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Chronic hepatitis C virus infection often leads to liver cirrhosis and primary liver cancer.

In 2015, an estimated 71 million people were living with chronic HCV. Although infection

rates have decreased in many parts of the world over the last several decades, incidence

of HCV infection doubled between 2010 and 2014 in the United States mainly due to

increases in intravenous drug use. The approval of direct acting antiviral treatments is

a necessary component in the elimination of HCV, but inherent barriers to treatment

(e.g., cost, lack of access to healthcare, adherence to treatment, resistance, etc.)

prevent dramatic improvements in infection rates. An effective HCV vaccine would

significantly slow the spread of the disease. Difficulties in the development of an HCV

culture model system and expression of properly folded- and natively modified-HCV

envelope glycoproteins E1 and E2 have hindered vaccine development efforts. The

recent structural and biophysical studies of these proteins have demonstrated that the

binding sites for the cellular receptor CD-81 and neutralizing antibodies are highly flexible

in nature, which complicate vaccine design. Furthermore, the interactions between E1

and E2 throughout HCV infection is poorly understood, and structural flexibility may play

a role in shielding antigenic epitopes during infection. Here we discuss the structural

complexities of HCV E1 and E2.
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INTRODUCTION

Hepatitis C virus (HCV) presents with mild symptoms; as an acute illness that resolves within
weeks; or a lifelong, chronic infection that can lead to cirrhosis, liver cancer, and, if left untreated,
death. End-stage, liver disease caused by chronic HCV infection is the leading cause of liver
transplantation in the United States, Europe, and Japan (1–3). According to the World Health
Organization, there were 1.75 million new HCV infections and 71 million people living with
chronicHCV infection worldwide in 2015. Intravenous drug use and unsafe healthcare practices are
responsible for a majority of new infections, contributing heavily to the doubling of HCV incidence
in the United States between 2010 and 2014 (4, 5).

Despite FDA approval of several direct acting antiviral (DAA) treatments for HCV with very
high success rates (>90%) for all genotypes, many at-risk groups are still spreading infection
faster than they are being cured (5–8). Chronic HCV prevalence is about 1% of the total world
population, but is much higher in many areas where healthcare is not widely accessible. Mongolia,
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Uzbekistan, Egypt, and Gabon, for example, have HCV
prevalence ranging from 4 to 7% (5) and specific populations
in the Nile Delta and Upper Egypt can have infection rates
as high as 28%, varying heavily based on socioeconomic status
(9). The poorest and least educated in Egypt have the highest
HCV infection rates and simply do not have the means to
receive treatment. Furthermore, intravenous drug use accounts
for about 23% of new HCV infections (10). Populations
of intravenous drug users worldwide must overcome several
barriers to treatment such as high cost, access to healthcare,
compliance, and fear of being discovered as a drug user (8). After
a successful course of treatment however, if the patient continues
engaging in risky behaviors, they are still at risk to be re-infected.
These factors prevent a dramatic improvement in HCV infection
rates worldwide. Therefore, it seems unlikely that DAAs alone
will eliminate HCV infection without an effective vaccine.

HCV is an enveloped virus containing a positive-sense, single
stranded RNA genome. The lipid envelope, derived from the
host membrane, is embedded with two type I transmembrane
proteins, envelope glycoproteins E1 and E2, which form a
heterodimer (11). HCV particles are uniquely associated with
lipids and apolipoproteins, which play a role in proper formation
and function of secreted virions (12–19). These associations
give viral particles an overall low buoyant density (16). The
E1/E2 heterodimer is responsible for viral entry from recognition
of host cell receptors to membrane fusion. Initial host-virus
attachment interactions are through glycosaminoglycans and

FIGURE 1 | Crystal structures of the N-terminal domain of E1 and an E1 peptide in complex with antibody. (A) Linear diagram of E1 glycoprotein. The crystallized E1

constructs and PDB IDs are shown below the diagram. (B) N-terminal domain structure of E1 monomer (PDB ID: 4UOI). (C) The six molecules of the asymmetric unit

of the E1 N-terminal domain. (D) Structure of E1 peptide (aa314–324) in complex with antibody IGH526 (PDB ID: 4N0Y). The surface of antibody IGH526 is colored

yellow, with the E1 peptide colored according to atom type (light blue, red, orange, and dark blue for carbon, oxygen, sulfur and nitrogen, respectively). The E1

peptide is further shown as ribbon structure in the box.

low-density lipoprotein receptor (20). Several receptors have a
necessary role in entry such as claudin-1, occludin, CD81, and
scavenger receptor class B type 1, mainly through interaction
with E2, although the role of E1 is not fully understood (21–
24). E1 and E2 are on the surface of the virion, available
for host immune recognition, and are ideal for studies in
immunogenicity ultimately leading to vaccine design; however,
the conformation of the E1/E2 heterodimer and its interactions
have not been well characterized throughout the various stages
of virus assembly, host cell attachment, and membrane fusion.
High quality, fully glycosylated and disulfide-linked envelope
glycoproteins have proven to be difficult to produce in large
quantities for biophysical study until recently.

ENVELOPE GLYCOPROTEIN E1

The exact role(s) of E1 during entry, egress, and immune
escape is not fully understood (21–24). It has an N-terminal
ectodomain of approximately 160 amino acids and exists as a
trimer on the surface of cell culture-produced HCV particles,
driven by interactions in the E1 C-terminal transmembrane
region (25) (Figure 1). E1 may aid in recognition of hepatocytes
through interactions with apolipoproteins, particularly ApoE,
which further interacts with cell surface heparin sulfate during
early attachment (26, 27). Structural data of N-terminal 79 amino
acids of HCV E1 (nE1) was determined by X-ray crystallography
(28). This structure showed a covalently linked, domain-swapped
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FIGURE 2 | Crystal structure of E2 in complex with antibody. (A) Linear diagram of E2 glycoprotein. The crystallized E2 core constructs and PDB IDs are shown

below the diagram. (B) Ribbon representation of E2 (PDB ID: 4MWF and 4WEB).

homodimer with nE1 forming 16 amino-acid α-helix flanked by a
β-hairpin N-terminally and a three-stranded antiparallel β-sheet
C-terminally (Figures 1A–C). The N-terminus of E1 does not
resemble a class II fusion protein as hypothesized, or any other
fusion protein conformation, despite having a fusion peptide-
like domain (29); however, the published structure may be in a
post-fusion conformation as crystals were obtained at a low pH.
The cross-neutralizing, anti-E1 antibody IGH526 was shown to
bind to an α-helical epitope (residues 314–324) predicted to be
highly flexible in molecular dynamics simulations (Figure 1D)
(30). This is the first E1 antigenic epitope structure described, and
may assist in future vaccine design.

ENVELOPE GLYCOPROTEIN E2

The functions of E2 have been more extensively studied relative
to E1. E2 is responsible for mediating entry through interactions
with several cellular receptors as mentioned above and is
highly immunogenic (31–35). Two groups have published the
structure of the core domain of E2 bound to Fabs (PDB ID:
4MWF and 4WEB) by X-ray crystallography (36, 37). The two
studies employed a similar strategy with varying E2 expression
constructs and antibodies for co-crystallization (Figure 2A).
The 4MWF co-crystal was formed with E2 ectodomain (eE2)
from HCV genotype 1a and a neutralizing, human Fab, AR3C

FIGURE 3 | Ribbon representation of E2 hydrophobic residue positions in

CD81 binding loop. (A) E2 residue F537 and L539 (side chains are shown as

red sticks) in the presence of a stabilizing Fab fragment (not depicted) (PDB ID:

4MWF). (B) Solvent exposed positions of residue F537 and L539 (side chains

are shown as blue sticks) (PDB ID: 4WEB).

that recognizing an N-terminal epitope in E2 and blocks E2-
CD81 interaction. The eE2 in this structure does not contain
hypervariable region 1 (HVR-1) and replaced HVR- 2 with
a Gly-Ser-Ser-Gly linker. The 4WEB co-crystal was formed
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FIGURE 4 | Different conformations of E2 412–423 peptide in complex with antibodies. The antibody surface is colored yellow, and the peptide is shown as sticks

colored according to atom type (light blue, red, orange, and dark blue for carbon, oxygen, sulfur and nitrogen, respectively). E2 peptides are further highlighted in

boxes and shown as light blue ribbon structures. (A) β-hairpin peptide in complex with HCV1 antibody (PDB ID: 4DGY). (B) “Open” conformation peptide in complex

with neutralizing antibody 3/11 (PDB ID: 4WHY).

with eE2 from HCV genotype 2a, lacking the first 72 amino
acids, and non-neutralizing Fab, 2A12, which binds a linear
epitope at the C-terminus of eE2. Overall, both structures
reveal a monomeric E2 with a globular nature (Figure 2B),
unlike the class II fusion proteins that E2 was predicted to be
similar to, and does not undergo major oligomeric or structural
rearrangement upon exposure to low pH (37). Structural stability
of the overall fold of the protein is provided by an extensive
hydrophobic core and disulfide bonding. Follow-up alanine
scanning studies mapped critically important E2 residues for
neutralizing antibody recognition to core E2 stability elements
and are in agreement with the published structures (38).

The ordered portions of E2 are primarily arranged in β-sheets
stabilized by disulfide bonds and hydrophobic interactions;
however, a majority of eE2 (62% of it in the case of
4MWF) is in flexible loops or completely unstructured
(36). Hydrogen-deuterium exchange and limited proteolysis
experiments implicate the first 72 amino acids of eE2 containing
HVR1 and region between HVR1 and HVR2 as highly flexible
(37). In the 4MWF structure, the AR3C antibody binds this
strand and provides stabilization for crystal formation (36). X-ray
diffraction data for HVR2 could not be obtained (37). Therefore,
in the absence of a stabilizing antibody, that leaves approximately
the first 100 amino acids of eE2, containing several glycosylation
sites, flexible and solvent exposed. This region is involved in
epitope shielding, SR-BI binding, CD81 binding, and neutralizing
antibody recognition (31–33, 39–45).

CD-81 BINDING SITE AND NEUTRALIZING
ANTIBODIES

Residues of E2 which form the CD81 binding site are found
in clusters between aa412–446 and aa519–535 (termed the
CD81 binding loop) of HCV genotype 1a strain H77 (36,
46, 47). Distant CD81 binding clusters are brought together
by the overall fold of the protein. The two published eE2
structures, when compared, highlight the flexible nature of not

only the CD81 binding loop, but the central immunoglobulin-
like fold itself. In 4WEB, the CD81 binding loop is disordered,
allowing hydrophobic residues to be solvent exposed. In the
4MWF structure, the CD81 binding loop is stabilized by
a Fab fragment, bringing order to previously unstructured
β-strand E and allowing residues such as F537 and L539 to
be flipped into the hydrophobic core of the protein (Figure 3).
In 2017, Vasiliauskaite et al. expanded on this observation
by demonstrating that the hydrophobic residue positions and
secondary structure in the CD81 binding loop of E2 were
dependent on interactions with different neutralizing antibodies
in both HCV pseudoparticles and cell culture-derived HCV
particles (48). Given that the current evidence focus on binding
to antibodies, the secondary structure of E2 bound to receptor
CD81 may further reveal undescribed conformations.

Many neutralizing antibody epitopes overlap CD81 binding
residues of E2. For example, antibodies 3/11 and HCV1, as well
as others, bind aa412–423, but recognize this flexible stretch of
amino acids differently (32, 41, 49–52). The region adopts at
least two different: an extended or “open” conformation or a β-
hairpin (Figure 4) (50). Furthermore, the HCV1 antibody can
bind from multiple angles, as visualized by electron microscopy,
demonstrating not only local flexibility, but the long-reaching
flexibility of the loop (53). Although the aa412–423 epitope
is quite tempting for use in vaccine studies because of the
cross-neutralizing antibody potential to functionally important
residues, very few chronically infected HCV patients (<2.5%)
produce a specific antibody response likely due to flexibility,
and shielding by HVRs and glycans (45, 54–56). Recent
studies seek to improve presentation of candidate epitopes
and promote antigen recognition by the immune system
using an engineered, cyclic immunogen. Initial data shows a
designed E2 cyclic immunogen produced a strong antibody
response in mice, whose serum was then used to successfully
neutralize HCV infection in culture experiments (57). Further
research will determine whether engineered derivations of
this epitope will be useful in the pursuit of a viable HCV
vaccine.

Frontiers in Immunology | www.frontiersin.org 4 August 2018 | Volume 9 | Article 1917

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yost et al. Conformational Flexibility of HCV Envelope Glycoproteins

HCV VIRION-ASSOCIATED E1 AND E2

Structural information of the HCV virion is lacking, in sharp
contrast to the closely related flaviviruses and alphaviruses.
Obtaining a high-resolution, three dimensional structure of
the HCV virion is difficult due to the low level of virus
production in cell culture systems and the inherent heterogeneity
of the particles owing to its association with apolipoproteins.
Cryo-electron microscopy and tomography of HCV virions
show spherical particles of highly heterogeneous size (40–
100 nm in diameter). The particles displayed no obvious
symmetry, no evidence of continuous membrane bilayer,
and are covered by electron-dense material; although, the
inherent low resolution of the electron micrographs may
mask certain features (16). These findings perhaps call into
question the hypothesis that HCV adopts a classical, icosahedral
scaffold in which its two envelope glycoproteins anchor
to the host cell-derived, double-layer lipid envelope. The
lack of symmetry and membrane bilayer highlights the
unique nature of the HCV virion relative to the other
flaviviruses.

Higher-order aggregates of E1 and E2 on secreted virus
particles appear to be covalently bonded, whereas non-covalently
associated E1/E2 has been detected in the ER (58–60). At the
moment, composition and structural information are unavailable
for these higher order aggregates; however, one may glean
insight from available structural information on E1 and E2
(28, 36, 37). The asymmetric unit of the nE1 structure contains
six monomers stabilized by a series of intramolecular and
intermolecular disulfide bonds (Figure 1C). It is possible that
some or all of the intermolecular disulfides in the nE1 structure
may be relevant to the higher order structures seen on the
virion. The two eE2 structures are highly similar, with an
RMSD of less than 0.8 Å for similar carbon-alpha positions with
most of the differences located in loop regions. Interestingly,
there are discrepancies in the disulfide bonding pattern in
these regions. The overall fold of E2 core is unlikely to
change in the virion, owing to its extensive hydrophobic core
and three disulfide bonds formed between secondary structure
elements.

The current structures available for E1 and E2 may reflect
the immature forms of the proteins after initial synthesis and
during virion assembly. Our hypothesis is that the folds found
in these structures would be present on the virion, with the
higher order aggregates formed via disulfide bonding through
cysteines found in loop regions or within the core domains.
During virion assembly and maturation, these core domains
fold and higher order structures begin to form within the
heterodimer or through interactions with other factors. The
environment of the ER and Golgi apparatus during egress is
oxidizing and compatible with disulfide bond formation and
reshuffling, permitting the formation of the disulfide-linked
aggregates. Thismaturationmay contribute to the acid-resistance
of extracellular HCV virions and have implications for the
mechanisms of entry. Indeed, cell surface-bound HCV needs
to be incubated for prolonged periods at 37◦C for low-pH-
mediated entry to occur (61). This suggests that post-binding

events are required to prime the HCV envelope proteins for
fusion.

CONCLUSION

Targeting a conserved epitope with known functional relevance
is absolutely essential for production of a broadly neutralizing
antibody. Structure-based vaccine design and innovative
thinking with regard to stabilization of epitopes will be necessary
to forward HCV vaccine efforts. Many of the vaccine studies
in the past decade have been done with recombinant HCV E2
or E1E2; however, a majority of the human antibody responses
were against E2 HVR1 and ultimately unsuccessful due to the
high mutation rate in the region (62). The highly disordered and
flexible nature of HCV E2 is a complicating factor to intelligent
vaccine design. Not only is local flexibility seen between the same
epitope partnered with different antibodies, but large portions
of E2 are disordered and variably-sequenced between genotypes
(i.e., the HVRs). The described structures of E1 and E2 are only
representative of their respective serotypes and may or may not
be representative of the many variable HCV isolates that exist.
Within the HCV patient population, many circulating isolates
are highly resistant to known broadly neutralizing antibodies,
and many mutations that allow for resistance to neutralizing
antibody recognition have been described (63, 64). Furthermore,
inherently flexible, long-chain glycans are responsible for
shielding targeted neutralizing antibody binding sites.

Available DAA treatments for HCV are undoubtedly
necessary for infected patients; however, taking into account
the rate at which high-risk groups are being infected with
HCV, a vaccine is an imperative for preventative treatment.
In order to achieve this goal, researchers must overcome the
problem of HCV which uses an almost shapeshifting mechanism
to evade immune detection: shrouding itself with a coat of
apolipoproteins, flexibility, and hyper variability. HCV E2 has
evolved to maintain a balance between the order of disulfide
bonds and hydrophobic interactions necessary to form the
overall protein fold, and the flexible chaos which allows the virus
to replicate while evading the host immune response.
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