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ABSTRACT

The environmental arylamine mutagens are
implicated in the etiology of various sporadic
human cancers. Arylamine-modified dG lesions
were studied in two fully paired 11-mer duplexes
with a -G*CN- sequence context, in which G* is a
C8-substituted dG adduct derived from fluorinated
analogs of 4-aminobiphenyl (FABP), 2-amino-
fluorene (FAF) or 2-acetylaminofluorene (FAAF),
and N is either dA or dT. The FABP and FAF
lesions exist in a simple mixture of ‘stacked’ (S)
and ‘B-type’ (B) conformers, whereas the
N-acetylated FAAF also samples a ‘wedge’ (W) con-
former. FAAF is repaired three to four times more
efficiently than FABP and FAF. A simple A- to -T
polarity swap in the G*CA/G*CT transition
produced a dramatic increase in syn-conformation
and resulted in 2- to 3-fold lower nucleotide excision
repair (NER) efficiencies in Escherichia coli. These
results indicate that lesion-induced DNA bending/
thermodynamic destabilization is an important
DNA damage recognition factor, more so than the
local S/B-conformational heterogeneity that was
observed previously for FAF and FAAF in certain
sequence contexts. This work represents a novel
30-next flanking sequence effect as a unique NER
factor for bulky arylamine lesions in E. coli.

INTRODUCTION

Structural and conformational damage in specific areas of
the genome can trigger tumorigenesis. For example,

disruption of a gene that encodes the tumor suppressor
p53 protein has been found in the majority of sporadic
human cancer (1). Although human cells are equipped
with repair pathways to safeguard the genome from
various DNA damage, some lesions may go unrepaired,
thereby serving as a faulty template to produce a complex
array of mutations and genomic instability, ultimately
leading to cancer initiation (2).
Arylamines and heterocyclic amines are well-known

environmental mutagens/carcinogens, which have been
implicated in the etiology of breast, liver and bladder
cancers in humans (3). Metabolic activation of these
amines in vivo produces C8-substituted dG as the major
DNA adducts (4). For example, the human bladder car-
cinogen 4-aminobiphenyl produces ABP (Figure 1a).
Similarly, AF and AAF are the major DNA adducts
derived from 2-aminofluorene, 2-nitrofluorene and
2-acetylaminofluorene (Figure 1a). The ABP and AF
adducts in fully paired duplex DNA have been shown to
adopt an equilibrium of two prototype conformers:
‘B-type’, in which the carcinogen resides in the major
groove of a relatively unperturbed double helical DNA,
and ‘stacked (S)’, in which the carcinogen is base displaced
and the glycosidic linkage to the modified guanine is syn
(Figure 1c) (5,6). The aromatic moieties of ABP are not
coplanar as in AF, which results in a much lower S-state
population than AF. AF-induced S/B-heterogeneity is
dependent on the flanking sequence, which modulates mu-
tational and repair outcomes (6,7). AAF is chemically
identical to AF except for a single acetyl group on the
central nitrogen (Figure 1a), leading to sampling of an
additional W-conformation, in which the fluorene
moiety is in the minor groove along with a syn glycosidic
linkage (Figure 1c) (7,8). The B and S conformers
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exhibited by AAF are similar to those obtained for ABP
and AF.
Nucleotide excision repair (NER) is the major cellular

pathway for removing bulky DNA lesions in cells.
Accumulated evidence suggests that efficiency of NER is
governed by various structural, cellular and biological
factors (9–11). Sequence context, in particular, plays an
important role in NER of bulky DNA lesions (7,12). The
most notable sequence effects were observed in the NarI
sequence (50-. . .CG1G2CG3CC. . .-30), which is well known
for inducing higher frequency of �2 deletion mutations
when adducted by AAF at G3 position despite the
similar chemical reactivities of three guanines (13,14).
Fuchs and coworkers have shown that AAF in duplex is
an excellent substrate for Escherichia coli UvrABC and
human exonuclease repair systems (15–18). They
reported that in E. coli, the relative repair efficiencies of
AAF at G1, G2 and G3 were in a ratio of 100:18:66,
respectively, whereas the human exonuclease exhibited
38:100:68 ratio (17,18). Mu et al. (19) have recently
carried out a human NER study of these lesions in
HeLa cell extracts and found similar sequence-dependent
NER efficiencies. Their molecular dynamics (MD)

simulation data indicated that the greater NER efficiencies
are correlated with base sequence–dependent local un-
twisting and minor groove opening together with weaker
stacking interactions (19). Recently, we conducted E. coli
UvrABC NER studies on the NarI sequence duplexes
(50–G1G2CG3CC–3

0), in which guanines are modified by
either AF or AAF (7). Results showed that the bulky
AAF adducts repair in a conformation-specific manner,
with the highly S/W-conformeric G3 and G1 duplexes
incised considerably more efficiently than the highly
B-conformeric G2 duplex (G3 � G1>G2). Conversely,
the repair rate of N-deacetylated AF was 2- to 3-fold
lower than AAF, and the order of incision efficiencies
was opposite of that observed for the AAF case. We
have coined the term ‘N-acetyl factor’ to describe the com-
plexity of NER recognition of AF versus AAF (7).

Here, we describe an unusual 30-next flanking base
effect on the conformational properties and E. coli NER
efficiencies of three prototype arylamine adducts in the
G*CN sequence context (Figure 1b: G*=ABP, AF, or
AAF; N=A or T). Results from spectroscopy (19F
NMR and induced circular dichroism [ICD]), thermo-
dynamic quantification (differential scanning calorimetry

Figure 1. (a) Structures of ABP [N-(20-deoxyguanosin-8-yl)-4-aminobiphenyl], AF [N-(20-deoxyguanosin-8-yl)-2-aminofluorene] and AAF
[N-(20-deoxyguanosin-8-yl)-2-acetylaminofluorene] and their fluoro models, FABP [N-(20-deoxyguanosin-8-yl)-4-fluoro-4-aminobiphenyl], FAF
[N-(20-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene] and FAAF [N-(20-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene]; (b) 11-mer GCA and
GCT duplexes used in this study; (c) Major groove views of the B, S and W-conformers of ABP, AF and AAF. Modified-dG (red), dC (green)
opposite the lesion site (orphan C), fluorene (grey CPK), acetyl (AAF only, magenta).
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[DSC]/ultraviolet (UV)-melting experiment) and gel
electrophoresis, as well as MD/potential of mean force
(PMF) calculations, show that sequence-dependent
lesion-induced DNA bending coupled with thermo-
dynamic destabilization is responsible for the altered
repair recognition of bulky arylamine-DNA adducts in
E. coli. This work represents a novel 30- next flanking
sequence effect as a unique NER factor for bulky
arylamine lesions in E. coli.

MATERIALS AND METHODS

Adduct synthesis

Modified duplexes were prepared following the published
procedures (7,8,20–23). The modified oligos were
characterized by electrospray time-of-flight mass spec-
trometry analysis as reported previously (24). An identical
set of unmodified duplexes was also prepared as controls.

Differential scanning calorimetry

DSC measurements were performed using a VP-DSC
Micro-calorimeter from Microcal Inc. (Northampton,
MA) according to the procedures published previously
(22). All sample solutions were 0.12mM concentration.
Tm was the temperature at half the peak area. �G and
�S values were determined by the procedures of
Chakrabarti et al. (25). The uncertainties in the values of
Tm, �H, �G and �S represent the random errors inherent
in the DSC measurements.

UV-Melting (Cary100 Bio, Beckman) and Circular
Dichroism (CD) (J-810, Jasco) experiments were per-
formed using the previously reported procedures
(7,20,23,26).

Dynamic 19F NMR

Duplex samples (about 20–30 ODS) were dissolved in
300 ml of pH 7.0 buffer (100mM NaCl, 10mM Na3PO4

and 100 mM EDTA in 10% D2O/90% H2O) and filtered
into through a Shigemi tube using a 0.2-mm membrane
filter. All 1H and 19F NMR experiments were conducted
using a dedicated 5-mm 19F/1H dual probe on a Bruker
DPX400 Avance spectrometer operating at 400.0 and
376.5MHz, respectively. Imino proton spectra were
obtained using phase-sensitive jump-return sequences at
5�C. 19F NMR spectra were acquired in the 1H-decoupled
mode and referenced to CFCl3 by assigning external C6F6

in C6D6 at �164.90 ppm. Temperature dependence spectra
were processed as reported previously (20,27).

EMSA assay

The N-(20-deoxyguanosin-8-yl)-4-fluoro-4-aminobiphenyl
(FABP), N-(20-deoxyguanosin-8-yl)-7-fluoro-2-amino-
fluorene (FAF) and N-(20-deoxyguanosin-8-yl)-7-fluoro-
2-acetylaminofluorene (FAAF)-modified 19-mer GCT
and GCA sequences were each (100 nM) annealed with
an equimolar complementary sequence, in which the
50-end was g-32P-labeled using T4 polynucleotide kinase
and [g-32P] ATP (Perkin-Elmer radiochemical, Boston,
MA) in a buffer containing NaCl (25mM) and Tris–HCl

(25mM). The mixture was heated at 95�C for 5min and
then cooled to room temperature overnight. The
duplexes were subjected to 15% non-denaturing poly-
acrylamide (acrylamide:bisacrylamide: 29:1, w/w) gel
electrophoresis at 1800V, and the temperature was main-
tained at 4–8�C by regularly replacing the running buffer
with the ice-cold Tris/Borate/EDTA (TBE) buffer. Gel
was exposed to Kodak phosphor imaging screen overnight
and scanned on Typhoon 9410.

Nucleotide excision assay

DNA substrates of 58 bp containing a single FABP, FAF
or FAAF, each adducted at either G*CT or G*CA
sequences, were constructed as described previously
(28,29). UvrA, UvrB and UvrC proteins were
overexpressed in E. coli and then purified as described
previously (30). The 50-terminally labeled DNA substrates
were incubated and incised by UvrABC as described pre-
viously (28,29). Briefly, the DNA substrates (2 nM) were
incubated in the UvrABC reaction buffer (50mM Tris–
HCl, pH 7.5, 50mM KCl, 10mM MgCl2, 5mM DTT) at
37�C in the presence of UvrABC (10 nM UvrA, 250 nM
UvrB and 100 nM UvrC). The Uvr proteins were diluted
and premixed in Uvr storage buffer before addition to the
reaction. Aliquots were collected at 0, 5, 10, 15 and 20 min
into the reaction. The reaction was terminated by heating
at 95�C for 5min. The products were denatured by
addition of formamide loading buffer and heating to
95�C for 5min, followed by quick chilling on ice. The
incision products were then analyzed by electrophoresis
on a 12% polyacrylamide sequencing gel under denaturing
conditions with Tris/Borate/EDTA (TBE) buffer.
To quantify the incision products, radioactivity was

measured using a Fuji FLA-5000 Image Scanner with
MultiGauge V3.0 software. The DNA incised (in
femtomoles) by UvrABC was calculated based on the
total molar amount of DNA used in each reaction and
the ratio of the radioactivity of incision products to total
radioactivity of DNA. At least three independent experi-
ments were performed for determination of the rates of
incision.

MD and PMF calculations

PMF calculations were performed on the GCA and GCT
11-mers initiated from the canonical B form of DNA for
‘anti’ simulations where the glycosidic bond is in the anti
form. ‘Syn’ simulations were initiated from models based
on an NMR structure (PDB: 1C0Y) in which the
glycosidic bond is in the syn form. MD simulations were
performed with the programs CHARMM and NAMD,
using the CHARMM27 additive nucleic acid force field.
Modified G* lesions were created based on the
CHARMM General Force Field followed by additional
optimization of the dihedral parameters linking the
G base to the adduct. Determination of the PMFs
followed the protocol of Banavali and MacKerell (31)
with details of the simulations included in the supporting
information.
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Results

Model systems

As model systems, 11-mer DNA duplexes [d(50-CCATCG
*CNACC-30).d(50-GGTNGCGATGG-30)] were prepared,
in which G* is FABP, FAF or FAAF and N is either dA
or dT (designated as G*CA and G*CT duplexes, respect-
ively) (Figure 1b). The two sequences are chemically
isomeric, differing only on the polarity of the 30-next
flanking A:T versus T:A. The utility of fluorine-tagged
lesions as effective structure probes has been documented
(32). Both the G*CA and G*CT sequences have been used
previously for the studies of bulky adducts (22,33).

19F NMR spectroscopy

Figure 2a–c compares the 19F NMR spectra (�114 to
�121 ppm) of modified DNA duplexes at 20�C for the
G*CT and G*CA sequence contexts (see Supplementary
Figure. S1 for full temperature ranges). 19F signal
assignments were made based on the H/D solvent
effect, exchange spectroscopy, adduct-induced CD
(ICD290–350 nm) and chemical shifts as previously described
(6,26,32,34).

FABP-duplexes
A clear conformational difference exists between the two
isomeric FABP-modified G*CA and G*CT duplexes
(Figure 2a). The single signal at �116.9 ppm for
FABP-G*CA has been previously assigned to the
B-conformer (22). In contrast, FABP-G*CT exhibited
two signals at �116.9 (B) and �118.0 (S) ppm in a
40:60% ratio and adopted a two-site exchange (EXSY
spectra at 5 and 17�C, inset, Supplementary Figure S1a).
A large chemical shift gap (�1 ppm) between the two
signals suggests differences of their electronic

environments. In addition, the �116.9 ppm signal
revealed a large H/D effect (+0.24 ppm) compared to the
�118.0 ppm signal (+0.14 ppm) (data not shown) on
increasing the D2O content from 10 to 100%. The
results indicate the exposed fluorine atom in the
B-conformer, as observed in the MD/PMF simulations
(Supplementary Figure S2).

FAF-duplexes
Although not as dramatic, a similar sequence effect was
observed for FAF. The FAF-G*CA duplex showed
signals at �117.4 and �118.6 ppm in a 34:66% ratio
(Figure 2b), which have been assigned to B- and
S-conformers, respectively (20,22,23,26,35). The S confor-
mer population was increased to 90% in the FAF-G*CT
duplex. Consistent with this assignment, the downfield
�117.4 ppm signal revealed a larger H/D effect
(+0.19 ppm) compared with the �118.8 ppm signal
(+0.03 ppm) (data not shown), again consistent with the
MD/PMF simulations (Supplementary Figure S2).

FAAF-duplexes
At least three major signals are present (Figure 2c) for
FAAF in the G*CA and G*CT sequences. These signals
are shifted considerably (�2 ppm) to the downfield
compared with FAF, a phenomenon associated with the
N-acetyl factor. We reported previously S/B/W-conformer
assignment of FAAF-modified 12- and 16-mer duplexes in
several sequence contexts (i.e. TG*A, CG*C, CG*G
and GG*C) (7,8). The results revealed that 19F signals
of B-, S- and W-conformers appear consistently going
from downfield to upfield in order of �115.0 to �115.5,
�115.5 to �117.0 and �116.5 to �118.0 ppm, respectively.
The major 19F signals in Figure 2c fit that pattern. In
particular, the signal patterns of the FAAF-modified
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Figure 2.
19F NMR (a–c) and CD (d–f) spectra of FABP-, FAF- and FAAF-modified 11-mer duplexes, respectively, in the G*CA and G*CT

sequence contexts at 20�C. The B, S and W notation used in the 19F NMR (a–c) signal assignments represent major groove ‘B’, base displaced
stacked ‘S’ and minor groove ‘W’ conformers, respectively (see Figure 1c legend). The CD spectra (d–f) of modified duplexes show the typical
B-DNA characteristic (positive and negative ellipticity at 275 and 245 nm, respectively) and different ICD290–350 nm patterns represent the lesion
conformation in the duplex (see CD in Results).
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G*CA/G*CT duplexes (50-CCATCG*CNAC-30) match
well with those observed for 16-mer (50-CTCTCG

1G2CG3*CCATCAC-30) (7) and 12-mer (50-CTTCT
CG*CCCTC-30) duplexes (8), both of which have the
CG*C sequence context (underlined). In line with this ob-
servation, their proton spectra displayed a mixture of
broad imino signals arising not only from those involved
in Watson–Crick hydrogen bonds (12–14 ppm) but also
from the lesion site and its vicinity (11–12 ppm)
(Supplementary Figure S3). Although the two sequences
are similar in the total syn conformation (S+W) (i.e. 83
vs. 78%, respectively, for G*CT and G*CA), the
W-conformer population appears to be significantly
greater for G*CT (30%) compared with G*CA (14%)
(Supplementary Figure S4).

Induced circular dichroism

Figure 2d–f show the CD of the modified G*CA
and G*CT duplexes. We reported that B- and
S-conformers are characterized by positive and negative
ICD290–350 nm, respectively (26). Accordingly, the
B-conformeric FABP-G*CA displayed a strongly
negative ICD290–350 nm, whereas an S-shape curve was
observed for the S/B-mixture G*CT duplex (Figure 2d).
These results are in good agreement with the 19F NMR
results (Figure 2a). Unlike FABP, FAF on both sequences
exhibited a strong positive ICD290–350 nm with the effect
much greater for G*CT (Figure 2e), consistent with the
greater S-conformer population determined by 19F NMR
(Figure 2b). The ICD of FAAF (Figure 2f), which is
confined in the narrow 290–320 nm range, has not been
defined as clearly as FAF (8).

In addition, the modified duplexes displayed a signifi-
cant blue shift relative to their respective control duplexes
(Supplementary Figure S5a and b and Table 1). All except
for FAF-G*CT exhibited significant blue shifts up to
8 nm. The bulky N-acetylated FAAF exhibited greater
shifts (�G*-G=4–8 nm) than FAF and FABP
(�G*-G=0–4 nm). GCA sequences, which are prone to
the B-conformer, displayed greater blue shift (�G*CA-

G*CT=2–4 nm, Table 1) compared with GCT. It is well
known that protein-induced DNA bending exhibits sig-
nificant CD shift at 275 nm of regular B-type DNA
(36–38). For instance, the HMG box protein SOX-5
bends DNA by �74� on binding, which resulted in a sig-
nificant blue CD shift (37). These reports suggest that the

blue shifts observed in this study result from the distortion
of the DNA backbone, particularly bending.

Gel mobility assay

Two 19-mer sequences (50-CTTACCATCGCNACCATT
C-30, N=T or A) were used to investigate the impact of
the A/T polarity swap at the N position on the gel mobility
of the modified duplexes. Initially, the abovementioned
11-mer sequences were used but they denatured in the
15% native polyacrylamide gel at 1800V (data not
shown). Figure 3 compares the electrophoretic mobility
of the 19-mer GCA and GCT sequences with and
without modifications. Differential mobility between the
single strand and double strand (ds) oligonucleotides con-
firmed the integrity of the duplexes (Figure 3). The
modified duplexes exhibited retardation in the mobility
in a lesion-dependent manner. In both sequences, major
retardation effect was observed for FAAF followed by
FABP, whereas no retardation was observed for FAF,
results consistent with the CD blue shift data above
(Table 1). It should be noted that the magnitude of retard-
ation in mobility observed in this study is significantly
lower than what was previously observed in benzo[a]pyr-
ene modified duplexes (39–41). We cannot rule out a
possibility of C8-subsitituted dG (this study) versus N2-
substituted dG (benzo[a]pyrene) binding. However, the
rationale behind this small difference in mobility could
be well due to the significantly longer oligonucleotides
(19-mer) used in this study as opposed to the aforemen-
tioned benzo[a]pyrene cases (11 and 15-mer). The utiliza-
tion of longer sequences will reduce the number of adducts
per helical turn, which might result into diminishing of the
lesion-induced bending effect. Tsao et al. reported similar
effects of oligonucleotide length on the electrophoretic
mobility of benzo[a]pyrene-modified duplexes (41).

Thermodynamics

Thermodynamics results from UV-optical melting
(Supplementary Table S1) and DSC, which is not

ds

GCA                            GCT

ss

Figure 3. Autoradiograph of 15% (w/v) native polyacrylamide gel
(acrylamide/bis-acrylamide 29:1, w/w) showing the relative mobility of
ss and GCA/GCT 19-mer ds; both unmodified and single site specific-
ally modified by FABP, FAF and FAAF.

Table 1. Lesion-induced CD blue shifts

Lesion GCA
(nm)

GCT
(nm)

Blue Shift
�a

(G*–G)

(nm)

Blue shift
�b

(G*CA–G*CT)

(nm)

Control 271 271 GCA GCT
FABP 267 269 4 2 2
FAF 268 271 3 0 3
FAAF 263 267 8 4 4

aDifference in the wavelength of positive band between the modified
and control duplexes.
bDifference in the wavelength of positive band between the G*CA and
G*CT duplexes.
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dependent on melting patterns and stoichiometry (22)
(Table 2), are comparable. Supplementary Figure S6
shows the DSC thermograms of modified duplexes in
the G*CA and G*CT sequences relative to the unmodified
controls. These curves were transformed into the corres-
ponding thermodynamic charts (Figure 4a and b), and the
results are tabulated in Table 2. According to the NMR
results (Figure 2), FABP and FAF display a S/
B-equilibrium, whereas FAAF produces a complex S/B/
W-equilibrium; thus, they will be compared separately.

FABP/FAF-DNA duplexes
Both FABP and FAF resulted in destabilization (Figure 4
and Table 2). FABP reduced Tm for the G*CA and G*CT
duplexes by �10.2 and �11.2�C and ��G37�C by 2.4 and
2.9 kcal/mol, respectively. The G*CA/G*CT transition
produced major effect on ��H (2.7 vs. 10.8 kcal/mol)
and ��S (0.8 vs. 25.6 eu), consistent with a significant
increase in the S-conformer population from 0 to �60%
(Figure 2a). The B-conformer FABP-G*CA is expected to
lead to small entropy compensation, and consequently,
the enthalpy reduction dominated the free-energy desta-
bilization (Figure 4a). As expected, the structural disturb-
ance caused by the S/B mixture FABP-G*CT duplex leads
to a considerable reduction of melting enthalpy; however,
most of it is compensated by entropy (Figure 4b).
FAF modification resulted in a similar destabilization

effect: �Tm by �9.1 and �9.6�C and ��G37�C by 2.7 and
2.9kcal/mol, respectively, for G*CA and G*CT. However,
compared with FABP, FAF in both sequences yielded signifi-
cantly larger reduction in enthalpy (��H=13.4 and
16.4kcal/mol) and entropy (��S=34.2 and 43.8 eu) com-
pensation (Figure 4 and Table 2). FAF exhibits more
S-conformer than FABP in both sequences because of
stronger stacking effect. As a result, sequence dependence
on the thermodynamics was not as dramatic as in FABP.
It is clear from Figure 4 that FAF (over FABP) and G*CT
(over G*CA) combinations produce consistently greater
enthalpy/entropy compensation, that is, FAF/G*CT>

FAF/G*CA>FABP/G*CT>FABP/G*CA from the
highest to the lowest. As expected the N-deacetylated
FABP-G*CT and FAF-G*CA exhibited two site exchange
(Supplementary Table S2).

FAAF-duplexes
FAAF modification resulted in the most significant reduc-
tion of �Tm by �21.8 and �23.3�C and ��H by 39.4 and
41.1 kcal/mol, respectively, for G*CA and G*CT sequence
contexts (Figure 4a and b and Table 2). This is due to
the bulky acetyl group in FAAF (Supplementary
Figure S2). Like FABP and FAF, however, entropy
compensation contributed a stabilization, that is,

Table 2. Thermal and thermodynamic parameters derived from DSC curves

CCATCG*CAACC CCATCG*CTACC
GGTAGCGTTGG GGTAGCGATGG

��H (kcal/mol) ��S (eu) ��G37 (kcal/mol) Tm (�C) ��H (kcal/mol) ��S (eu) ��G37 (kcal/mol) Tm (�C)

Controla 79.1 214.9 12.4 64.5 75.0 203.9 11.8 63.0
FABPa 76.4 214.1 10.0 54.3 64.2 178.3 8.9 51.8
FAFa 65.7 180.7 9.7 55.4 58.6 160.1 8.9 53.4
FAAFa 39.7 106.1 6.8 42.7 33.9 88.8 6.4 39.7

��H (kcal/mol)b ��S (eu)c ��G37 (kcal/mol)d �Tm (�C)e ��H (kcal/mol)b ��S (eu)c ��G37 (kcal/mol)d �Tm (�C)e

FABPa 2.7 0.8 2.4 �10.2 10.8 25.6 2.9 �11.2
FAFa 13.4 34.2 2.7 �9.1 16.4 43.8 2.9 �9.6
FAAFa 39.4 108.8 5.6 �21.8 41.1 115.1 5.4 �23.3

The average standard deviations for �G, �H, and Tm are ±0.2, ±2.0, and ±0.4, respectively.
aThe results were calculated from integration of the DSC curve directly. �G and �H represent the heat absorbed during duplex melting at 0.12mM.
b��H=�H (modified duplex) � �H (control duplex).
c��S=�S (modified duplex)��S (control duplex).
d��G=�G (modified duplex)��G (control duplex).
e�Tm=Tm (modified duplex)�Tm (control duplex).
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��G=5.6 and 5.4 kcal/mol, respectively, for the G*CA
and G*CT.

Molecular dynamics/potential mean force calculations

To further understand the impact of lesion modification
on the G*CA and G*CT duplexes, MD simulations were
performed in combination with potential mean force
(PMF) calculations. PMF calculations yield the free
energy as a function of the extent of flipping of the
modified G* base (Supplementary Figure S7). Individual
PMFs were determined with G* in the either anti or syn
orientations, whereas only the anti orentation was studied
for the unmodified duplexes.

Figure 5 shows the free energies from the PMFs. In
the unmodified and anti-G* PMFs, there is a deep
minimum in 330–360� corresponding to the Watson-
Crick (WC)-base paired state (31), which in case of
lesions corresponds to the B-state. Deep minima are also
present in 330–360� in the syn-G* PMFs, which corres-
ponds to the S-state. The conformer assignments were
made based on the published experimental NOE data
(Supplementary Figures S8–S11 and Supplementary
Tables S3–S6) (42–45). The relative energies of the
flipped states are highest in the unmodified duplexes in
all cases indicating that the lesions lower the relative
energies of the flipped state and/or destabilize the low-
energy B- or S-states. Notably, the free-energy surfaces
show the relative energies of the flipped states to be
lower in the syn PMFs, consistent with the conformational
thermodynamic data discussed above. As such, the lowest
energies of the flipped state occur with FAAF (Table 2)
indicating, that the syn FAAF may sample a wider range
of conformations as compared with FABP and FAF, con-
sistent with the 19F NMR data (Figure 2). Further valid-
ation of the PMFs is the energies of the minima being
about 15 kcal/mol, which is in good agreement with the

experimental �G6¼ of 14.1 kcal/mol required for a B/S con-
version. Representative B/S/W structures from the
NOE-based PMFs are shown in Supplementary Figures
S12–S14. For all three lesions, the presence of WC base
pairing in the B-state and the stacking of the adduct into
the duplex in the S-state are evident. In contrast, the struc-
ture of the W-state, which is only populated by FAAF, is
highly distorted.
In the anti-G* PMFs, the average solvent accessible

surface areas (SASAs) of both the lesion and fluorine
atom are high in the vicinity of the B state, consistent
with the location adduct in the major groove (Sup-
plementary Figure S2). For the syn PMFs, the SASA
values are low in the regions corresponding to the
S-state, consistent with adducts being stacked inside the
helices. However, the SASA values are higher with FAAF
compared with FABP and FAF, suggesting an altered en-
vironment for FAAF. In addition, the syn PMFs of
FAAF exhibits SASA minima in the 60–120� region,
which encompasses the W-state. These suggest a funda-
mental difference in conformational properties of FAF/
FABP versus FAAF, consistent with the significant differ-
ence in the 19F chemical shifts for the FAAF species and
thermodynamic data.
Shown in Supplementary Figure S15 are bending prob-

ability distributions for the B-, S- and W-states for the
three lesions in both the G*CA and the G*CT contexts.
In the B- and S-states, the extent of bending is significantly
larger with FAAF (cyan) versus FABP (red) and FAF
(blue). These results are consistent with the experimental
data obtained from the greater blue shift in CD
(Supplementary Figure S5 and Table 1), although the
changes in G*CA occur only in the S-state (Supplemen-
tary Figure S15). In addition, the simulations indicate the
extent of bending for FABP to be similar to that of FAF.
The significant increase in bending in FAAF is consistent
with the greater destabilization of the duplexes caused by

Figure 5. Free-energy profiles as a function of the pseudo-dihedral angle phi (Supplementary Figure S7) from PMF calculations over the sampling
range of 0.5–3 ns for G*CT-FABP, G*CA-FABP, G*CT-FAF, G*CA-FAF, G*CT-FAAF and G*CA-FAAF modified sequences (red and blue) and
the unmodified GCT and GCA (black).
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the FAAF lesion (Table 2). Concerning the bending, cal-
culation of local helicoidal parameters revealed significant
differences in twist and tilt for base pair 8, where the A/T
switch occurs (Supplementary Table S7). For example,
twist values are systematically larger and tilt values are
less negative in GCT versus GCA sequences. These differ-
ences suggest that the local structural alteration associated
with the A/T switch is being propagated to the overall
helix.

Escherichia coli UvrABC incision
DNA substrates containing lesions in the defined
sequences were subjected to incisions by the
E. coli UvrABC system in a kinetic assay. These substrates
were radioactively labeled at the 50-end of the adducted
strand and the major incision products separated on
a urea-PAGE gel running under denaturing conditions
(Supplementary Figure S16). The incision occurred at
the eighth phosphate bond 50 to G*, which is consistent
with the currently accepted mechanisms of UvrABC-
based NER (28,29). The substrates were incised at differ-
ing efficiencies depending on not only the type of
DNA adduct but also the sequence context (Figure 6).
Specifically, the G*CA sequences were incised at higher
rates by �2-fold than G*CT, while the order
of incision rate of adducts is FAAF>FAF&FABP
for both sequences, with FAAF being incised
with 2- to 3-fold greater efficiency than the other lesions.
It should be noted that the 50-incision products

appeared as doublet bands (Supplementary Figure S16).
Similar incision products of this type of lesion have been
observed previously (35,46,47). This is likely either due
to the type of arylamine lesions or due to the structural
heterogeneity exhibited by this type of lesions as
demonstrated in this study and previous studies, suggest-
ing that UvrABC may make the 50-incision at the site
different by one nucleotide for the different conformers
of arylamine lesion.

DISCUSSION

Conformational and thermodynamic effects on the
G*CA/G*CT transition

The NMR/ICD results indicate that lesion stacking is
affected considerably by a polarity swap at the 30-next
flanking base (GCA! GCT). The effect was most signifi-
cant for FABP, which produced a dramatic increase in
S-conformer (0–60%) (Figure 2a). This is an extraordinary
DNA sequence effect. A similar trend was observed for
FAF, although the S-conformer was only 24% greater
in G*CT than in G*CA (Figure 2b). Unlike FABP and
FAF, the impact of the A/T swap on FAAF was minimal;
specifically, the syn-glycosidic S- and W-conformers
remained relatively unchanged (�78 to �83%)
(Figure 2c). Interestingly, the increase of W-conformer
(14–30%) appeared to be compensated by a concomitant
decrease of S-conformer (64–53%). These data indicate
that the N-acetyl group in FAAF can push the low-
energy syn-S/W-equilibrium toward W (see ‘N-acetyl
factor’). Overall, these results indicate that the A/T
swap has the largest impact on the most stable system,
whereas the least stable FAAF lesion is the least impacted.

As expected, all modified duplexes were consistently
destabilized compared with the controls (Figure 4 and
Table 2): FAAF>FAF&FABP. The G*CA/G*CT tran-
sition led to further destabilization, which was associated
with increases in lesion stacking (greater S/W) for all three
lesions. Obviously, a higher population of the syn-S-/
W-conformer states is expected to disrupt the double
helical structure, which would significantly reduce the
enthalpy, accompanied by a compensatory increase in
entropy (22).

Lesion-induced DNA bending as a major NER
recognition factor

For each lesion, a greater proportion of B-conformer
was observed in G*CA (FABP: 100%, FAF: 34% and
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FAAF: 22%) than G*CT (FABP: 40%, FAF: 10% and
FAAF: 17%). Moreover, good correlation between the
magnitudes of change in conformer populations and
incision efficiencies was found among the lesions. In
FABP, the A/T polarity swap caused a 60% change in
S-conformer proportion and a 3-fold reduction in repair
efficiency. The changes were significantly lower in FAF
and FAAF (24 and 5–15%, respectively), as were the
repair efficiencies (2.0- and 1.8-fold, respectively). At a
glance, the results seem to suggest B-conformers have
greater reparability than S-conformers. This feature is in
clear contrast to the trend that has been observed previ-
ously for AF and AAF in certain sequence contexts, that is,
the S-conformer is more reparable than the B-conformer
(7,35). This type of conformation-specific repair is not
only restricted to arylamines but also applied to other
bulky lesions. For instance, Geacintov et al. have
reported that the base-displaced cis-N2-dG adducts of
benzo[a]pyrene are incised more efficiently than the
minor groove–orientated trans-N2-dG adducts (33).

However, the E. coli repair results in this study seem to
match well with events of adduct-induced DNA bending/
distortion, as evidenced by blue shifts in CD (Table 1) and
retardation of mobility in electrophoretic mobility shift
assay (Figure 3). The slowed mobility indicates flexibility
at the lesion site as observed by Tsao et al. for (+)-trans-
anti-[BP]-N2-dG lesion in the TG*T sequence context with
concomitant thermal destabilization (41,48). Similarly, the
bulky N-acetyl FAAF exhibited significantly slower elec-
trophoretic mobility compared with FAF and FABP
within the same sequence context. In case of sequence,
the G*CA duplex exhibited consistently greater bending
than its G*CT counterpart, with the effect being signifi-
cantly greater for FAAF than FAF and FABP. A similar
CD pattern has been reported for AAF-modified NarI
duplexes related to the formation of a B-Z junction (49).
Clearly, the A/T swap alters the conformational equilib-
rium anti (B-) to syn (S- or W-). It should be noted
that the G*CA (–TCG*CAA–) sequence contains a
stretch of alternating pyrimidine:purine bases, which are
predisposed to DNA bending (50–52). In contrast, such a
stretch is interrupted in the highly S-conformeric G*CT
(–TCG*CTA–) sequence. It is possible that the
B-conformer may facilitate DNA bending, due to the
exposure of the carcinogen moiety to the major groove’s
hydrophilic environment. In both sequences, a major
effect was observed with FAAF, followed by FABP and
FAF (Figure 3). However, MD/PMF simulations indicate
that the major changes in G*CA occur in the S-state.
Also, unlike the CD data, there were no significant differ-
ences in electrophoretic mobility between the two
sequences (Figure 3). The reason for the inconsistency in
the mobility, CD and MD data demonstrating the
sequence effect is not apparent, but the greater bending
and flexibility of FAAF over FABP or FAF is in good
agreement with the observed repair efficiencies (FAAF
>> FAF&FABP; Figure 6).

The repair results in Figure 6 along with previously
reported work on polycyclic aromatic hydrocarbons
(41,53) and arylamines (7) indicate that lesion-induced de-
stabilization of DNA is a major determining factor for

repair. However, these lesions were consistently repaired
two to three times more efficiently in G*CA than in
G*CT, which was not consistent with relative thermo-
dynamic stabilities observed for each. The inconsistence
is likely due to the second step of damage recognition
(54) that becomes much more significant for FAAF
versus FABP and FAF within a given sequence. Unlike
the initial step of damage recognition by UvrA2, which
depends on DNA conformation and sequence, the
second step of recognition is well known to be
characterized by the direct interaction of UvrB with
adduct itself on DNA strand opening (47,54–56). In
other words, the structure and chemistry of the lesions
matter more with UvrB than UvrA2. Recently, Liu et al.
reported the NER incision efficiencies of the bulky
benzo[a]pyrene and equine estrogen substrates using
human HeLa cell extracts and bacterial UvrABC
proteins (53). They demonstrated that despite having dif-
ferences in the prokaryotic and eukaryotic NER proteins,
XPC-RAD23B and UvrB, respectively, they exhibit
common feature of b-hairpin intrusion for damage recog-
nition. In addition, it was found that local thermodynamic
destabilization near the lesion site assists the insertion of
b-hairpin, thus recognition.
Clearly, this study shows that the thermodynamic de-

stabilization of the DNA duplex along with lesion flexibil-
ity promotes strand opening and thus the second step of
damage recognition. The presence of the N-acetyl group
(see below) may make FAAF more efficiently recognized
than FAF and FABP at the second step due to its flexible
nature and greater destabilization of the DNA double
helix. As for the G*CA/G*CT transition, the initial rec-
ognition step conducted by UvrA2 should be a major de-
terminant factor as the same efficiency of recognition at
the second step is expected for the same type of lesion.
Thus, bending appears to be an important factor for the
DNA damage recognition. Indeed, a recent crystal study
by Jaciuk et al. (10) found that in the active site of UvrA,
the fluorescein-modified duplexes were bent by �15� and
the structure was related to the kinked structure of
psoralen and PAH adducts according to NMR (57).
They concluded that the UvrA2 protein does not have
direct chemical contacts with a lesion per se, but indirectly
senses the overall helical distortion (unwinding and
bending) (10). Because energy is required for the
bending, formation of the pre-bent DNA induced by
bulky lesions would likely enhance the UvrA2 binding
and thus damage recognition.
Cai et al. have reported a similar repair trend for the

50-CACACCG*CACAC-30 sequence versus 50-CCATC
CG*CTACC-30, in which G* is the major mutagenic
lesion derived from the environmental carcinogen
benzo[a]pyrene, 10S (+)-trans-anti-B[a]P-N2-dG (39).
A greater repair (1.6-fold) of the CG*CA duplex over
the CG*CT counterpart was attributed to its higher
bending of the distant 50-end sequences, as evidenced by
gel experiments and MD simulations; these findings are
consistent with the bending argument made in this
study. Although the sequence contexts (underlined
above) near the lesion site, including the 30-next flanking
base, are identical to those used in this study, they did not
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consider the structural and repair consequences of the
GC*A/G*CT swap.

N-acetyl factor

Although a relatively small modification, the N-acetyl
group has an important structural consequence. As
shown in Figure 7, the lack of the acetyl moiety in
G*CT-FAF allows the G* moiety (red licorice represen-
tation) to point away from the sugar and stay in the plane
of the GC base pair, where the N-H bond is directed
toward the sugar. However, in G*CT-FAAF, the acetyl
group will have a steric clash with the sugar moiety of G*
(identified with a black arrow), thereby leading the
fluorene moiety (cyan) to be perpendicular to the G*
ring system. This persistent ‘perpendicular’ lesion orienta-
tion is predicted to lead to more disruption of the DNA
duplex. A similar observation regarding the differences in
the orientation of AF and AAF was reported by Mu et al.
(19) who have conducted a NER study of these lesions in
human HeLa cells. MD simulations in that work indicate
that the greater repair susceptibility of AAF stems from
steric hindrance effects of the acetyl group, which signifi-
cantly diminish the adduct base stabilizing van der Waals
stacking interactions relative to AF. The persistent ‘per-
pendicular’ FAAF mentioned earlier could raise barriers
between conformations of FAAF modified DNA, result-
ing in the overall lower free energy of the syn-G* PMFs
for FAAF, compared with FABP and FAF. In other
words, the N-acetyl group in FAAF could act as a ‘con-
formational locker’ (7) that orients the adduct in a
position that will lead to greater destabilization of the
DNA duplex (Figure 4 and Table 2), as well as the
increased bending observed in CD (Table 1) and
mobility assays (Figure 3). As a result, FAAF lesions
are repaired at significantly greater rate compared with
the FABP and FAF lesions (7).

CONCLUSION

The A to T polarity swap in the arylamine-modified
G*CA/G*CT transition produced a dramatic increase in
destabilized stacked conformation but resulted in

unexpected 2- to 3-fold lower NER efficiencies. These
results are consistent with lesion-induced DNA bending/
distortion. As for lesions, FAAF was repaired three to
four times more efficiently than FABP and FAF lesions,
which is consistent with the extent of bending and helix
destabilization, as well as the steric constraint in the
duplex (‘N-acetyl factor’) (7). A number of different
damage recognition parameters have been implicated in
the molecular mechanisms of NER (9,55,58). However,
it is known that thermal/thermodynamic destabilization
and DNA distortion/bending are important factors for
damage recognition by repair proteins (9,39,53). The
results of this study show that lesion-induced DNA
bending/thermodynamic destabilization is a more import-
ant NER factor than the usual S/B conformational het-
erogeneity, as has been observed previously for AF and
AAF in certain sequence contexts (7,35). This work rep-
resents a novel 30-next flanking sequence effect as a unique
NER factor for bulky arylamine lesions in E. coli. Taken
together, the results of this study demonstrate the com-
plexity in DNA recognition factors for repair of bulky
arylamine lesions in E. coli.
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