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Abstract
Background: Previous studies have inferred a strong genetic component for insom-
nia. However, the etiology of insomnia is still unclear. The aim of the current study 
was to explore potential biological pathways, gene networks, and brain regions as-
sociated with insomnia.
Methods: Using pathways (gene sets) from Reactome, we carried out a two‐stage 
gene set enrichment analysis strategy. From a large genome‐wide association stud-
ies (GWASs) of insomnia symptoms (32,155 cases/26,973 controls), significant 
gene sets were tested for replication in other large GWASs of insomnia complaints 
(32,384 cases/80,622 controls). After the network analysis of unique genes within 
the replicated pathways, a gene set analysis for genes in each cluster/module of the 
enhancing neuroimaging genetics through meta‐analysis GWAS data was performed 
for the volumes of the intracranial and seven subcortical regions.
Results: A total of 31 of 1,816 Reactome pathways were identified and showed as-
sociations with insomnia risk. In addition, seven functionally and topologically inter-
connected clusters (clusters 0–6) and six gene modules (named Yellow, Blue, Brown, 
Green, Red, and Turquoise) were associated with insomnia. Moreover, significant 
associations were detected between common variants of the genes in Cluster 2 with 
hippocampal volume (p  =  0.035; family wise error [FWE] correction) and the red 
module with intracranial volume (p = 0.047; FWE correction). Functional enrichment 
for genes in the Cluster 2 and the Red module revealed the involvement of immune 
responses, nervous system development, NIK/NF‐kappaB signaling, and I‐kappaB ki-
nase/NF‐kappaB signaling. Core genes (UBC, UBB, and UBA52) in the interconnected 
functional network were found to be involved in regulating brain development.
Conclusions: The current study demonstrates that the immune system and the hip-
pocampus may play central roles in neurodevelopment and insomnia risk.
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1  |   INTRODUCTION

The prevalence of insomnia is approximately 6%–10% in the 
general population (Morin & Jarrin, 2013). Several studies 
have identified an association between insomnia and a multi-
tude of mental health issues, including post‐traumatic stress 
disorder (PTSD)(Yehuda et al., 2015) and suicide (Fernandez‐
Mendoza & Vgontzas, 2013), as well as adverse long‐term 
health problems, including diabetes (Anothaisintawee, 
Reutrakul, Van Cauter, & Thakkinstian, 2016) and cardiovas-
cular disease (Jackson, Redline, & Emmons, 2015). The need 
for further research into the etiology of insomnia is therefore 
indicated.

Twin studies have revealed that sleep characteristics and 
insomnia are highly heritable, with a heritability rate rang-
ing from 22% to 59% in adults, and 14% to 71% in children 
(Hublin, Partinen, Koskenvuo, & Kaprio, 2011; Wing et al., 
2012). Previous genome‐wide association studies (GWASs) 
have revealed a number of susceptible genetic variants (par-
ticularly single nucleotide polymorphisms [SNPs]) involved 
in the development of insomnia symptoms (Lane et al., 
2017) and insomnia complaints (Hammerschlag et al., 2017). 
However, these results from GWASs do not directly provide 
any functional information on the mapped variants, and can 
barely help understand the biological mechanism of insom-
nia. Meanwhile, it is likely that many more common variants 
are linked to insomnia but have not achieved genome‐wide 
significance in GWASs because of small effect size or insuf-
ficient sample size. Several studies have indicated that the 
weakly associated variants may provide important informa-
tion regarding the biological basis of disease when such vari-
ants cluster within a common functional module or pathway 
(Jia et al., 2012; Xiang et al., 2018). In addition, numerous 
methodologies have been developed to analyze associations 
between genes and gene pathways with a risk of disease de-
velopment. For example, the gene set enrichment analysis 
(GSEA) was originally designed to handle and analyze gene 
data on genome‐wide expression; this analysis could cur-
rently be used in a common pathway‐based analysis. Wang et 
al. (Wang, Li, & Bucan, 2007) developed a modified version 
of the GSEA in 2007 to analyze genome‐wide SNP associ-
ations, and the analytic algorithm could identify the com-
bined SNP/gene effects on interactions of multiple genetic 
markers of a disease. Thus, this algorithm may be used to 
explore the biological functions and mechanisms of genes 
and gene pathways at the system level. There are advantages 
to extending the pathway‐based approach into molecular net-
works and co‐expression network to reveal the true biology 
of insomnia. A molecule network analysis could identify the 
molecular network that interacts with biomolecules, such 
as genes, proteins, metabolites, etc., in various forms (e.g., 
in protein–protein interactions, gene regulation, and func-
tional interactions). Notably, previous studies have shown 

that genes related with the same or similar disorders tend to 
cluster in the same gene network by means of physical or 
functional clusters (Feldman, Rzhetsky, & Vitkup, 2008; Oti 
& Brunner, 2007). Thus, further study of GWAS data using 
newly developed tools and software could help identify genes 
and gene pathways in insomnia development or risk.

For genetic disorders, the most harmful mutation may 
exist in all the cells of our body, but it only frequently oc-
curs in a few tissues because the mutated protein has different 
functions within these tissues or has different tissue‐specific 
interacting proteins (Magger, Waldman, Ruppin, & Sharan, 
2012). Some studies have found that the perturbation of a 
gene, or an interaction between two gene products, can lead 
to the disruption of a protein interaction network (Zhong et 
al., 2009). We do not know whether general protein–protein 
interactions still exist in our target tissue or are blocked by 
some tissue‐specific factors. Thus, in this study, we added the 
brain tissue‐specific co‐expression network, which could di-
rectly provide brain‐related information, to better understand 
the pathogenesis of insomnia.

In the present study, we assessed and systematically ana-
lyzed multiple results of GWASs to increase statistical power 
and investigate potential biological pathways, gene networks, 
and brain regions associated with insomnia.

2  |   MATERIALS AND METHODS

2.1  |  Ethical compliance
The ethics approval of insomnia studies can be found in the 
original articles (Hammerschlag et al., 2017; Lane et al., 
2017).

2.2  |  Analytic flowchart
In the present study, main analyses included: (a) integrate the 
summary statistics from insomnia symptoms, insomnia com-
plaints and the Reactome pathway database to identify signifi-
cant pathways; (b) The use of genes in the significant pathways 
to construct the functional interacting networks, gene co‐ex-
pression networks, and functional clusters/modules; (c) An 
analysis of the gene set association in each cluster/module with 
the volume of seven subcortical regions (accumbens, amyg-
dala, caudate, hippocampus, pallidum, putamen, and thalamus) 
and intracranial volume (ICV) (Hibar et al., 2015). The sche-
matic of our analytic approach is shown in Figure 1.

2.3  |  Retrieval of summary statistics for 
insomnia GWAS data
Summary statistics for GWAS data were obtained from sub-
jects experiencing insomnia symptoms (n  =  32,155) and 
controls (n = 26,973) (Lane et al., 2017), and those reporting 



      |  3 of 9XIANG et al.

insomnia complaints (n = 32,384) and controls (n = 80,622) 
(Hammerschlag et al., 2017). To assess insomnia symptoms, 
subjects were asked, “Do you have trouble falling asleep at 
night or do you wake up in the middle of the night?” with re-
sponses “never/rarely,” “sometimes,” “usually” and “prefer 
not to answer.” Based on response, subjects were dichoto-
mized into controls (“never/rarely”) and cases (“usually”). 
GWAS analyses were run for insomnia symptoms using lin-
ear/logistic regression, with sex, age, 10 principal components 
and genotyping array as covariates (Lane et al., 2017). To as-
sess insomnia complaints, subjects were asked, “Do you have 
trouble falling asleep at night or do you wake up in the middle 
of the night?” with four possible responses: “never/rarely,” 
“sometimes,” “usually,” or “prefer not to answer.” Responses 
of “usually” were considered complaints, while responses 
of “never/rarely” or “sometimes” were analyzed as controls. 
Genome‐wide association studies analyses were run for in-
somnia complaints, which are predictive of insomnia disorder 
with little confounding from comorbidity, using logistic re-
gression adjusting for sex, age, top five principal components, 
and genotyping array (Hammerschlag et al., 2017).

2.4  |  Retrieval of enhancing neuroimaging 
genetics through meta‐analysis GWAS data
Summary datasets on GWASs of enhancing neuroimag-
ing genetics through meta‐analysis (ENIGMA) conducted 

by Hibar et al. (Hibar et al., 2015) were downloaded. 
The GWASs included 13,171 samples from subjects of 
European ancestry and identified common genetic vari-
ants contributing to the volume differences in seven sub-
cortical regions and to ICV. The data were then analyzed 
using various software programs (see below for more 
details).

2.5  |  Pathway‐based analysis
i‐Gsea4GwasV2 software (http://gsea4​gwas-v2.psych.
ac.cn/) (Zhang, Chang, Guo, & Wang, 2015) was applied 
to the Reactome pathway dataset for the summary statistics 
from insomnia symptoms/complaints, to perform a path-
way‐based GSEA. The analysis procedure was as follows: 
(a) The program obtained a gene across the max‐log (p‐
value) from all SNPs within a 20‐kb interval; (b) Genes 
were ranked via the p‐value for the association test; (c) 
The list of ranked genes was used to calculate enrichment 
scores (ES) of the pathways, and the ES showed a trend in 
which the genes in the pathways were located from the top 
of the list of entire ranked genes; (d) A phenotype label 
permutation and normalization were performed to obtain 
the ES distribution, and correct the gene and gene set vari-
ations; (e) False discovery rate (FDR) was performed for 
multiple tests based on the ES distributions generated by 
permutation tests.

F I G U R E  1   Illustration of our data 
analysis approach. GWAS, genome‐wide 
association study; FDR, false discovery 
rate; SNP, single‐nucleotide polymorphism; 
GSEA, gene‐set enrichment analysis; GO, 
gene ontology; WGCNA, weighted gene 
co‐expression network analysis; ENIGMA, 
enhancing neuroimaging genetics through 
meta‐analysis; NetRep, Fast permutation 
procedure for testing network module 
replication

http://gsea4gwas-v2.psych.ac.cn/
http://gsea4gwas-v2.psych.ac.cn/
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2.6  |  Network and network clustering 
analyses of genes associated with insomnia
A pathway‐based analysis can identify genes and pathways that 
are associated with insomnia. However, obtaining the genes in 
each pathway may not allow for sufficient comprehension of 
the topological and functional relationships of each gene in the 
pathway. It may be necessary for some genes to form a clus-
ter to construct molecular networks and modulate the biologi-
cal mechanism of a disease such as insomnia. Therefore, the 
Reactome functional interactions (FI) software (Wu, Feng, & 
Stein, 2010) was used to form gene and gene pathway networks. 
The Reactome FI dataset contained the Reactome, Panther, 
BioCyc, kyoto encyclopedia of genes and genomes, Pathway 
Interaction Database, Cancer Cell Map, and other pair‐wise in-
teractions collected from physical protein–protein interactions, 
protein domain–domain interactions, gene co‐expression data, 
gene ontology (GO) annotation, and text mining.

A large molecular network may comprise diverse small 
modules in which the edges among nodes within a module 
are tight, while the connections among modules are loose. 
Therefore, a network cluster analysis was used to identify 
the architecture of each module in a large molecular network 
based on the algorithm as described in a prior study (Girvan 
& Newman, 2002). Each cluster may be involved in different 
biological functions and provide novel insights into the under-
standing of the pathogenesis of insomnia (Xiang et al., 2018).

2.7  |  Gene and pathway prioritization 
across network topology
Network topology can provide vital information to the under-
standing of the structure of a network across identification of 
the core node (gene). The CentiScaPe 2.0 program (Scardoni, 
Petterlini, & Laudanna, 2009) was used to research topologi-
cal characteristics of the networks originating from the gene 
networks. Two key node centrality measures for gene net-
works, degree and betweenness, were addressed due to their 
importance in biological networks as drivers for gene/pro-
tein essentiality (Yu, Kim, Sprecher, Trifonov, & Gerstein, 
2007). Genes from significant pathways were imported into 
Reactome FI networks and then the core nodes (genes) were 
analyzed based on the two node centrality measurements.

2.8  |  The construction of gene co‐expression 
networks in 15 brain regions
The gene co‐expression networks in 15 brain regions were 
constructed based on BrainSpan whole‐genome transcriptomic 
data, collected by RNA‐seq (http://www.brain​span.org/). The 
15 brain regions included 11 neocortical regions (primary au-
ditory cortex [A1C], primary motor cortex [M1C], primary 
somatosensory cortex [S1C], primary visual cortex [V1C], 

T A B L E  1   Significant pathways enriched for association with 
insomnia

Pathways p FDR

Hedgehog ligand biogenesis 0.007 0.016

Ubiquitin‐dependent degradation of Cyclin 
D1

0.017 0.016

Ubiquitin‐dependent degradation of Cyclin 
D

0.017 0.016

Phase 2—plateau phase 0.005 0.017

Cross‐presentation of soluble exogenous 
antigens (endosomes)

0.011 0.017

GPVI‐mediated activation cascade 0.004 0.018

L1CAM interactions 0.003 0.019

Cardiac conduction 0.003 0.019

Cyclin E associated events during G1/S 
transition

0.011 0.019

Negative regulation of the PI3K/AKT 
network

0.005 0.020

Regulation of ornithine decarboxylase 
(ODC)

0.009 0.020

Orc1 removal from chromatin 0.011 0.022

Switching of origins to a post‐replicative 
state

0.011 0.022

Cyclin A:Cdk2‐associated events at S 
phase entry

0.010 0.025

CDT1 association with the 
CDC6:ORC:origin complex

0.011 0.026

G1/S transition 0.003 0.028

CDK‐mediated phosphorylation and re-
moval of Cdc6

0.010 0.028

Hh mutants abrogate ligand secretion 0.025 0.031

E2F mediated regulation of DNA 
replication

0.022 0.031

Constitutive signaling by aberrant PI3K in 
cancer

0.001 0.033

Removal of licensing factors from origins 0.011 0.033

Hh mutants that do not undergo autocata-
lytic processing are degraded by ERAD

0.027 0.034

PI5P, PP2A and IER3 regulate PI3K/AKT 
signaling

0.001 0.035

Phase 1—inactivation of fast Na+ channels 0.017 0.037

Ubiquitin mediated degradation of phos-
phorylated Cdc25A

0.034 0.038

p53‐independent DNA damage response 0.034 0.038

p53‐independent G1/S DNA damage 
checkpoint

0.034 0.038

Muscle contraction 0.001 0.038

C‐type lectin receptors (CLRs) 0.002 0.041

Phase 0—rapid depolarisation 0.020 0.042

Non‐integrin membrane‐ECM interactions 0.029 0.046

Note: Abbreviation: FDR, false discovery rate.

http://www.brainspan.org/
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dorsolateral prefrontal cortex [DFC], medial prefrontal cortex 
[MFC], orbital frontal cortex [OFC], ventrolateral prefrontal 
cortex [VFC], inferolateral temporal cortex [ITC], superior 
temporal cortex [STC], inferior parietal cortex [IPC]), the stria-
tum (STR), the hippocampus (HIP), the thalamus (MD), and 
the amygdaloid (AMY) (Table S1). Gene expression was de-
fined by a normalized reads per kilobase million (RPKM) value 
of 1 in at least one region at one time point for 80% of the avail-
able samples (Parikshak et al., 2013). The R package WGCNA 
(Langfelder & Horvath, 2008) was used to construct gene co‐
expression networks. To further explore which co‐expression 
modules is preservation, we used the NetRep program (Ritchie 
et al., 2016) to replicate these modules in each brain region.

2.9  |  Protein–protein interaction analysis
Prior studies have identified disease‐associated genes that 
tend to interact more with each other than with random pro-
teins in the protein–protein interaction (PPI) network, while 
protein‐coding genes situated at the same genomic locus, 
tend to interact within the PPI network (Oti, Snel, Huynen, 
& Brunner, 2006). In the current study, we carried out a per-
mutation test using the Disease Association Protein‐Protein 
Link Evaluator (DAPPLE, http://www.broad​insti​tute.org/
mpg/dappl​e/dapple.php) (Rossin et al., 2011) and evalu-
ated whether genes in each cluster had significant physical 
interactions with each other or with other proteins across 
the network connectivity parameters (degree and number of 
edges) versus random networks with a similar size and de-
gree distribution.

2.10  |  Gene set association analysis of each 
cluster with seven subcortical regions
To determine associations between genes in each cluster with 
the volume of seven subcortical regions (accumbens, amyg-
dala, caudate, hippocampus, pallidum, putamen, and thalamus) 
and total ICV (Hibar et al., 2015), all SNPs mapped to genes in 
each cluster were extracted, and obtained cumulative evidence 
for each cluster with the volume of the subcortical regions. A 
gene set analysis of the ENIGMA GWAS dataset (Hibar et al., 
2015) was performed with magma software (de Leeuw, Mooij, 
Heskes, & Posthuma, 2015). Individual SNPs in each gene 
were analyzed and the p‐value of the resulting SNPs was in-
tegrated into a statistical gene test. The linkage disequilibrium 
among the SNPs in the gene was then estimated according to 
reference data with similar ancestry (1000 genomes) and the 
p‐value of a gene during the gene set analysis.

2.11  |  Gene ontology enrichment analysis
ConsensusPathDB (Kamburov, Stelzl, Lehrach, & Herwig, 
2013) was used to perform GO enrichment analysis of genes 

in each module. A hypergeometric test implemented in 
ConsensusPathDB computed the enrichment p‐value, fol-
lowed by a FDR correction p < 0.05 for multiple testing.

3  |   RESULTS

A pathway‐based analysis identified 41 of the 1,816 Reactome 
pathways for insomnia symptoms to have a gene set enrich-
ment (p < 0.05, pFDR < 0.05), and 31 of these 41 pathways 
were further identified for insomnia complaints (p  <  0.05, 
pFDR < 0.05; Table 1). Thirty‐one significant pathways in-
cluded 634 genes (Table S2), which were imported into the 
Reactome FI program, and a larger molecular network of 598 
genes was obtained. This network was then clustered into 
several sub‐networks. Seven clusters (clusters 0–6) contain-
ing ≥18 gene members (Figure 2; Table S3) were identified, 
and a series of gene interactions through the edge connec-
tion of the genes (nodes) within each cluster (Figure 2) was 
detected. UBC, UBB, UBA52 (degree) and UBC, EP300, 
PRKACA, MAPK1, and SRC (betweenness) were identified 
as core genes in the linking of clusters (Table S4). Using the 
GO dataset, an enrichment analysis for genes in each cluster 
was conducted and several interesting biological pathways 
were discovered, such as the axon guidance and ERBB2 
signaling pathway (Clusters 0 and 5), the NIK/NF‐kappaB 
signaling pathway, the innate immune response activating 
cell surface receptor signaling pathway and stress‐activated 
MAPK cascade (Cluster 2), and the calcium ion transmem-
brane transport (Cluster 3). A full list of all significantly en-
riched biological processes with an FDR < 0.001 is shown in 
the Table S5. The gene set analysis also showed significant 
associations among common variants of the genes in Cluster 
2 with the hippocampal volume (p = 0.035, family wise error 
correction).

The co‐expression network analysis found that 532 out 
of 634 genes were co‐expressed in six gene modules (named 
Yellow, Blue, Brown, Green, Red, and Turquoise; Table 
S6). Based on the NetRep program, Yellow, Blue, Red, and 
Turquoise modules were replicated in 15 brain regions (Table 
S7). The gene set analysis also identified significant associa-
tions among common variants of genes in the red module with 
ICV (p  =  0.047, family wise error correction). Functional 
enrichment of these genes in the red module revealed inter-
esting biological processes, such as immune response, ner-
vous system development, axon guidance, NIK/NF‐kappaB 
signaling, and I‐kappaB kinase/NF‐kappaB signaling (Table 
S8). In addition, these genes were found to be highly enriched 
in the thick corpus callosum (p = 0.0001; padj = 0.0083).

In order to explore the PPI network for genes in the red 
module, 54 genes were imported into the InWeb PPI network. 
The resulting network was significantly different random net-
works (Figure S1), for example, there were 37 direct edges 

http://www.broadinstitute.org/mpg/dapple/dapple.php
http://www.broadinstitute.org/mpg/dapple/dapple.php
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in the network compared with only 13.91 edges expected by 
chance alone (p  <  0.001). Moreover, the observed average 
connectivity per gene was 2.74 compared with an expected 
1.57 from random networks (p < 0.001). These findings sug-
gest that the constructed networks did not occur by chance 
alone.

4  |   DISCUSSION

Despite the recent success of a large GWAS in the identifica-
tion of several common genetic variations associated with in-
somnia, the etiology of insomnia remains poorly understood. 
Thus, the current study integrated the GWAS data on insom-
nia with pathway data, gene functional interaction networks, 
and co‐expression networks to determine the potential causes 
of insomnia. The analyses obtained 31 core human pathways 
as being most etiologically relevant to insomnia or insom-
nia susceptibility. Functional and bioinformatic studies are 
needed to further understand the relationship between these 
31 core human pathways and insomnia.

In the present study, pathway and network analyses revealed 
that NF‐κB and immune responses play important roles in the 
regulation of biological mechanisms associated with insomnia. 

During sleep disturbance, the sympathetic nervous system re-
leases norepinephrine into primary and secondary lymphoid 
organs and stimulates the adrenal gland to release epineph-
rine into the systemic circulation (Irwin & Cole, 2011; Irwin 
& Opp, 2017). Neuromodulators, such as epinephrine, acidic 
fibroblast growth factor, and epidermal growth factor, stimu-
late leukocyte adrenergic receptors to further activate NF‐κB 
which subsequently regulates immune response gene transcrip-
tion, such as TNF, IL‐6, and IL‐1, ultimately leading to the 
translation and production of pro‐inflammatory cytokines that 
serve to regulate the inflammatory response (Cole, 2010; Irwin 
& Opp, 2017; Karin, 2006). Furthermore, pro‐inflammatory 
cytokines (such as TNF and IL‐6) act within a complex bio-
chemical network, leading to the stimulation of NF‐κB and the 
modification of the transcription of hundreds of gene products, 
each of which promotes sleep (Krueger, 2008), and promotes a 
positive feedback loop (Irwin & Opp, 2017).

A large molecular network constructed from 598 genes that 
may play a key role in the etiology of insomnia was identified. 
Moreover, UBC, UBB, UBA52 were identified as core genes 
that link seven clusters and included in the Cluster 2. Several 
studies have found that ubiquitin (Ub) has diverse functions 
in eukaryotic cells, including the targeting of proteins for 
modulation of signaling pathways, receptor endocytosis, 

F I G U R E  2   Functionally interacting network modules. These were constructed from genes in the significant pathways, and functional 
interactions between the genes from significant pathways were analyzed and clustered using the Reactome FI tool and visualized in Cytoscape. 
Genes are represented as nodes, while the interactions between genes are represented as edges. The parent network was further analyzed to yield 
sub‐network clusters, and each cluster is separately shown and the color encoded for clarity
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and proteasomal degradation (Ravid & Hochstrasser, 2008). 
There are two classes of UB genes: monomeric Ub‐ribo-
somal fusion genes (UBA52 and UBA80) and stress‐inducible 
polyubiquitin genes (UBB and UBC) (Komander, Clague, & 
Urbé, 2009). UB genes are known to play key roles during 
neuronal development, including neuritogenesis, neurogene-
sis, and synaptogenesis (Kawabe & Brose, 2011). Ryu et al. 
(Ryu, Park, & Ryu, 2014) found that neuronal morphology, 
neurite outgrowth, and synaptic development were impaired 
in UBB−/− neurons. UBC and UBA52 may play a critical role 
in compensating for disruption of UBB in neurons and astro-
cytes (Sinnar et al., 2011), and disruption of the UBB gene 
can cause hypothalamic neurodegeneration and sleep abnor-
malities in mice (Ryu et al., 2010). These findings suggest 
that immune response gene which interacts with UBC, UBB, 
and UBA52 regulate neuronal development and sleep.

In addition to the identification of pathways involved in the 
immune response, which may form a positive feedback loop 
with neuronal development to influence insomnia, the genes 
in Cluster 2/red module were associated with the hippocampal/
ICV, Guzman‐Marin et al. (Guzman‐Marin et al., 2005) and 
Hairston et al. (Hairston et al., 2005) also provided the evidence 
of suppressed hippocampal neurogenesis in sleep‐deprived 
rats. Riemann et al. (Riemann et al., 2007) and Winkelan et al. 
(Winkelman et al., 2010) found that the hippocampal volume 
was significantly reduced in individuals with primary insom-
nia (PI) compared to good/normal sleepers. Chao et al. (Chao, 
Mohlenhoff, Weiner, & Neylan, 2014) also identified that 
poorer subjective sleep quality was associated with reduced 
total cortical volumes. The above results indicate that the in-
flammatory biological pathways may regulate the development 
of hippocampus and further lead to insomnia.

While the current study contributes novel data to our un-
derstanding of the etiology of insomnia, there are some lim-
itations. First, analyses were conducted on genes collected 
from insomnia symptoms in a European population and may 
need to replicate in other samples, or across other sleep phe-
notypes. Second, the insomnia symptoms/complaints are the 
subjective nature of the insomnia item, and not a diagnosis. 
Third, the current study does not explore how the relationship 
among UBC, UBB, UBA52, TNF‐kB, and hippocampus may 
modulate sleep.

In summary, through an integrated analysis of genetic data 
from the summary statistics for insomnia GWASs, pathway 
and brain co‐expression networks, the current results indicate 
that dysregulation of genes involved in the immune system 
has an important role in the pathogenesis of insomnia, and 
may provide a theoretical basis for future research.
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