 41,654 (88.22%)

Genus 13,408 (28.4%) 33,806 (71.6%)

Family 15,205 (32.2%) 32,009 (67.8%)

Order 18,809 (39.84%) 28,405 (60.16%)

Class 26,345 (55.8%) 20,869 (44.2%)

https://unite.ut.ee/
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3.3.2  |  Global and local similarity cutoffs of the 
CBSITScomplete, CBSITS1, CBSITS2, and CBS5.8S 
data sets

Figure 7 shows the prediction of the global similarity cutoffs at each 
taxonomic level of the CBSITScomplete, CBSITS1, CBSITS2, and 
CBS5.8S. The predicted global similarity cutoffs and their associ-
ated confidence measures are given in Table  4. Note that for the 
prediction at the species level, 1058 (13.28%), 2833 (24.25%), 3030 
(25.9%), and 4969 (42.7%) sequences of 573 (13.34%), 1554 (25.6%), 
1599 (26.36%), and 2526 (41.73%) indistinguishable species were re-
moved from the CBSITScomplete, CBSITS1, CBSITS2, and CBS5.8S 
data sets, respectively.

Similar to the ITS barcodes (partial 18S, complete ITS, partial 
LSU), the confidence measures obtained for species identification 
by complete ITS, ITS1, and ITS2 were high (>0.8553). CBSITS2 
had the highest global confidence measure of 0.8947, followed 
by CBSITS1 (0.8873), CBSITScomplete (0.8553), and CBS5.8S 
(0.8168). At the genus and higher taxonomic levels, they were low, 

in particular for ITS1 and ITS2 at the genus and family levels, and 
for 5.8S at all taxonomic levels. The CBSITScomplete data set had 
the highest confidence measures for genus, family, order, and class 
identification, suggesting that it might be better to use the com-
plete ITS region for sequence identification at higher taxonomic lev-
els. The high number of indistinguishable species by the 5.8S gene 
and the low confidence measures obtained indicate that the 5.8S 
gene is not useful as a biomarker for fungal identification at any 
taxonomic level.

Tables S3–S5 show the similarity cutoffs and the associated con-
fidence measures obtained for the clades of the CBSITScomplete, 
CBSITS1, and CBSITS2 data sets. They are also given in the 
Supporting Information files CBSITScomplete.cutoffs.json, CBSITS1.
cutoffs.json, and CBSITS2.cutoffs.json.

The similarity cutoffs and associated confidence measures ob-
tained by complete ITS, ITS1, and ITS2 at all taxonomic levels also 
varied significantly between different clades of the data sets (see 
Table 5). Most of the taxa (86.19% for complete ITS, 84.56% for com-
plete ITS1, and 78.06% for complete ITS2) had a local confidence 

F I G U R E  7  The prediction of global similarity cutoffs for sequence identification at different taxonomic levels for the reference 
CBSITScomplete, CBSITS1, CBSITS2, and CBS5.8S data sets. The number of sequences and groups at the associated taxonomic level are 
given in parentheses. The global similarity cutoffs predicted for sequence identification at the associated taxonomic level are given to the 
right of the parentheses. The numbers above the curves are the highest confidence measures obtained for the global similarity cutoffs
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measure higher than the global confidence measure predicted for 
the whole data sets. In addition, the median local confidence mea-
sures obtained at all taxonomic levels were significantly higher than 
the global confidence measure, suggesting that it is better to use 
local similarity cutoffs rather than using one single similarity cutoff 
for fungal identification.

Overall, the local confidence measures obtained for species iden-
tification were higher than 0.85 except for some genera and their 
higher classifications such as Colletotrichum, Penicillium, Talaromyces, 
Aspergillus, and Fusarium for ITS complete, Oidiodendron, Talaromyces, 
and Colletotrichum for ITS1, and Talaromyces, Microascus, and 
Coprinellus for ITS2. At the higher more inclusive taxonomic levels, 

Level Prediction CBSITScomplete CBSITS1 CBSITS2 CBS5.8S

Species Global cutoff 0.994 0.994 0.994 0.994

confidence 0.8553 0.8803 0.8992 0.8589

Genus Global cutoff 0.951 0.969 0.973 0.994

confidence 0.6605 0.5708 0.5692 0.434

Family Global cutoff 0.894 0.951 0.95 0.987

confidence 0.7208 0.6347 0.6374 0.3484

Order Global cutoff 0.847 0.931 0.926 0.987

confidence 0.8223 0.6595 0.7363 0.3264

Class Global cutoff 0.795 0.852 0.891 0.987

confidence 0.7765 0.7103 0.785 0.3726

TA B L E  4  Global similarity cutoffs and 
confidence measures predicted for the 
CBSITScomplete, CBSITS1, CBSITS2, and 
CBS5.8S data sets

TA B L E  5  Local similarity cutoffs and confidence measures predicted for the reference CBSITScomplete, CBSITS1, and CBSITS2 data sets

Level Prediction CBSITScomplete CBSITS1 CBSITS2

Species Cutoffs 0.906–0.999 0.931–0.996 0.919–0.996

Median cutoff 0.991 0.988 0.99

Confidences 0.788–1 0.7855–1 0.8165–1

Median confidence 0.9165 0.9233 0.9185

Genus Cutoff 0.825–0.987 0.7–0.993 0.621–0.995

Median cutoff 0.939 0.958 0.959

Confidence 0.5913–0.9725 0.504–0.9326 0.5115–0.9512

Median confidence 0.7735 0.6835 0.6795

Family Cutoff 0.825–0.92 0.702–0.966 0.502–0.966

Median cutoff 0.8845 0.9255 0.9245

Confidence 0.6592–0.8325 0.5408–0.9266 0.5772–0.9266

Median confidence 0.7509 0.6813 0.6688

Order Cutoff in Sordariomycetes 0.848 0.946 0.925

Confidence in Sordariomycetes 0.8887 0.7166 0.8136

Cutoff in Agaricomycetes 0.837 0.86 0.891

Confidence in Agaricomycetes 0.7925 0.6877 0.6264

Cutoff in Dothideomycetes 0.84 0.802 0.913

Confidence in Dothideomycetes 0.8399 0.806 0.819

Cutoff in Ascomycota 0.848 0.931 0.926

Confidence in Ascomycota 0.8405 0.6827 0.7893

Cutoff in Basidiomycota 0.837 0.86 0.891

Confidence in Basidiomycota 0.8015 0.7039 0.6478

Class Cutoff in Ascomycota 0.831 0.852 0.891

Confidence in Ascomycota 0.8252 0.7485 0.8108

Cutoff in Basidiomycota 0.501 0.482

Confidence in Basidiomycota 0.9448 0.9552

Notes: Only clades with more than 30 sequences and 10 groups were included in the prediction.
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local confidence measures were getting lower, in particular for ITS1 
and ITS2 at the genus and family levels (with a median value of less 
than 0.7).

When comparing the resolving powers of the complete ITS with 
the ITS barcodes (partial 18S, complete ITS, partial LSU), out of 202 
taxa having both predictions, 161 (79.7%) taxa had a confidence 
measure obtained by complete ITS higher than the confidence mea-
sure obtained by the ITS barcodes, suggesting that it might be better 
to extract the ITS region from the ITS barcodes to have an optimal 
identification.

When comparing the resolving powers of the complete ITS with 
ITS1 (ITS2) at the genus and higher taxonomic levels, out of 94 taxa 
that had both ITS and ITS1 (ITS2) predictions, 93.62% of the taxa had 
an ITS confidence measure higher than the ITS1 (ITS2) confidence 
measure. At the species level, the resolving powers of the complete 
ITS and ITS1 (ITS2) were about the same. Out of 118 (119) taxa that 
had both ITS and ITS1 (ITS2) predictions, 54.2% (53.8%) of the taxa 
had a confidence measure obtained by ITS greater than the confi-
dence measure obtained by ITS1 (ITS2).

When comparing ITS1 and ITS2, their resolving powers were 
about the same. Out of 252 taxa having both predictions, 126 taxa 
had a higher ITS1 confidence measure and 127 taxa had a higher 
ITS2 confidence measure. For species identification, ITS1 was more 
divergent (25.6% indistinguishable species) than ITS2 (26.36% indis-
tinguishable species). ITS1 had either a significantly lower percent-
age of indistinguishable species and/or higher confidence measure in 
genera such as Agaricus, Alternaria, Aspergillus, Bipolaris, Chaetomium, 
Penicillium, Sarocladium, and Talaromyces and their higher classifica-
tions, whereas ITS2 performed better for clades such as Mortierella, 
Ophiostoma, Humicola, Cordycipitaceae, Peniophoraceae, and 
Exobasidiomycetes.

3.4  |  Diversity and community structure of the 
global soil samples based on the CBS collection

3.4.1  |  Taxonomic classification of the soil data set

Out of 42,626 OTUs of the soil data set, a total of 24,659 (57.85%) 
OTUs were classified from species to class rank using the reference 
filamentous fungal CBSITS2 data set with the ITS2 similarity cutoffs 
predicted in the previous section. The classification result is given in 
the Supporting Information file globalsoil.xlsx and visualized in the 
Supporting Information file globalsoil.CBSITS2_BLAST.krona.html in 
which 1493 (3.5%), 5908 (13.86%), 8078 (18.95%), 10,908 (25.59%), 
and 24,451 (57.36%) OTUs were classified at the species, genus, 
family, order, and class level, respectively including 1146 (2.67%), 
1686 (3.96%), 1649 (3.89%), 742 (1.74%), and 112 (0.26%) newly 
identified sequences (Figure 8). Among the 347, 4222, 6429, 10,166, 
and 24,339 OTUs successfully identified by both UNITE+INSDC and 
CBS data sets at the species, genus, family, order, and class level, re-
spectively, 122, 2007, 4123, 8485, and 22,298 had the same name. 
For OTUs classified with different names, 195 (86%), 1532 (69%), 

1571 (68%), 1143 (67%), and 957 (47%) were updated with a new 
name as their similarity scores to the best matches were higher than 
the scores obtained previously in Tedersoo et al. (2014), thus show-
ing a significant improvement for the classification of the OTUs of 
the global soil samples based on the CBS collection.

3.4.2  |  Taxon diversity and community structure

To avoid the problem of suboptimal identification due to the lack 
of CBSITS2 reference sequences, all OTUs that were newly iden-
tified with a lower score were removed. In the end, 23,958 OTUs 
were classified up to the class level using the CBSITS2 barcodes in 
which 1463, 5225, 7343, 10,367, and 23,367 were revealed at the 
species, genus, family, order, and class level, respectively. Based 
on the obtained classification, the taxon diversity and community 
structure of the global soil samples were studied. Figure 9 shows the 
relative proportion of the OTUs at the genus level in all and differ-
ent biomes and sampling sites. The relative proportion of the OTUs 
at the higher taxonomic levels can be found in Figure S6. It can be 
seen that the relative proportion of the classified sequences at all 
taxonomic levels varied across different biomes. Even though they 
were distributed across all or most sites, the majority of them were 
still restricted to the type of the biome as also observed in Tedersoo 
et al. (2014).

Mortierella (8%), Umbelopsis (3%), Penicillium (1.4%), and 
Oidiodendron (1.3%) were the four largest genera in the soil samples 
revealed by the CBS collection. The proportions of the remaining 
genera were less than 1%. Next to these four genera, Hyaloscypha 
was also revealed with a relatively high proportion in AT (9.33%), 
Piloderma in BF (3%), Fusarium in DTF (1.1%), Humicolopsis in GS 
(1.56%), Agaricus in MED (2%), Trichoderma in MTF (1.2%), Fusarium 
in SAV (2.3%), Geomyces in STF (1.47%), Mycena in TCF (1.56%), 
Mycena in TDF (1.6%), and Gliocladium in TMF (1.3%).

When considering only the OTUs that were newly identified or 
given a new name with a higher similarity score by the CBS collection, 
478, 393, 55, 989, 2076, and 229 OTUs were assigned to a functional 
group of animal- and mycoparasites, animal pathogens, ectomycor-
rhizal fungi, plant pathogens, saprotrophs, and others, respectively, 
using FUNGuild (Nguyen et al., 2016), and 2281 OTUs remained un-
assigned. The CBS collection clearly contributed to the identification 
of plant pathogenic fungi in the global soil samples as the number of 
plant pathogenic OTUs newly assigned by the CBS collection was 
35.65% of the plant pathogenic OTUs (2774) assigned based on the 
classification obtained previously in Tedersoo et al. (2014) (see the 
Supporting Information file globalsoil.xlsx).

3.5  |  Run-time performance

The benchmarks were performed on a Linux x86-64 platform of a 
high-performance computing (HPC) cluster (16 GB RAM, 2 cores) 
at the Dutch national e-infrastructure  SURFsara. To predict a 

http://surf.nl
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global similarity cutoff, dnabarcoder needed ~78 min at the spe-
cies level and ~ 138 min at the genus and higher taxonomic levels. It 
took dnabarcoder 2, 4, 10, 22, and 48 min to predict local similarity 
cutoffs for species identification for the genera, families, orders, 
classes, and phyla of the data set, respectively. For genus identi-
fication, it took 10, 21, 43, and 97 min to predict similarity cutoffs 
for the families, orders, classes, and phyla of the data set. For fam-
ily identification, it took 19, 38, and 79 min to predict similarity 

cutoffs for the orders, classes, and phyla of the data set. For order 
identification, it took 39 and 82 min to predict similarity cutoffs 
for the classes and phyla of the data set. Finally, it took 85 min 
to predict similarity cutoffs for class identification in Ascomycota 
and Basidiomycota. For the classification of the UNITE and global 
soil data sets, it took dnabarcoder ~35 minutes. For the verifica-
tion, it took dnabarcoder ~176 min to verify 5421 classification 
results at the species level.

F I G U R E  8  Comparisons of the OTUs identifications of the soil samples studied in Tedersoo et al. (2014) by the UNITE+INSDC and CBS 
data sets. The green colour shows the number of OTUs that were identified with the same name by both data sets. The brown colour shows 
the number of OTUs that were identified by the associated data set with a different name and higher score than the other data set. The pink 
colour shows the number of OTUs that were identified by the associated data set with a different name and lower score than the other data 
set. The blue colour shows the number of the OTUs that were only identified by the associated data set

F I G U R E  9  The diversity of filamentous fungi at the genus level in all biomes Arctic tundra (AT), boreal forests (BF), dry tropical forests 
(DTF), grassland and shrubland (GS), moist tropical forests (MTF) Mediterranean (MED), savannas (SAV), southern temperate forests 
(STF), temperate coniferous forests (TCF), temperate deciduous forests (TDF), and tropical montane forests (TMF) studied by Tedersoo 
et al. (2014). The identification of the OTUs was done based on the reference filamentous fungal CBSITS2 barcodes (Vu et al., 2019) with the 
predicted ITS2 similarity cutoffs
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4  |  DISCUSSION

The accuracy and prediction of fungal sequence identification 
have recently been addressed in Vu et al.  (2019) and Lücking 
et al.  (2020, 2021). A number of strategies were suggested in 
Lücking et al.  (2020) to improve the accuracy and precision of 
fungal sequence identification, including implementing secondary 
DNA barcodes for groups where ITS does not provide sufficient 
precision and using multiple sequence alignments based phyloge-
netic approaches as more accurate alternatives. These suggestions 
are currently impractical for metabarcoding studies, given the large 
amount of data containing up to millions of sequences from en-
vironmental samples to be analysed. The ITS region will probably 
remain the marker of choice for fungal metabarcoding studies for 
the foreseeable future.

Computational methods for classifying sequences have primar-
ily been developed for bacteria, after which they were adopted for 
fungi. However, the verification of the classification results of these 
methods was often neglected (Lücking et al.,  2020). In our recent 
study in Vu et al.  (2020), we compared four different classification 
methods for fungal classification including BLAST, the Ribosomal 
Database Project (RDP) Bayesian classifier (Wang et al., 2007), and 
two deep learning-based classifiers, viz. a convolutional neural net-
work (CNN, LeCun et al.,  2015) and a deep belief network (DBN, 
Hinton & Salakhutdinov,  2006). We found that when classifying a 
data set whose sequences were not present in the training data set, 
BLAST was the tool that performed the best in terms of taxonomic 
identification.

Up to this point, in most metabarcoding studies, a single similar-
ity cutoff has been used for sequence identification, and its accu-
racy and precision were typically not assessed in those studies. To 
the best of our knowledge, dnabarcoder is the first tool that allows 
the users to study extensively local similarity cutoffs for sequence 
identification for different clades of fungi. For a predicted similarity 
cutoff for sequence identification in a clade, a confidence measure 
is computed. This confidence measure helps the user to evaluate 
the resolving power of the DNA marker in that clade. Our results 
showed that the similarity cutoffs predicted for the clades of the 
filamentous fungal ITS barcode data set of Vu et al. (2019) varied sig-
nificantly, and most of the taxa had a prediction confidence measure 
significantly higher than the confidence predicted for the whole data 
set, indicating that it is better to use different similarity cutoffs pre-
dicted for different fungal clades rather than using one single simi-
larity cutoff for fungal identification. When comparing the predicted 
local similarity cutoffs with the traditional similarity cutoffs used in 
metabarcoding studies, the local similarity cutoffs assigned fewer 
sequences of the UNITE general FASTA release data set. However, 
the obtained accuracy and precision values were significantly higher. 
We also showed that the resolving powers of the complete ITS, ITS1, 
and ITS2 were similar for fungal species identification. At higher 
taxonomic levels, the complete ITS region had a better resolving 
power than ITS1 and ITS2. Using dnabarcoder, we were able to show 
that the CBS collection clearly improved fungal identification in the 

global soil samples collected in Tedersoo et al.  (2014), in particular 
for plant pathogenic fungi.

Dnabarcoder allows the users to assess the classification results 
based on multiple sequence alignments and phylogenetic trees. 
These advanced analyses are available for the classification results 
with more than two reference sequences present in the reference 
data set. In addition, it is more practical for small data sets as it 
took almost three hours to verify the classification results of ~5500 
sequences.

We would like to emphasize that dnabarcoder can be used to 
predict similarity cut-offs for any biomarker. Although dnabarcoder 
was initially developed for fungi, it is applicable to any other organ-
isms where DNA barcodes are used for identification. This study 
used the full fungal ITS region, the ITS1 spacer, the 5.8S gene, and 
the ITS2 spacer of the CBS collection. It would be relevant to study 
similarity cutoffs for other fungal groups that were not present in 
the CBS barcode data sets, for the groups where alternative DNA 
barcodes are used, and for other similarity search-based programs 
such as DIAMOND (Buchfink et al.,  2021) and mmseqs2 (Mirdita 
et al., 2021).

Metabarcoding seeks to capture authentic patterns and pro-
cesses in nature—in other words, to get as close to biological reality 
as possible (Burian et al.,  2021). However, the present study sug-
gests that the field of metabarcoding loses significant resolution 
and scientific explanatory power by relying on a single sequence 
similarity threshold value for taxonomic assignment. We introduce 
a software tool that seeks to reflect actual biological patterns more 
accurately. While our tool clearly is not free from shortcomings and 
complications, it still represents a significant improvement over sin-
gular, static threshold value-solutions for taxonomic assignments. 
Our work emphasizes the problems of using similarity-based opera-
tional taxonomic units (OTUs; Blaxter et al., 2005) in metabarcoding 
studies. After all, if sequence variation is averaged away already in 
an initial OTU clustering step, then that would clearly cap the full po-
tential of our tool in the subsequent sequence identification step. In 
a metabarcoding context, the full power of the approach presented 
in the present study will be unleashed only in association with the 
use of amplicon sequence variants (ASVs; Callahan et al., 2017).

Appropriate use of amplicon sequence variants is tightly coupled 
to the existence of richly populated and well-annotated reference 
sequence databases (Callahan et al.,  2017). Mycology, sadly, does 
not enjoy such databases. A few percent of the estimated millions 
of extant fungal species have been described, and type specimen-
derived DNA sequence data are available for less than 10% of the 
number of described species. Clearly, the heavily funded field of 
metabarcoding relies on fields and undertakings that do not enjoy 
the same level of funding: traditional taxonomic work, the sequenc-
ing of legacy type specimens in herbaria (Bieker et al., 2020), and 
the pursuit of the many novel “dark taxa” fungal lineages that are 
being unearthed by environmental sequencing efforts (e.g., Khan 
et al., 2020; Tedersoo et al., 2017). Ironically, in breaking new tech-
nological ground, the present authors find themselves pleading for 
the funding of traditional taxonomical endeavours.
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