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Abstract Miller and Ulrich (2015) critique our claim
(Hoekstra et al., Psychonomic Bulletin & Review, 21(5),
1157-1164, 2014), based on a survey given to researchers
and students, of widespread misunderstanding of confi-
dence intervals (Cls). They suggest that survey respondents
may have interpreted the statements in the survey that we
deemed incorrect in an idiosyncratic, but correct, way, thus
calling into question the conclusion that the results indi-
cate that respondents could not properly interpret CIs. Their
alternative interpretations, while correct, cannot be deemed
acceptable renderings of the questions in the survey due to
the well-known reference class problem. Moreover, there
is no support in the data for their contention that partici-
pants may have had their alternative interpretations in mind.
Finally, their alternative interpretations are merely trivial
restatements of the definition of a confidence interval, and
have no implications for the location of a parameter.
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Understanding how to interpret confidence intervals is crit-
ical to researchers. Particularly in the current climate of
methodological introspection, it is essential that we under-
stand methods in order to decide whether these methods are
worthwhile. In our paper (Hoekstra et al., 2014, henceforth
HMRW), we presented results from a survey with six state-
ments about confidence intervals, all of which we claimed
were false. These six false statements were endorsed at high
rates, which we took as evidence that survey respondents
had deep misunderstandings of confidence intervals.

Miller and Ulrich (2015, henceforth MU), however, argue
that some of the statements we considered incorrect could
be “appropriate under other meanings of ‘probability’ that
are in common use” (Miller & Ulrich, 2015, p. XX); hence,
they argue that our conclusion does not follow. In this
response to MU, we address two related questions: first, are
MU correct that some of the statements in HMRW could be
considered correct by a mere reinterpretation of the word-
ing? Second, to what extent do the data show responding
consistent with MU’s interpretation? We will show that the
reason why the statements are false is deeper than any inter-
pretation of the word “probability”. Further, the data show
strong evidence of confusion over confidence intervals, and
no evidence that participants were responding as MU would
predict, even if MU were correct about the interpretation of
CIs.

It is worth emphasizing that the points we make about
confidence intervals, and probability in general, are not con-
troversial from the the point of view of statistical theory;
they have been emphasized by frequentist and Bayesian
philosophers and statisticians since the inception of CI
theory in the 1930s, even by the authors cited by MU
(Robinson, 1975, 1979; Dempster, 1964; de Groot &
Schervish, 2012). The literature on this topic is vast and
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stretches back a century. In this response, we only just touch
on this literature. In another article, we give a more in-depth
treatment to the topic of confidence interval theory (Morey
et al., 2015). We have intentionally chosen here to avoid rep-
etition of the material in that article; readers will thus benefit
from reading both.

Can we be 95 % bunky?

MU are correct that much of the confusion about probabil-
ity and confidence intervals is due to word choice. Both the
word “probability” and the word “confidence” have mean-
ings outside of their technical ones in frequentist statistics.
In fact, commentators on CI theory have noted that this is
part of the problem (Dempster, 1964; Mayo, 1981; Morey
et al., 2015); users of Cls, for instance, incorrectly believe
that “confidence” can be understood in its lay sense.

In their survey, HMRW offered a 95 % confidence inter-
val for amean of [.1, .4] — not giving any information about
how it was derived — and then asked whether six statements
followed from that information. For instance, statement 4
was:

Statement 4 (HMRW) There is a 95 % probability that
the true mean lies between 0.1 and 0.4.

This statement does not follow from the information
given under any common definition of probability, and so
we took endorsement of this statement as indicating that
participants misunderstood confidence intervals. HMRW
briefly explained that statement 4 was one of several state-
ments that “assign probabilities to parameters or hypothe-
ses, something that is not allowed within the frequentist
framework.” MU admit that “statement 4 is incompatible
with a strict frequentist interpretation in which the current
CI is regarded as a single isolated instance,” and give a
brief review of commentators explaining that the frequen-
tist probability that an observed interval contains the true
value is either 0 or 1, but imply that a mere reinterpreta-
tion of the word “probability” suffices to make the statement
acceptable.

MU’s review, however, does not explain clearly why fre-
quentists made such proscriptions in the first place. They
refer to “strict frequentists,” conjuring the image of an
overbearing parent trying to keep their child from using ver-
nacular. This gives a false impression that the disagreements
between frequentists, Bayesians, and others are merely lin-
guistic. They are not. Interpretation of confidence intervals
is limited by a fundamental philosophical issue that is much
deeper than a linguistic one.

We begin by reviewing the concept of a confidence pro-
cedure. A confidence procedure (CP) is a procedure that
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generates confidence intervals, and is said to have a con-
fidence coefficient of X % if, in repeated sampling, X %
of intervals would contain the true parameter value for all
values of the true value (Neyman, 1937). The idea of a
confidence procedure is conceptually very clear. The con-
fidence coefficient is a so-called “pre-data” measure of the
uncertainty that we have in whether a sampled interval will
contain the true value. All the disagreement comes after
the data are observed and an interval is computed. How
do we then interpret a 95 % confidence interval? Does
it have a 95 % probability of containing the true value?
Neyman (1937) says “Consider now the case when a sam-
ple...is already drawn and the [confidence interval] given...
Can we say that in this particular case the probability of the
true value of [the parameter] falling between [the limits] is
equal to [X %]? The answer is obviously in the negative”
(p- 349). Neyman is saying that the confidence coefficient is
not to be used as a “post-data” probability; that is, an assess-
ment of the probability that the specific interval computed
from the data, includes the true value.

MU would have us believe that Neyman’s negative
answer is merely because of his “strict frequentist” def-
inition of probability. In truth, the problem is deeper.
Statisticians of the era were well aware of a basic fact:
attempts to associate properties of individual events with
long-run frequencies suffer from what is called the refer-
ence class problem (Reichenbach, 1949; Venn, 1888; von
Mises, 1957). To understand the reference class problem,
consider the question of assessing the probability that a par-
ticular African-American women, Jane, will die of cancer.
All frequencies consist of a numerator and a denominator:
the numerator gives the number of events consistent with
the property in question — in this case, dying of cancer —
and the denominator gives the “reference class” of events
that could have had that property. To determine the proba-
bility that Jane will die of cancer we need a reference class.
We might choose as a reference class “women”, in which
case we would accept the long-run relative frequency with
which women die of cancer as our probability. Or, we might
choose “African-Americans” as our reference class. Either
one can be chosen as the probability that Jane herself will
die of cancer, but which one? The two reference classes will
lead to different probabilities.

We might then attempt to resolve the contradiction by
looking at the long-run frequency with which African-
American women die of cancer. This will yield yet a third
probability, different from the first two. But Jane is not
just an African-American woman; she also has a particu-
lar profession, lives in a particular nation, province, city,
and neighborhood. All these reference classes, and their
combinations, will yield a different probability. The most
specific reference class contains only Jane herself, and she
will either die of cancer or not.
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The above example, adapted from Venn (1888), makes
clear the broad implications of the reference class prob-
lem. As Pinker (1999) said, problems such as these
“are not academic; they affect every decision we make”
(p- 349). The reference class problem is the reason why
frequentists do not associate long-run uncertainties with
individual events. The question always arises, “which long
run?”

With confidence intervals, as with Jane, there are many
long runs to choose from. For any given estimation problem,
there will be many methods of constructing a confidence
interval. These methods will yield different intervals with
the same confidence coefficient (e.g., Morey et al., 2015;
Neyman, 1952). Likewise, one can obtain the same interval
via multiple confidence procedures, each with different con-
fidence coefficients (e.g., Pearson, 1939). The multiplicity
of ways that “confidence” can be associated with the same
interval causes a reference class problem. We will show, for
instance, dividing normal-theory-based confidence intervals
into “long” and “short” intervals based on an arbitrarily-
chosen width criterion will give us new reference classes:
long intervals will contain the true value more than 95 % of
the time, and short ones less.

To show that the problem is not about the meaning of
word “probability” as MU claim, we will do something
that may seem strange: we will use the nonword “bunky”
instead, associating it with certain kinds of intervals. We
may say, for instance, that we have 95 % “bunkiness” in
an interval. Note that bunky has no meaning at all, and yet
we will show logical inconsistencies. Suppose we have a
random sequence of confidence intervals generated from a
confidence procedure, and we know that in the long run X %
of them would contain the true value, then for any one of
those intervals we say the interval is X % bunky, or that we
have X % bunkiness in the interval. Put another way, we
have associated X % bunkiness with the interval.

To show that “bunkiness” leads to problems in spite of its
meaninglessness, we consider the case where we have a spe-
cific confidence interval to interpret. Suppose, for instance,
we sample N = 10 participants from a normal population.
Our sample mean is X = 0.25, and our sample standard
deviation is s = 0.21, yielding a 95 % Student’s ¢ con-
fidence interval of [0.1, 0.4]. We now say we have 95 %
bunkiness in that interval.

Suppose that someone reliable tells us that o = 0.15. We
now have more information that we could use in the data
analysis. Notice, however, that nothing about the long-run
behaviour of the Student’s ¢ intervals changes, so our bunk-
iness doesn’t change. Still, 95 % of the Student’s ¢ intervals,
on average, contain the true value; still, either the true value
is in the interval or it is not, and the conditions under which
the interval contains the true value have not changed. We
thus still have 95 % bunkiness in the interval. But now, we

could compute a 95 % z interval of [0.16, 0.34]; another
interval, nested within the first, in which we can have 95 %
bunkiness. This is not yet a logical contradiction, but it does
appear that bunkiness is a strange construct.

We can also obtain a second assessment of the bunkiness
of our first interval. It turns out that 99.8 % of Student’s ¢
intervals contain the true value when s/o = 1.4, and thus
we can have 99.8 % bunkiness in the interval [0.1, 0.4]. This
is due to the easily-proven but not widely-known fact that
wider Student’s ¢ CIs contain the true value with greater
probability than narrower ones. Figure 1 shows the proba-
bility that an interval contains the true value as a function of
the overestimation of the true standard deviation. Intervals
are narrow when o is underestimated, and wide when o is
overestimated.

We have now assigned both 95 and 99.8 % bunkiness
to the same interval. This is the essence of the reference
class problem. When the reference class is all intervals, the
probability is .95; when the reference class is all intervals
with s/o0 = 1.4, the probability is 0.998. In statistics, the
set of all samples such that s/o = 1.4 is called a relevant
subset, because knowledge that our sample is in this subset
can inform our inference.

One might object that the above demonstration required
knowledge of o, but this does not diminish the force of
the argument. The long-run properties of Student’s ¢ remain
exactly the same after knowledge of o was obtained, and
those are the properties on which the bunkiness was based.
It is true that when o is known the z interval is better,
in the sense that the z interval will have a shorter average
width; MU’s logic, however, did not include anything about
optimality; in fact, they say that “[such] criteria have no rel-
evance to the present discussion” (footnote 1, page XX). As
it turns out, however, the objection is moot; we do not need
to know the true value of o to show a contradiction.

0.9
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0.7

Prob. CI contains p

0.5 1.0 2.0
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Fig. 1 Probability that a 95 % Student’s t9 CI contains the true value
as a function of the ratio of the sample standard deviation s to the true
standard deviation o
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Examination of Fig. 1 reveals that the probability of an
interval containing the true value is an increasing function of
s. This suggests a strategy: pick any positive number sq, and
if s > s¢ call the interval “wide.” If s < s¢, call the interval
“narrow.” A simple calculation will show that narrow inter-
vals contain the true value less than 95 % of the time, while
wide intervals will contain the true value more than 95 % of
the time, regardless of what number we choose as sg. Sup-
pose we chose sp = .1. Since s > sg, we would call [.1, .4]
a wide interval. We know that wide intervals contain the true
value more than 95% of the time, and our interval is a wide
interval; thus, we can have more than 95 % bunkiness in the
interval.

We have now associated exactly 95 % bunkiness and
more than than 95 % bunkiness with the same interval,
which is clearly a contradiction. Showing this contradiction
did not depend on the word “bunkiness” having any partic-
ular definition; rather, it depended only on the association
between the “bunkiness” of the interval and a long-run prob-
ability. The issue cannot be defined away; simply replace the
word “bunkiness” with “confidence” or “probability,” and
the problem is the same.’

This problem with confidence intervals has long been
understood by statisticians. Fisher, for instance, understood
the problem immediately. In the first published discussion
of confidence interval theory, Fisher stated that confidence
interval theory “had been erected at considerable expense,
and it was perhaps as well to count the cost. The first
item to which [Fisher] would call attention was the loss
of uniqueness in the result, and the consequent danger of
apparently contradictory inference.” (Neyman, 1934, dis-
cussion at p. 618). Fisher’s critique of confidence intervals
did not arise because he was reluctant to associate proba-
bilities with intervals; Fisher had developed fiducial theory,
which allows precisely that. Fisher’s critique of CI theory
arose because CI theory does not afford a unique associ-
ation between the probabilities and intervals. Neyman and
Pearson were both aware of this fact. After giving an exam-
ple wherein the same interval could be given two different
probability assignments, Pearson (1939) wrote:

“Following Neyman’s approach [of not associating a
probability to specific intervals], there is no inconsis-
tency in this result, since one probability is associated
with the employment of the [one procedure], the other
with [another procedure]. It is only when we try to
divorce the probability measure from the rule and to

IThe problem is actually worse in the case of “probability,” because
probability has to follow certain rules that neither “bunkiness” nor
“confidence” do.
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regard the former as something associated with a par-
ticular interval, that the need for a unique probability
measure seems to be felt.”” (p. 471)

The way that Neyman avoided inconsistency was to avoid,
as Pearson put it, divorcing probability statements from the
procedures: “What [the CI] assert[s] is that the [long-run]
probability of success in estimation [...] is equal to [95 %]”
(Neyman, 1952). Neyman denied that confidence intervals
provided any conclusions about the parameter:

“[1]t is not suggested that we can ‘conclude’ that [the
interval contains ], nor that we should ‘believe’ that
[the interval contains u]...[we] decide to behave as if
we actually knew that the true value [is in the inter-
val]. This is done as a result of our decision and has
nothing to do with ‘reasoning’ or ‘conclusion’. The
reasoning ended when the [CI procedure was derived].
The above process [of using Cls] is also devoid of any
‘belief” concerning the value [...] of [u].” (1941, p.
133-134)

To modern readers this will seem extreme, but it is actually
a necessary restriction on the interpretation of confidence
intervals, and attempts to deny it will fall victim to the
reference class problem.

We can now see why the distinction between pre-data
and post-data assessments of uncertainty is so critical in fre-
quentism, and why the association between a probability (or
confidence) statement and a specific interval in HMRW’s
statements 1-5 were incorrect. It is not due to a linguis-
tic prohibition by “strict frequentists”; rather, it is due to
the reference class problem. Before observing the data, the
reference class for “What is the probability that an inter-
val in this sequence of intervals contains the true value?”
is clear, because the reference class is defined by the pro-
cedure. However, “What probability/confidence should be
associated with this specific interval?” is a question that can-
not be uniquely answered based solely on the frequentist
properties of a confidence procedure, because the interval
will be a member of multiple reference classes. Any unique,
post-data inference must be based on something other than
freqentist long-run probability.

For more on relevant subsets and confidence intervals,
see Buehler (1959), Buehler and Feddersen (1963), Brown
(1967), Robinson (1975), Robinson (1979), and our in-
depth discussion of confidence interval theory (Morey et al.,
2015).

Can experts be 95 % confident?

MU cite several authors who present statements about con-
fidence intervals which we deem incorrect. MU are right
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that many papers and textbooks show interpretations of
CIs which we would consider incorrect, and some are
indeed written by well-known statisticians. Given the pre-
vious demonstrations that p values are often misinterpreted
(e.g., Haller & Krauss, 2002), it should come as no surprise
that CIs are also misinterpreted. It appears to be common
knowledge among theoreticians that even experts can find
confidence intervals difficult to understand.

MU assert that “it is implausible that such well-
established mathematical statisticians do not understand
CIs.” There are, however, several reasons why texts might
contain incorrect or misleading statements about CIs. We
explore two here: first, confidence interval theory is, indeed
difficult, as indicated by the continuing controversy over
how to interpret them. Second, writers of textbooks have
different pressures on them than survey-takers; they want to
write in a way that seems clear, and that connects with what
people will read and hear elsewhere.

Even the literature cited by MU underscores that math-
ematical statisticians have difficulty with CIs. Dempster
(1964) writes that “[i]t does not appear to be widely under-
stood that, after the observation is taken, the defining
property [of the confidence interval] admits only a post-
dictive interpretation [that is, the one suggested by MU].”
(p. 57; emphasis in original). Dempster, in fact, emphasizes
this sentence for effect. He is talking about mathematical
statisticians, and explicitly saying that they do not appear to
understand confidence intervals.

Neyman (1952, pp. 211-215) presents a humorous, fic-
tional dialogue in which an “eminent elderly statistician”
has great difficulty understanding confidence intervals.
Mayo (1981) writes that “while confidence levels are often
(wrongly) interpreted as providing [...] a measure of [cer-
tainty that the parameter is in the interval], no such interpre-
tation is warranted. Admittedly, such a misinterpretation is
encouraged by the word ‘confidence’.”

More recently, Briggs (2012b) described the definition
of confidence intervals as “so contrived and anti-intuitive”
that “[e]ven trained statisticians, who should know better,
err and treat the confidence interval as a [Bayesian] credi-
ble interval” (p. 3—4). Elsewhere, Briggs (2012a) offered a
humorous challenge: “If you can find even one [published
analysis] where the confidence interval is not interpreted
as a credible interval, then I will eat your hat.” None of
the statisticians or philosophers quoted here take it for
granted that statisticians understand confidence intervals;
we see no reason why MU should take it for granted
either.

It will be informative, however, to take a closer look at
the three quotes from statistical experts that MU provided.
Three textbooks written by experts used language close to
our statement 5:

Statement 5 (HMRW) We can be 95 % confident that the
true mean lies between 0.1 and 0.4.

which we asserted was incorrect because it confuses the pre-
data confidence coefficient with the post-data interval, and
will thus will fall victim to the reference class problem.

Consider first de Groot (1989), which MU quote in its
second edition: “[w]e can then make the statement that the
unknown value of w lies in the interval [...] with confidence
0.95.” This text is now in its fourth edition (de Groot and
Schervish, 2012); the current version of the text does not
contain the passage MU emphasize. The text later makes
clear why it was removed, emphasizing that “the observed
interval...is not so easy to interpret...[S]Jome people would
like to interpret the interval...as meaning that we are 95 %
confident that u is between [the observed confidence lim-
its]. Later...we shall show why such an interpretation is not
safe in general” (p. 487). Following an example (coinciden-
tally, one explored by Morey et al. (2015) and dismissed by
MU as an “artificial case”), the reason is given:

“it is not always safe to assume that our estimate is
close to the parameter just because the sampling dis-
tribution of the estimator had high probability of being
close. There may be other information available that
suggests to us that the estimate is not as close as the
sampling distribution suggests, or that it is closer than
the sampling distribution suggests.” (p. 493)

As often happens in new editions of a text, the mistakes of
the old edition have been corrected in the new. The new edi-
tion clearly states that the language used in the old edition
cited by MU was generally incorrect and misleading.

Some authors make the friction between correctness and
pragmatics explicit. Howell (2013), for example, states that
“So what does it mean to say that the 95 % confidence inter-
val is 1,219 < u < 1,707? For seven editions of each of
two books I have worried and fussed about this question”
(p. 194). Hoenig and Heisey (2001) suggest that less-than-
rigorous teaching of confidence intervals might even be
acceptable, saying that “[i]f informally motivated confi-
dence intervals lead to better science than rigorously moti-
vated hypothesis testing, then perhaps the rigor normally
presented to students destined to be applied researchers can
be sacrificed” (p. 23). It must be emphasized, however, that
an argument that a technically-incorrect statement might
lead to better practical outcomes, even if true, is not an
argument for the statement’s correctness.

A second reason why textbooks may contain incorrect
statements is that the author is trying to connect with the
conventions that have arisen around confidence intervals.
The third example cited by MU was Robinson (1982),
who said that “...we say that we have 95 % confidence...”
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(p. 121). Robinson, however, is well-known for his articles
showing that the interpretation of confidence intervals is
problematic. Indeed, in the opening of the entry quoted by
MU, Robinson employs trademark British understatement
in noting the problem:

“It is natural to expect it to mean ‘an interval in which
one may be confident that a parameter lies.’ Its pre-
cise technical meaning differs substantially from this
(see Jones 1958; Cox 1958, and Dempster 1964) but
the intuitive idea is not entirely misleading.” (p. 120,
emphasis added)

Later, Robinson says that “confidence coefficients are a
good measure of uncertainty before the data have been
seen, but may not be afterward” (p. 125). Other papers by
Robinson (1975) and (1979) — in which he calls such
statements “unreasonable” and “rather dubious” — make
the reasons clear: relevant subsets, as we described above.
By using the offending language Robinson meant only to
describe a convention, one that he explains is not correct in
general. MU suggest that

“...saying that we are ‘95 % confident’ of a state-
ment appears to be just a compact way of saying, ‘the
statement is a random selection from a population of
statements that are known to be 95 % accurate over-
all, and we have no other basis on which to judge the
accuracy of the statement.” ” (p. XX)

MU are incorrect, even according to the sources that MU
cited for support: the reference class problem, and perva-
sive relevant subsets, tells us that we do have other bases
on which to judge the accuracy of the statement, if the
“accuracy” is the frequentist long-run probability.

A close examination of two of the three examples pro-
duced by MU therefore support the position taken by
HMRW, and the third is likely a pragmatic oversimplifica-
tion. We suspect readers will sympathize; what author has
not, at some point, regretted oversimplifying a complicated
concept to the point where it is incorrect? It does not require
a stretch of the imagination to see why authors of texts might
use incorrect language in describing confidence intervals,
even without resorting to the explanation that the authors
did not understand confidence intervals. Ultimately, how-
ever, what is correct and incorrect must be determined by
theory, not by our impression of the status, knowledge, or
motivations of textbook writers.

How can one interpret an observed confidence
interval?

Given that we have ruled out all of the common ways
of interpreting confidence intervals, the question naturally
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arises: how can a single observed interval be interpreted in
terms of the parameter of interest? There are, broadly speak-
ing, three options. The first is to follow Neyman and avoid
the problem by rnot interpreting CIs at all. As Neyman said,
the confidence interval asserts nothing except that it is a
sample from a confidence procedure.

Avoiding any interpretation is unacceptable for most sci-
entists; after all, the goal of most research is often to
make data-informed statements about the parameter. The
second option is to interpret the interval as all the values
that would not be rejected by a particular significance test.
This, however, inherits all the problems of significance tests
(Berger and Sellke, 1987; Jeffreys, 1961; Rouder et al,,
2009; Wagenmakers et al., 2008). It is a well-known fact
that failure to reject a value by a significance test cannot be
used to argue that the value is reasonable, so we have merely
pushed the interpretation problem back one level onto the
significance tests, which is troubling. Moreover, this route
violates the purpose that many researchers see confidence
intervals as serving: to wean researchers off significance
tests (Cumming, 2014; Loftus, 1996; Steiger, 2004; Steiger
& Fouladi 1997, e.g.).

The third route is to abandon confidence interval theory,
and adopt another theory of inference. For instance, under
certain conditions — namely given the specification of a
prior distribution — Bayesian theory allows the assessment
of the “posterior probability” of an interval, which indexes
the post-data certainty with which an analyst should believe
an interval contains the true value of the parameter. If a
prior distribution is assumed, the intervals generated by con-
fidence interval theory can be assessed for their posterior
probability. The reason why this solution works is that the
inference is not based on the long-run properties of the pro-
cedure, but rather the posterior distribution, and hence the
inference must be unique. In some cases, Bayesian assess-
ments of uncertainty will be similar to those obtained from
a misunderstanding of confidence intervals. The Bayesian
post-data probability, however, is guaranteed to be unique
and meaningful, provided that the prior is meaningful.

MU offer other alternative interpretations of confidence
intervals, which they claim are “appropriate” and “useful.”
For instance, suppose one sampled data from a normal pop-
ulation and then computed a Student’s ¢ interval of [.1, .4],
and denote the standard error of the mean as S. They offer
this statement as an alternative to HMRW’s statement 4:

Statement 4’ (MU) If the current sample is one of the 95 %
of all samples with relatively small values of | X — n|/S,
then w lies in the interval 0.1-0.4.

2Though MU offer alternatives for our statements 1, 3 and 4, we will
focus only on their alternative for statement 4; our points generalize to
the other statements as well.
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While true, this interpretation is trivial and unhelpful. To
see why, let “relatively small” mean that |[X — u|/S < ¢
for some positive value c. Then a bit of algebra yields the
condition

X—cS<p<X+cS.

But c, by definition, must be chosen such that 95 % con-
fidence procedure results. This condition, then, is merely
the condition that w is in the interval. MU’s statement 4’
amounts to

Statement 4’ (reworded) If the conditions under which i
would be in the interval hold, then w lies in the interval;
these conditions will hold in 95 % of samples.

The first part of the statement is tautological; the only
non-trivial information left is “The conditions under which
u is in the interval will hold in 95 % of samples.” Of
course, this is merely the definition of the confidence proce-
dure, and makes reference only to the long-run property of
the interval. Although MU sought an alternative interpreta-
tion to the frequentist one, they have offered the frequentist
definition in disguise.

The fact that MU’s definition turns out to assert only the
long-run probability of the procedure would, of course, not
surprise Neyman (1952), who specified that “[all the CI]
does assert is that the probability of success in estimation
... is equal to [95 %]” (p. 214). It would also not surprise
Dempster (1964), who said that such interpretations have
“essentially tautological content” (p. 62). MU’s alternative
statements are not useful; rather, they simply reassert that an
interval is a confidence interval. MU’s statements give the
researcher no new information and leave them with the same
problem they had previously: wondering how to interpret
the interval.

In fact, like all frequentist interpretations, MU’s state-
ments do not have any implications for where one should
believe the parameter actually is. Dempster points out that
researchers actually desire a different sort of statement than
the ones MU suggest: so-called “predictive” statements,
ones that have implications for where the parameter is
believed to be. He says “I find Neyman quite vague on the
intellectual mechanism whereby [CI] interpretations come
to have predictive implications. I suspect that particular
observed confidence statements are intended to have the
effect of predictive probability statements, without actually
using the word probability and without paying the price
which the use of the word probability demands.” (p. 60).3
We completely agree; the advocacy of confidence intervals

3Compare this to MU’s statement that “the word ‘probability’ is
conspicuously absent from [our] interpretations.”

rests on an interpretive sleight of hand by which trivial
statements are rendered as predictive statements about the
parameter (see also Morey et al., 2015).%

How do participants interpret CIs?

A key aspect of MU’s argument is that “[the survey state-
ments] are incompatible with a ‘strict frequentist’ interpre-
tation of the word ‘probability’, but participants may have
had a different interpretation in mind when completing the
questionnaire. In that case, acceptance of these statements as
true may not necessarily indicate misunderstanding of Cls
per se, but rather use of a different interpretation of ‘prob-
ability’ ” (Miller & Ulrich, in press, p. XX). Although we
reject their alternative interpretations, we can take another
look at the data to see whether it is consistent with their view
on how survey respondents may have been interpreting the
questions.

Of course, we admit that interpretation of survey
responses can be difficult. We cannot rule out that respon-
dents may have interpreted our statements in any number
of ways that we did not intend. In the case of our survey,
the instructions and statements were short and simple. We
believe the burden of proof lies with anyone suggesting that
participants interpreted the statements to mean something
other than what was written. As it turns out, we can easily
show that participants did not have MU’s interpretation in
mind, and even more, that the response patterns do not make
sense under any definition of probability. We note that MU
themselves admitted that our hypothesis — that respondents
show robust misinterpretations of CIs — was “certainly sup-
port[ed].” Our goal in this section is to show that the case
is stronger even than reported by HMRW, and inconsistent
with MU’s proposed interpretation.

Figure 2 (top) shows the proportion of endorsements for
each statement as a function of self-rated expertise. Apart
from statement 1, which shows a slight decrease in endorse-
ments as expertise increases, there does not appear to be
any relationship between expertise and endorsement of the
statements. Consider statement 6 in HMRW:

Statement 6 (HMRW) If we were to repeat the experiment
over and over, then 95 % of the time the true mean falls
between 0.1 and 0.4.

This statement is nonsense, though the first author of this
manuscript has heard it offered several times as an inter-
pretation of confidence intervals. Statement 6, which should

4Consider, for instance, Cumming’s (2014) statement that “a CI is use-
fully informative about what is likely to happen next time.” This is
precisely what Dempster noted that confidence interval theory isn’t
informative about.
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Fig. 2 Top: Proportion of sample endorsing each statement as a
function of self-rated expertise. Each series 1-6 represents the corre-
sponding statement. If expertise is NA, then the respondent did not
respond to this question. The vast majority of missing expertise ratings
is from first-year students (86 %) or Master students (9 %). Bottom:
The distribution of self-rated statistical expertise in the sample

be easily rejectable by anyone with an understanding of
ClIs, has a higher endorsement rate than statements 4 and 5,
endorsements of which MU claim may indicate knowledge
of CIs. Moreover, endorsements of statements 4 and 5 do not
increase as self-rated expertise increases. If Cls are difficult
to interpret — as we assert and as MU admit — then it seems
implausible that the responses of first-year students reflect
no knowledge, while the equally-high endorsement rates of
experienced researchers reflect knowledge. We believe it is
much more plausible that these responses indicate lack of
understanding.

Evidence that participants have a shaky understanding of
confidence intervals can be found by examining the sheer
diversity in the response patterns. Note that there are a total
of 64 total possible response patterns for 6 true/false ques-
tions. Of these, 37 appear in the data for the non-students
(N = 151). The most endorsed pattern by non-students,
endorsed by 11 % of the non-students, is that all statements
are correct. Note that this includes endorsement of nonsense
statement 6. Interestingly, endorsing statement 6 alone is the
next most popular response pattern (9 %), followed by state-
ments 3 and 6 only (7 %). The top eight patterns are shown
Table 1.

MU suggest five alternative statements that could be
endorsed under their interpretation of the survey, meant to
replace our statements 1-5. If participants understood Cls
in the way that MU suggest, then they would endorse state-
ments 1-5, and reject statement 6. This response pattern

@ Springer

Table 1 The top 8 response patterns for non-students, and the propor-
tion of non-students responding with that pattern

Proportion
$1,52,83,54,55,56 0.11
S6 0.09
S3,56 0.07
S$1,52,83,54 0.05
52,53,54,S6 0.05
$3,54,S5 0.05
$3,54,S6 0.05
*51,52,53,54,S5 0.05

The pattern predicted from MU’s re-interpretations is shown with an
asterisk

was shown in only seven of the 151 non-student respondents
(5 %).

Consider the seven response patterns that have at least as
much endorsement as MU’s predicted pattern. Of these, five
include endorsements of statement 6. Five do not include
statement 5. MU argue that “HMRW?’s participants may
have interpreted statement 5 in the same way as the mathe-
matical statisticians [and hence endorse it].” In the sample,
63 % of non-students endorsed nonsensical statement 6
that everyone — including mathematical statisticians —
should reject, compared to 53 % who accept statement 5.
Moreover, rejecting statement 6 was only mildly predic-
tive of accepting statement 5; non-student respondents who
rejected statement 6 accepted statement 5 61 % of the time,
while non-student respondents who accepted statement 6
accepted statement 5 half of the time (correlation ¢ =
—.11). Accepting statement 4 was only mildly predictive of
accepting statement 5 (correlation ¢ = .18) even though,
on MU’s analysis, the two statements have the same con-
tent. There does not appear to be evidence of any consistent
interpretation in the data, including the one MU suggest.

Overall, an analysis of the data reveals little evidence
that the survey respondents were interpreting CIs in the way
MU suggest they might have been. MU offer no empirical
evidence to support their contentions about what the partic-
ipants might be thinking. The only evidence they offer in
their response to HMRW is thought experiments with coins
and cards. They imply that readers’ endorsement of their
interpretation of these thought experiment supports their
contention that people use their interpretation of probability;
however, their thought experiments can be easily understood
using Bayesian probability, and are hence not diagnostic.

The data do, however, offer more evidence that partici-
pants’ interpretations of confidence intervals reflect a lack
of knowledge. Consider the necessary relationship between
statements 1 and 4. Statement 1 was:
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Statement 1 (HMRW) The probability that the true mean
is greater than 0 is at least 95 %.

and statement 4 was:

Statement 4 (HMRW) There is a 95 % probability that
the true mean lies between 0.1 and 0.4.

Both statements make use of the word “probability”.
Regardless of the interpretation of the word probability,
the laws of probability must be respected. Assuming that
respondents are interpreting the word probability consis-
tently across questions, an endorsement of statement 4
implies that one must endorse statement 1: if the probabil-
ity that the true mean is in [.1, .4] is 95 %, then there is
at least a 95 % probability that the true mean is greater
than O, since all values in the CI are greater than 0. How-
ever, of non-students who endorsed statement 4, only 51 %
endorsed statement 1. The responses are demonstrably inter-
nally inconsistent. In sum, responses patterns are highly
varied, and often violate the laws of probability, even among
experienced researchers. The most parsimonious explana-
tion, by far, is that the survey responses indicate severe
misunderstanding of CIs (and indeed, probability broadly).

One possible objection to the survey raised in review is
that the survey contained no correct response, and hence
might be seen as a “trick” survey. Respondents may have
been confused, expecting there to be at least one right
answer. In response, we note that only 8 % of respondents
endorsed a single item, and a majority endorsed four or
more items. We see no reason why confusion about there
being no right answer would cause respondents to respond
with more than one endorsement, much less four or more.
Further, we note that CIs are considered a basic tool for
researchers, taught from the first year of statistical train-
ing, used throughout the literature, and heavily promoted by
statistical reformers as intuitive. If understanding of ClIs is
so fragile that merely leaving out a correct answer yields
highly varied, internally inconsistent response patterns, this
actually bolsters our case that CIs are badly misunderstood.

Conclusion

MU’s arguments for asserting the appropriateness of the
statements on HMRW’s survey do not hold. The reference
class problem prevents any unique association of individual
observed intervals with long-run frequencies. HMRW’s data
provide ample evidence of misinterpretations of confidence
intervals; responses were highly varied, uncorrelated with
expertise, and often violate the laws of probability under any
interpretation. Finally, the data are not consistent with how
MU suggest participants may have been responding. The

main conclusion of HMRW — that researchers have robust
misunderstandings of confidence intervals — is sound. Con-
fidence intervals are poorly understood not only by students
and researchers, but also by methodologists such as MU
who have given the matter considerable thought (see also
Morey et al., 2015). This widespread lack of understanding,
even among experts, should raise doubt about whether the
widespread advocacy of confidence intervals is backed by a
solid theoretical foundation.

Open Access This article is distributed under the terms of
the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unre-
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provide a link to the Creative Commons license, and indicate if
changes were made.
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