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ABSTRACT

Here, we describe gene expression compositional
assignment (GECA), a powerful, yet simple method
based on compositional statistics that can validate
the transfer of prior knowledge, such as gene lists,
into independent data sets, platforms and technolo-
gies. Transcriptional profiling has been used to de-
rive gene lists that stratify patients into prognos-
tic molecular subgroups and assess biomarker per-
formance in the pre-clinical setting. Archived pub-
lic data sets are an invaluable resource for subse-
quent in silico validation, though their use can lead
to data integration issues. We show that GECA can
be used without the need for normalising expression
levels between data sets and can outperform rank-
based correlation methods. To validate GECA, we
demonstrate its success in the cross-platform trans-
fer of gene lists in different domains including: blad-
der cancer staging, tumour site of origin and misla-
belled cell lines. We also show its effectiveness in
transferring an epithelial ovarian cancer prognostic
gene signature across technologies, from a microar-
ray to a next-generation sequencing setting. In a final
case study, we predict the tumour site of origin and
histopathology of epithelial ovarian cancer cell lines.
In particular, we identify and validate the commonly-
used cell line OVCAR-5 as non-ovarian, being gas-
trointestinal in origin. GECA is available as an open-
source R package.

INTRODUCTION

Gene expression profiling provides a downstream reflection
of the system under study, capturing the effects of multi-
ple drivers of disease behaviour, including gene methylation,
mutation and copy number aberration. It can thus be used
to characterise patient cohorts and model drug response, fa-
cilitating the discovery of novel molecular sub-group clin-
ical tests (1,2). However, due to unrecognised systematic
bias, under-powering and lack of validation, the general-
isability and efficacy of many gene-list based stratification
methods is questioned (3,4). In breast cancer, random gene-
sets can be as effective in stratifying patients as published
prognostic gene lists (5). Therefore, not surprisingly, only
0.07% of published biomarkers have made their way into
routine clinical use (6), such as those with Section 510(k)
clearances from the US Food and Drug Administration
including MammaPrint, Prosigna (PAM50) and Pathwork
Tissue of Origin Test (7–9).

With the advent of next generation sequencing (NGS),
researchers are now faced with the challenge of validating
gene-lists and multiple sub-groups derived from archived
microarray-based transcriptome data. There is a risk of
systematic bias if data sets are integrated, due to differ-
ences in the scale of intensity values (10,11). Tools to ad-
dress cross-study effects do exist, but cannot be cannot be
guaranteed to work as further biases may be introduced
through cross-platform normalisation (10,12). In the pre-
clinical setting, the integration of gene expression data sets
is of particular importance when selecting the most appro-
priate cell lines to model newly-discovered molecular sub-
groups. Semi-supervised clustering with such gene lists has
proved problematic if data sets have been profiled sepa-
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rately. Often the cell lines would simply cluster together in
a distinct group separate from clinical samples (13,14).

An approach is therefore required that will enable the
transfer of prior knowledge between different data sets,
platforms and technologies in order to support transla-
tional discovery efforts and in silico validation.

In this paper, we demonstrate that data integration issues
can be addressed by through the use of proportions (com-
positional ratios) rather than the actual values of expres-
sion levels. The comparability of gene expression composi-
tional ratios is evaluated using two compositional data mea-
sures: Aitchison’s (AD), a distance metric as used in geo-
statistics (15,16) and Kullback–Leibler divergence (KLD),
a dissimilarity distance, which is derived from information
theory (17). We evaluate both measures (a composite term
for AD and KLD), in an approach termed gene expression
compositional assignment (GECA), with comparison to a
Spearman rank correlation (SRC)-based method (18). We
hypothesised that compositional ratios would contain in-
formation on the inter-relationships between gene expres-
sion levels, thus having the potential to outperform SRC ap-
proaches. We applied GECA successfully to gene list trans-
fer in data sets covering bladder cancer staging, tumour site
of origin, epithelial ovarian cancer (EOC) prognosis and
mislabelled cell lines, across different platforms and tech-
nologies. Finally, using EOC as a case study, we present
how our approach can determine the tumour site of origin
and histopathology of cell lines using random gene-sets and
microarray transcriptional profiles of primary tumours and
pathologically-reviewed EOC histopathology data sets.

MATERIALS AND METHODS

Definition of distance metric/dissimilarity distance

Data are in compositional form when its components sum
up to a whole, e.g. the unit one or 100%. Both AD, a dis-
tance metric, and KLD, a dissimilarity distance, are suit-
able for comparing data in compositional form. Given two
samples, S1 and S2, that are represented by two sets of gene
expression profiles, geS1 and geS2, respectively, using gene
lists of size n, such that:

geS1 = (geS11, geS12, . . . . . . . . . . . . . . . . . . , geS1n−1, geS1n)

geS2 = (geS21, geS22, . . . . . . . . . . . . . . . . . . , geS2n−1, geS2n)

where the expression level of gene 1 in sample 1 is repre-
sented by geS11 and the expression level of the same gene
in sample 2 is represented by geS21, then the compositional
gene expression profiles are given by:

gcS1 = (gcS11, gcS12, . . . . . . . . . . . . . . . . . . , gcS1n−1, gcS1n)

gcS2 = (gcS21, gcS22, . . . . . . . . . . . . . . . . . . , gcS2n−1, gcS2n)

where gcS1i = geS1i∑n
i=1 geS1i

and gcS2i = geS2i∑n
i=1 geS2i

.
The AD metric is given by (15):

d2
A (gcS1, gcS2) =

∑n

i = 1

[
log (gcS1i )
gm (gcS1)

− log(gcS2i )
gm (gcS2)

]2

where gm(gcS1) and gm(gcS2) are the geometric means of
compositional profiles gcS1 and gcS2, respectively, and are

defined as: gm (gcS1) = (
∏n

i=1 gcS1i )
1
n and gm (gcS2) =

(
∏n

i=1 gcS2i )
1
n .

The KLD distance is given by (17):

d2
K LD (gcS1, gcS2) = n

2
log

[
gcs1
gcs2

.
gcs2
gcs1

]

where: gcs1
gcs2 and gcs2

gcs1 are the arithmetic means

of the ratios ( gcs11
gcs21

,
gsc12
gsc22

, . . . . . . . . . ,
gcs1n
gcs2n

) and

( gsc21
gsc11

,
gsc22
gcs12

, . . . . . . . . . ,
gcs2n
gcs1n

) respectively.
Compositional data analysis is based on two key princi-

ples: invariance to scale and compliance with subcomposi-
tional coherence (19). To be scale invariant gcS1 does not
differ when geS1 is transformed by a scalar factor. In sub-
compositional coherence, the relative ratios of components
within gcS1, are the same as the relative ratios of compo-
nents within a subcomposition of gcS1 (19).

In the bladder staging, tumour of origin, prognostic EOC
and mislabelled cell line data sets, the two compositional
measures were compared against SRC (20). In the EOC case
study, only the AD measure was used.

Gene expression compositional assignment using gene lists

The following analytical pipeline was followed for the blad-
der staging, tumour of origin and prognostic EOC data sets
(Supplementary Figure S1).

Gene list analytical pipeline

Data processing. In studies with multiple platforms or
technologies (bladder staging and epithelial ovarian can-
cer prognosis) genes with multiple probesets mappings were
median summarised, otherwise the data were maintained at
the probeset level. The gene list associated with the reference
data set was then applied to both reference and query data
sets. If the data were in log-transformed form, it was inverse
transformed. Gene expression levels were then converted to
gene expression compositional ratio format.

Leave-one-out cross-validation. Leave-one-out cross-
validation (LOOCV) was carried out in both reference and
query data sets using the reference data set gene list and
observed group labels using GECA (AD and KLD) and
SRC measures. For LOOCV in each data set, one sample
was removed and compared to the remaining samples
using the chosen measure. In a process similar to Dancik
et al. (18), the measure scores for each group label were
aggregated and the average measure calculated. For GECA
(AD and KLD), the lowest score was taken as the assigned
group. When using SRC, the highest average score was
used to assign the group of the unknown sample. Against
the observed group labels of each data set, the accuracy
metric (number of samples with correctly assigned group
labels/total number of samples) was used. For each accu-
racy metric, 95% confidence intervals were devised using
the mean squared error.
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Reference data set group label assignment. We evaluated
the assignment of group labels to query data sets using a
reference data set. The same gene list as in the LOOCV sec-
tion was used. Each sample in the query data set was com-
pared to all the samples in the reference data set. As in the
LOOCV stage the average of each measure was calculated
and the assigned group allocated and the accuracy metric
calculated against observed groups provided with each data
set.

Gene list permutation. We considered the effect of the re-
moval of genes, from a gene list, on the performance of AD,
KLD and SRC to assign group labels. In a two-class con-
text, using reference and query data sets with a common
gene list, an overall measure was calculated for each query
sample with respect to each reference group. Taking each
query sample, genes were removed, without replacement,
in decreasing order of percentage composition. After the
removal of each gene, the measure was re-calculated and
presented as a fraction of the original score using the full
gene list. The mean group measure scores (averaged over all
query data set samples) were plotted against the number of
genes removed.

Bootstrapping. For robustness, a bootstrapping procedure
was carried out. In this procedure, the observed ratio of
subgroup samples was maintained in the reference data set,
while samples were selected with replacement. This was re-
peated 10 000 times, the number of times (divided by 10 000)
each group was assigned was taken as a P-value. This P-
value together with the observed and assigned groups was
used to calculate the bootstrapped area under the curve
(AUC) score.

Random gene-set permutation. Random gene-sets (n = 10
000) were used to evaluate the confidence in each of the
gene lists. Group assignment using random gene-sets was
repeated 10 000 times, the number of times (divided by 10
000) each group was assigned was taken as a P-value.

Application to data sets with gene lists

Bladder staging. To demonstrate the ability of GECA (AD
and KLD) to work across microarray platforms we first se-
lected four bladder cancer data sets (21–24) as used in Lauss
et al.’s study (25), together with a bladder staging gene list
(21). The Sanchez–Carbayo et al. (21) bladder staging gene
list, consisting of 249 probesets, was selected as the Lauss
et al. (25) study concluded that lists of at least 150 genes
in length were the most accurate in stage and grade classi-
fication. To use this gene list, bladder cancer stages Ta/T1
were classed as 1 (non-muscle invasive (NMI)), with stages
T2 and above labelled as 2 (muscle invasive (MI)). Staging
information was available for all four data sets and was used
as observed group labels. All four data sets were processed
as described in Lauss et al. (25) with the exception of cross-
platform normalisation, merging the sample sets, quantile
normalisation and gene-centring. Additional data set com-
positional details can be found in Supplementary Table S1.
LOOCV, reference data set group label assignment, signa-
ture permutation, bootstrapping and random gene-set per-
mutation were carried out as previously described.

Tumour site of origin. To demonstrate the ability of GECA
(AD and KLD) to work in a setting with multiple group la-
bels, a tumour site of origin data set was used [http://biogps.
org/downloads/] (26). In the original study a training set of
100 and a test set of 75 tumour site of origin samples were
used (one of the test samples was unavailable). The train-
ing set was used as a reference data set in this study, while
the test set was used as a query data set. The reference data
set consisted of primary tumour samples from: prostate,
bladder, breast, colorectal, pancreas, gastroesophageal, kid-
ney, liver, ovarian and lung. The query data set comprised
both primary tumours and metastatic samples. The pro-
vided tumour site of origin data provided with each sam-
ple was used as observed group labels. The original study
(26) had developed a 216 gene (probeset level) list to distin-
guish between the 11 different tumour sites of origin within
the reference data set. Additional data set compositional
details can be found in Supplementary Table S2. LOOCV,
reference data set group label assignment, bootstrapping
and random gene-set permutation were carried out as pre-
viously described, with the exception of the AUC score, a
version suitable for multi-class predictions was used instead
(27). Results were presented for both the full query data set
and ten metastatic samples as these were treated as ‘tumour
of unknown origin’ being derived from secondary tumours
where the primary site was known.

Epithelial ovarian cancer prognosis. To demonstrate the
ability of GECA (AD and KLD) to work in a cross-
technology setting we selected a data set comprising 215
EOC samples (Stage II-IV) which had had been used to
develop a prognostic signature of 193 genes in The Cancer
Genome Atlas (TCGA) EOC study (28). The signature clas-
sified patients (using overall survival right-censored at 60
months) based on a t-statistic comparing defined ‘good’ and
‘poor’ prognosis genes. The data for the 215 samples was
available in gene-centric normalised form, based on the inte-
gration of gene expression from Affymetrix (Affy) U133A,
Agilent and Affy HuEx platforms (28,29). Next 294 sam-
ples from the TCGA ovarian data set were identified which
had been profiled on both an NGS and on an Affy-based
microarray platform. Additional data set compositional de-
tails can be found in Supplementary Table S3. Using the
gene-centric data and the classification method as described
(29), good or poor prognosis group labels were assigned to
the 294 patient samples. As 94 samples had been used in
the development of the prognostic signature in the original
study, these were retained for use as a reference set, while
the 200 samples were used as a query set (which was avail-
able in two versions – Affy U133A and Illumina HiSeq).
LOOCV, reference data set group label assignment, boot-
strapping and random gene-set permutation were carried
out as previously described. Survival plots (overall survival,
right censored at 60 months) and hazard ratios (Kaplan–
Meier estimation, log-rank test) with P-values were calcu-
lated for the reference set (Supplementary Figure S3A) and
the query set (Supplementary Figure S3B).

Gene expression compositional assignment (gene-sets).
The following analytical pipeline was followed for the mis-

http://biogps.org/downloads/
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labelled cell lines and EOC cell line studies (Supplementary
Figure S4).

Random gene-set analytical pipeline

Data processing. If available, data sets were downloaded
and used in their processed format (NCI-60: GSE5846),
otherwise CEL files were provided and samples processed
and normalised using the Robust Multi-array Average
(RMA) algorithm. In studies with multiple platforms or
technologies genes with multiple probesets mappings were
median summarised, otherwise the data were maintained at
the probeset level. All data sets were inverse-transformed.

Random gene-sets. Random gene-sets were selected (n =
10 000). For each random gene-set, the data were converted
to a gene expression compositional ratio format. GECA
(AD and KLD) and SRC were used to compare each mem-
ber of the query data sets to the reference data set (AD only
in the EOC tumour site of origin/histopathology study).
The number of gene-sets for which a sample from the ref-
erence data set produced the best measure for a sample
from the query data set was combined to result in an ag-
gregate assignment. Initially in the mislabelled cell lines
study, we examined the effect of varying lengths of random
gene-sets (20, 30, 40, 50, 60, 70, 80, 90,100,125,150,175,
200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650,
700 and 750) with respect to aggregate assignments us-
ing a data set as both query and reference. In the cross-
platform/cross-data set section of the mislabelled cell lines
study, we compared random gene-set lengths of 100, 250
and 500, using the latter length only in the EOC tumour
site of origin/histopathology study.

Random allocation of assignments. The robustness of ob-
served aggregate assignments was tested by random allo-
cation of assignments. A sample in the reference data set
was chosen at random as producing the best measure, this
was repeated 10 000 times, resulting in a random aggregate
assignment. The random aggregate assignment was repli-
cated 10 000 times and compared against the observed ag-
gregate assignment matrix to produce a confidence value.
Results were treated as P-values and adjusted by Benjamini
and Hochberg false discovery rate (FDR) method. Aggre-
gate assignments with an FDR of 0.01 were used. Percent-
age aggregate assignments were calculated from the remain-
ing significant assignments. In the cell line data sets in which
replicates were available, each replicate was treated as an in-
dividual sample. After checking for concordance with re-
spect to individual data (all replicates demonstrated a high
level of agreement), the median assignment was taken and
aggregate assignment calculated as before, followed by ran-
dom aggregate assignments.

Application to data sets using random gene-sets

Mislabelled cell lines. To demonstrate the ability of GECA
(AD and KLD) to work with random gene-sets in the ab-
sence of a gene list we identified a group of potentially mis-
labelled cell lines, where concerns have previously been ex-
pressed regarding cell line authenticity or tissue identity.

Two versions of the National Cancer Institute 60 cell line
data set (NCI-60) were used, accession number GSE5846
(30,31), was obtained from the GEO database, the second,
Cell-Miner, from the National Cancer Institute’s (NCI) on-
line database (32). An internal EOC cell line data set, (AL-
OV), as described later (GEO accession number GSE73638
(31)), was also used. The NCI-60 data set comprised breast,
central nervous system, colorectal, leukaemia, melanoma,
lung, ovarian, prostate and renal cancers. The lung cell line,
NCI-H23, was missing from the Cell-Miner version of the
NCI-60 data sets. The seven mislabelled cell lines, (i) MDA-
MB-435, MDA-N and M14, (ii) SNB-19 and U251 and (iii)
OVCAR-8 and NCI-ADR-RES were selected for investi-
gation into their alignment with other cell lines (33–36).
All seven cell lines were present in the two versions of the
NCI-60 data set, only OVCAR-8 and NCI-ADR-RES were
present in the AL-OV data set. Additional data set compo-
sitional details can be found in Supplementary Tables S4,
S5 and S6.

The GSE5846 data set was first used as both a query and a
reference data set, in a LOOCV-style comparison and tested
the effect of varying random gene-set length (from 20 to
750) on percentage assignment, performing the random al-
location of assignments on three key lengths, 100, 250, 500.
Next, to demonstrate the validity of GECA in assigning cell
lines to their equivalent across data sets, on the same plat-
form, the seven cell lines in the GSE5846 data set (together
with the lung cancer cell line NCI-H23) were used as a query
data set against the Cell-Miner version, as a reference data
set (32). Then, the two cell lines OVCAR-8 and NCI-ADR-
RES, profiled on the OV-DSA platform from the AL-OV
data set were used as the query data set, with the GSE5846
NCI-60 data set used as reference.

Tumour site of origin and histopathology of epithelial ovarian
cancer cell lines. Three query data sets were used in the
EOC cell line case study: Cell-Miner (32); CCLE (37), and
an internal EOC cell line data set (AL-OV). In total, 58 cell
lines were represented in at least one query data set.

The largest EOC cell line data set was obtained from the
Broad Institute’s Cancer Cell Line Encyclopedia (CCLE)
(37), comprising 52 cell line samples. The NCI-60 data set
was obtained from Cell-Miner, the NCI’s online database
(32), comprising seven cell lines, including three replicates
per cell line. Both were profiled on the Affy U133 Plus 2 plat-
form. The 18 cell lines in the AL-OV were prepared and pro-
cessed as described in Supplementary Methods. The final
data set comprised 18 cell lines, including three replicates
(n = 17) and one replicate (n = 1). The data have been de-
posited in GEO (31) and is accessible through GEO Series
accession number GSE73638. Additional data set composi-
tional details can be found in Supplementary Table S7. Two
reference data sets were used: expO and an internal EOC
histopathology data set, AL-OVH (GEO (31) accession
number GSE73638). The tumour site of origin data set was
obtained from the International Genomics Consortium’s
Expression Project for Oncology (expO) (data accessible
from the GEO database (31), accession number GSE2109).
The data set comprised 2158 samples profiled on the Affy
U133 Plus 2 platform. The data set was then curated by
primary tumour site of origin. Additional data set compo-
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sitional details can be found in Supplementary Tables S8
and S9. The EOC histopathology data set (AL-OVH) com-
prised 50 samples obtained from a retrospective data set
collected in Edinburgh from 2000 to 2010 (Ethics reference
number: 07/S1102/33). All patients had received platinum-
based chemotherapy. The EOC histopathology data set was
reviewed by two pathologists (ARW and WGM) and com-
prised the five main ovarian sub-types: high-grade serous
(n = 13), low-grade serous (n = 7), clear cell (n = 12),
mucinous (n = 9) and endometrioid (n = 9). The data set
was profiled on the OV-DSA .The data have been deposited
in GEO (31) and is accessible through GEO Series acces-
sion number GSE73638. All 58 cell lines in three query
data sets were first compared to the tumour site of origin
data set. Cell lines with highest-ranked percentage grouped
aggregate assignments to ovarian, fallopian tube and en-
dometrium tumour site of origin group labels were retained.
The remaining cell lines were next compared to the internal
EOC histopathology data set. Compound aggregate assign-
ments, with respect to EOC sub-type labels, i.e. clear cell, en-
dometrioid, mucinous, serous (high-grade) and serous (low-
grade) were calculated as with the tumour site of origin ref-
erence data set. For percentage compound aggregate assign-
ments, a minimum threshold of 50% was selected by which
to classify a majority histology.

RESULTS

Gene lists

To apply GECA, the user selects reference (with group la-
bels) and query gene expression data sets (Figure 1A). In
both, a user-defined set of genes is selected and their expres-
sion levels converted into compositional form (Figure 1B).
Using pairwise comparisons, the similarity between each
query and reference sample is calculated using a measure
(Figure 1C). As the value of the measure decreases, the rel-
ative similarity between samples increases (Figure 1D). The
label of the reference group with the lowest average mea-
sure is assigned to the query sample. In the absence of a
pre-defined gene list, the second approach utilises random
gene-sets (a list of genes selected without replacement ran-
domly from all available genes) from the full list of inter-
secting genes. Reference assignments can be viewed at the
individual sample level or at group label aggregate form. To
demonstrate the utility of GECA, we selected three studies
in which a gene list and observed group labels were available
for both query and reference data sets.

Bladder cancer staging. First, the effectiveness of GECA
was tested in a binary class, multi-microarray platform set-
ting. We used a gene list and data sets (21–24) from a vali-
dation study of bladder cancer staging (25). LOOCV results
using GECA were comparable to results obtained by SRC
and the results published in the original study (25) (Supple-
mentary Table S10A). Importantly, this performance was
achieved without the original study’s data merging and
cross-platform normalisation steps. In assigning reference
group labels to the three query data sets, GECA produced
similar AUC results to SRC in two, out-performing SRC
in the third (this data set was profiled on a non-standard
custom-DNA microarray platform) (Supplementary Tables

S10B, S11A–C). This demonstrated GECA’s ability to work
across data sets and platforms. To investigate the effect of
the sequential removal of genes, in decreasing order of com-
positional contribution, from each query data set gene list,
we considered the measures for the reference group labels as
a fraction of the measure using the full gene list. For GECA
(AD and KLD) this resulted in a linear-like decrease (Sup-
plementary Figure S5A, B, D, E, G and H), this contrasted
with the non-linear behaviour of SRC (Supplementary Fig-
ure S5C, F and I). This shows that GECA (AD and KLD) is
robust to the underlying input, as compared to SRC, under
depletion of relevant genes.

Tumour site of origin. We next evaluated GECA in trans-
ferring the discriminatory power of a gene list in a multi-
class setting, comprising 11 different tumour sites of origin
(26). LOOCV accuracy using GECA and SRC was com-
parable to the original study’s results (Supplementary Ta-
ble S12A). GECA and SRC produced similar AUC scores
and accuracy result, the latter being comparable to the orig-
inal paper’s classification results (26) (Supplementary Ta-
bles S12B, C and S13). This showed GECA’s effectiveness
in both multi- and binary-class contexts.

Epithelial ovarian cancer prognosis. We then tested
GECA’s ability to transfer a prognostic gene signature
from one technology, microarray, to another, NGS, using
EOC data sets (28). Samples in both query (two versions,
NGS and microarray) and reference (microarray-only)
data sets were assigned ‘good’ or ‘poor’ prognosis labels
as in the original study (28,29) (Supplementary Figure
S3A and B). In particular, GECA (AD) maintained the
same AUC in both microarray and NGS query data sets,
respectively (Supplementary Tables S14A–C, S15A, B
and Supplementary Figures S3C–H). We have therefore
demonstrated GECA’s capacity to transfer prior knowledge
from one technology to another.

Random Gene-Sets

In some cases, a discriminatory gene list is either not avail-
able or appropriate. We therefore assessed the performance
of GECA using random gene-sets, focusing on the effective-
ness of different set lengths (n = 100, 250 and 500).

Mislabelled cell lines. We tested GECA’s ability to iden-
tify mislabelled or cross-contaminated cancer cell lines be-
tween different data sets and platforms. Seven cell lines,
with revised classifications, e.g. breast to melanoma, were
selected from a National Cancer Institute (NCI-60) refer-
ence data set (30). The data set contained both the orig-
inal cell lines and their experimentally-determined equiv-
alent. Within the NCI-60 data set, using a random gene-
set version of LOOCV, varying the random gene-set length
between n = 20 and 750 showed that the association with
GECA or SRC’s performance (without significance adjust-
ment) varied by cell line, with all but one cell line’s assign-
ment level stabilising by n = 500 (Supplementary Figure
S5B). In this case, GECA (AD) and SRC produced com-
parable results between n = 300 and 700, with SRC’s per-
formance dropping thereafter. Also GECA (AD) produced
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Figure 1. Schema of gene expression compositional assignment (A) Heatmaps of hypothetical query and reference data sets using normalised, log-
transformed gene expression levels. The query samples are to be assigned reference group labels. (B) Bar charts of gene expression compositional ratios
in query and reference samples. Gene expression levels are inverse-log-transformed and converted to gene expression compositional ratio format (values
summing to 1). (C) A query sample is compared to each reference sample using GECA. (D) In the network, shaded nodes represent reference samples,
coloured according to group labels. The white node represents a query sample. The relative position of reference nodes corresponds inversely to the GECA
score against query samples. The query sample is assigned the reference group label with the lowest relative measure score (or mean score). Bootstrapping
or random assignment tests the robustness of observed assignments. Non-significant assignments are faded, significant assignments are opaque.
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improved assignments over GECA (KLD) at shorter gene-
set lengths (n = 100 to n = 500) (Supplementary Figure
S5C and D) and between n = 100 to n = 300 (Supplemen-
tary Figure S5B). Examining GECA’s and SRC’s perfor-
mance, this time adjusted for significance, at three gene-set
sizes (n = 100, 250, 500) confirmed improved assignments
with increasing gene-set length, in particular using GECA
(AD) (Figure 2A and Supplementary Tables S16A and B).
One ovarian cell line, OVCAR-8, produced a 100% assign-
ment with a lung cancer cell line (NCI-H23), suggesting a
mislabelling error (Supplementary Table S16C). Next, we
tested GECA’s performance across data sets, using an inde-
pendent NCI-60 reference data set (32). All seven cell lines
had 100% assignments, regardless of method, with their in-
dependent replicate (Supplementary Table S17). The lung
cancer cell line was again assigned to the same ovarian can-
cer cell line, appearing to be identical, transcriptionally. In
a second independent data set (AL-OV, deposited in the
National Center for Biotechnology Information’s (NCBI)
Gene Expression Omnibus (GEO) (31), accession number
GSE73638), which included two of the seven cell lines, in-
creased gene-set size (n = 500) also produced improved as-
signments, in particular with GECA (KLD) (Supplemen-
tary Tables S18 and Supplementary Figures S6A–C). We
thus demonstrated GECA’s ability to transfer prior knowl-
edge across data sets and platforms without a defined gene
list.

Epithelial ovarian cancer cell lines: tumour site of origin.
As a final proof of principle, we tested GECA in a study
to determine the tumour site of origin and histopathology
of EOC cell lines. We chose EOC as some tumours may
arise from non-ovarian sites such as the gastrointestinal
(GI) tract (38). We used random gene-sets of length 500 with
GECA (AD), as this combination produced the most con-
sistent assignments. We first filtered the cell by tumour site
of origin, referencing a publicly available data set of solid tu-
mours (expO) (Supplementary Table S2). This was refined
by a second stage of histopathological assignments, using
a reference data set of expert-pathologically reviewed EOC
samples, each allocated to one of five histopathologies (AL-
OVH, deposited in NCBI’s GEO (31), accession number
GSE73638). We queried these reference data sets using EOC
cell lines from three cross-platform data sets (Supplemen-
tary Table S7) (32,37). Endometrioid EOC and endometrial
cancer are similar at the molecular and morphological lev-
els (39), therefore we filtered cell lines whose majority aggre-
gate assignments were to EOC, fallopian tube (FT) or en-
dometrium tumour sites of origin (Supplementary Figure
S7). All but eight of the 58 cell lines showed assignments
to either EOC, FT or endometrial tumour sites of origin
(Figure 2B, Supplementary Figure S7, Supplementary Ta-
ble S19). We selected OVCAR-5, assigned by GECA to GI
tumour sites of origin, for review by an expert pathologist
(WGM). In pathological review, the immunophenotype in-
dicated a tumour of upper GI origin (Figure 2C), consistent
with the GECA assignment.

Epithelial ovarian cancer cell lines: histopathology. In the
next stage, we were able to obtain majority histopathology
assignments for 26 (out of 50) cell lines (Supplementary Fig-

ure S8, Supplementary Table S20). One cell line, OVCAR-3
was assigned the same histopathology (high-grade serous)
in two out of three query data sets, the non-consensus ver-
sion of the cell line being from a different source. We took
forward OVCAR-3 for pathological review (WGM), which
confirmed the immunophenotype as characteristic of an
ovarian or tubal serous carcinoma. Our assignment results
were next compared to classifications from two recent stud-
ies both of which had used mutation and copy number anal-
yses to characterise EOC cell lines (40,41) (Supplementary
Table S21). We were able to achieve expert pathology con-
firmation of our GECA (AD) assignments in examples of
where we disagreed (OVCAR-5) and agreed (OVCAR-3)
with both studies.

DISCUSSION

The biology represented by gene lists and signatures must
have the capacity to be validated across platforms or tech-
nologies. We have described an approach that circumvents
data integration and cross-platform normalisation limita-
tions through the use of gene expressional compositional ra-
tios. Using our method, GECA (AD and KLD), we demon-
strated at least comparable accuracies with a rank-based
correlation method in multi-platform and technology data
sets, outperforming the latter in certain cases, e.g. bladder
cancer staging and EOC prognosis. We have also shown
that GECA can identify mislabelled cell lines, including
the NCI-H23 lung cancer cell line which has previously
been shown, through short-tandem-repeat (STR) profiling,
to have a common donor origin with HCC60, an ovarian
cell line (42). We established a further use for GECA in the
identification of the tumour site of origin and histopathol-
ogy of EOC cell lines. Authentication testing of cell lines
is now possible through short tandem repeat (STR) profil-
ing (43). The use of cell line data from archived gene ex-
pression data sets, without access to the original samples, is
particularly problematic. As STR-profiling is both simple
and inexpensive, the use of a gene expression-based bioin-
formatics method should, in theory, be redundant. How-
ever, the EOC cell line, OVCAR-5, that GECA identified
as GI (from two data sets), and was confirmed as such
by an expert pathologist, was included in two STR-based
studies (44,45), neither of which suggested a non-ovarian
source. STR profiling looks at donor origin, aiming to ex-
clude cross-contamination by cells from a different donor,
which is an important problem in cell line research (44).
Assessment of tissue origin can complement authentication
testing methods. Problems with donor or tissue identity in-
dicate the need to explore the cell line’s origin further, to
ensure that the cell line is an appropriate model for future
work.

In using GECA, a number of factors need to be consid-
ered. The measures used provide relative assignments, so
thresholding cannot be applied such as with SRC. However
LOOCV, bootstrapping and random assignment testing can
determine the robustness of the reference data set and sub-
sequent assignments. As with any classification-type ap-
proach, an appropriately sampled reference data set is also
required to produce results with translational research util-
ity. In using random gene-sets, aggregate group assignments
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Figure 2. Cell lines by gene expression compositional aggregate assignment (A) Heatmaps showing percentage assignment of cell lines BR: MDA-MB-435,
BR: MDA-N, ME: M14, CNS: SNB-19, CNS: U251, OV: OVCAR-8, UN: NCI-ADR-RES, within a query/reference data set (30) by GECA (AD) for
three different gene-set lengths: (i) 500 (ii) 250 and (iii) 100. (B) Tumour site of origin aggregate assignment, using GECA (AD) for 58 cell lines across three
query data sets (32,37) against a primary tumour site of origin reference data set. Assignments are presented as a spring-embedded network in which the
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can be adjusted for unbalanced groupings within the ref-
erence data set, using propensity-based (normalised prob-
ability) scores. In conclusion, we have demonstrated that
GECA is able to transfer prior knowledge across data sets,
platforms and technologies and can make effective use of
publicly available archived microarray data in conjunction
with those derived from newer technologies available today.

AVAILABILITY

GECA, including AD, KLD and SRC, is available as an
open-source R package. Gene and probe-set level versions
of expO are also available for download, as are example
R scripts for pre-processing data [https://sourceforge.net/
projects/geca/].

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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