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Ventilation distribution calculation using 4D CT has shown promising potential in 
several clinical applications. This study evaluated the direct geometric ventilation 
calculation method, namely the ΔV method, with xenon-enhanced CT (XeCT) 
ventilation data from four sheep, and compared it with two other published meth-
ods, the Jacobian and the Hounsfield unit (HU) methods. Spearman correlation 
coefficient (SCC) and Dice similarity coefficient (DSC) were used for the evalu-
ation and comparison. The average SCC with one standard deviation was 0.44 ± 
0.13 with a range between 0.29 and 0.61 between the XeCT and ΔV ventilation 
distributions. The average DSC value for lower 30% ventilation volumes between 
the XeCT and ΔV ventilation distributions was 0.55 ± 0.07 with a range between 
0.48 and 0.63. Ventilation difference introduced by deformable image registration 
errors improved with smoothing. In conclusion, ventilation distributions generated 
using ΔV-4D CT and deformable image registration are in reasonably agreement 
with the in vivo XeCT measured ventilation distribution.

PACS number(s): 87.57.N-, 87.57.nj, 87.57.Q-, 87.85.Pq 
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I.	 INTRODUCTION

Pulmonary ventilation and perfusion are not uniform throughout the lung and this heterogene-
ity may be increased if pulmonary diseases are involved.(1) Different imaging modalities are 
currently used clinically for pulmonary ventilation evaluation. Nuclear medicine modalities, 
including nuclear scintigraphy,(2,3) single photon emission computed tomography (SPECT),(4,5) 
and positron emission tomography (PET),(6,7) are most commonly used. Magnetic resonance 
imaging (MRI)(8,9) and computed tomography (CT)(10,11) are also capable of pulmonary func-
tional imaging. 

Recently, four-dimensional (or respiratory gated) CT (4D CT) has been proposed for ventila-
tion calculation using deformable image registration (DIR).(12-14) In the so-called HU algorithm, 
deformable image registration is applied between respiratory phases of a 4D CT image set. 
The deformation transformation calculated from the DIR process maps corresponding voxels 
between two different respiratory phases. The Hounsfield unit (HU) differences between the 
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corresponding voxels of the two phases are used to generate the differences in local densities 
which are related to ventilation.(12) Ventilation can also be calculated using the Jacobian of 
the deformation transformation(13) or using the transformation directly (geometrically).(14) 
Recently, promising results have been reported on the agreement between ventilation results 
obtained using the Jacobian method and xenon-enhanced CT (XeCT) in a large animal model.(15)  
The latter measures regional ventilation by observing the contrast gas, xenon (Xe), wash-in or 
wash-out rate on serial CT images and is considered a gold standard for regional ventilation 
imaging.(16) Patient-based comparative studies have also shown promising results between 4D 
CT vs. 4D-PET using 68Ga-labeled nanoparticles,(17) and 4D CT vs. SPECT.(17,18) Ventilation 
data derived from 4D CT also demonstrated good reproducibility in both animal and human 
studies.(19-21) This new ventilation calculation method using 4D CT has also been applied 
in lung disease detection,(22) radiotherapy treatment planning studies,(23) and assessment of 
radiotherapy response.(24)

The advantages of ventilation imaging using 4D CT include: 1) 4D CT is a mature, commer-
cial and widespread technology; 2) no additional procedures, such as inhalation of a contrast, 
are needed, which makes the clinical implementation straightforward; 3) high spatial resolution 
of functional lung imaging can be achieved, which is one of the major advantages over nuclear 
medicine; and 4) 4D CT is a much less expensive procedure than other imaging modalities, 
which is an important consideration for clinical implementation. 

In the current clinical practice of thoracic cancer radiotherapy, the differences in pulmonary 
ventilation and/or perfusion are mostly not considered when generating treatment plans. All 
regions of the lung are usually deemed equal. Clinicians and researchers have proposed to 
advance normal lung sparing in thoracic cancer radiotherapy by introducing ventilation and/
or perfusion imaging into radiotherapy treatment planning.(25,26) If clinically implemented, it 
could lead to reduced radiation toxicity to lung regions with high perfusion and/or ventila-
tion while adequate dose coverage of tumors is maintained. Since 4D CT has become widely 
accepted in thoracic cancer radiation therapy, logistically it is an excellent choice for ventilation 
calculation for the purpose of sparing functional lung during radiation dose treatment planning.  
However, as the ventilation data derived from 4D CT are introduced in clinical usage, further 
proper validation studies are needed.

This paper presents the in vivo evaluation of the 4D CT-based geometric method of ven-
tilation calculation, also called the ΔV method, and compares it with other two methods, the 
Jacobian and the HU methods, using previously published XeCT-based ventilation data from 
studies on sheep in vivo.(15)

 
II.	 MATERIALS AND METHODS

A. 	 Image data
Appropriate animal ethics approval was obtained for imaging acquisition protocols from the 
University of Iowa Animal Care and Use Committee and the study adhered to NIH guidelines 
for animal experimentation. Four adult male sheep were anesthetized and under positive ventila-
tion during the experiments. 4D CT and XeCT scans were acquired with animal in the supine 
position. 4D CT images were reconstructed at different respiration phases. Zero% and 100% 
of the near end of expiration and near end of inspiration phases were used to calculate ventila-
tion. XeCT scans were acquired with 12 axial slices over 45 breaths under respiratory gating 
at near end expiration. The XeCT based estimated regional lung ventilation was computed 
using Pulmonary Analysis Software Suite 11.0 by finding the constant of the exponential rise 
of the density from xenon gas wash-in over multiple breaths. After resample, all images are 
with voxel dimension 1 × 1 × 1 mm3. More details of the image acquisition protocols can be 
found in the previous publication.(15) 
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B. 	 Deformable image registration (DIR)
The Diffeomorphic Morphons (DM) method is based on matching edges and lines.(27) The 
morphon iteratively deforms a moving image into a target image by morphing the former. 
The process can be divided into three parts: estimation of displacement, accumulation of the 
deformation field, and deformation. 

Estimation of displacement needed to deform the moving image into the target image is 
based on quadrature phase difference.(27) The accumulation of the deformation field uses the 
estimate of the displacement to update the deformation field. This is a two-step process. The first 
step is to update the deformation field and to regularize the estimates of the accumulated field 
in order to fit the observed deformation to a deformation model. The second step is to morph 
the moving image to the target image according to the accumulated deformation field. These 
two steps are done iteratively as long as the displacement estimates are larger than a specified 
minimum displacement indicating acceptable convergence. 

The quadrature phase difference method is used to estimate local displacement between 
two images. The advantage of this method over others, such as those based on gradient and 
polynomial expansion, is its invariance to image intensity and weak gradients.(28) Quadrature 
phase is a measure of local structure. Edges between bright and dark areas, dark lines, lines on 
dark background, and bright patches, all have different phases. The transition from one phase 
to another is continuous. Therefore, the difference in local phase between the moving and 
target images is a good measure of how much the moving image has to move to fit the target 
image. The local displacement is a function of the local phase along its associated direction. 
To estimate the local displacement a least squares estimator is used as follows:

	 v 	 (1)

where v  is the displacement field estimate, vi is the displacement field associated with direction 
i, wi is a measure of certainty derived from the magnitude of the phase difference, and  is the 
unit normal vector for the i direction. 

The displacement field of the current iteration is given by Eq. (1), which is used to interpolate 
a deformed version of the moving image, which is deformed based on the accumulated field 
and then compared to the target image in order to estimate a displacement field for the current 
iteration. The updated field (d ′

a) is formed by combining the accumulated field (da) and the 
displacement field (dk) from the current iteration. 

		  (2)
	

dddd

where ca and ck are the uncertainties in the accumulated field and the current field, respectively. 
After acquiring the updated field in Eq. (2), as well as the uncertainty from the field, the fol-
lowing equation is used to determine the accumulated displacement field:

		  (3)
	

ddd

	
where cU is the uncertainty in the updated field. 
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The morphons method is optimized to become diffeomorphic. As a result, Eq. (3) becomes: 

		  (4)
	

ddd

The deformation field produced by the DM is smoothed and iteratively used to transform 
the moving image and register it on to the target image. Smoothing is achieved using Gaussian 
regularization of the displacement field thereby reducing the influence of extreme values in a 
deformation field.

DM and diffeomorphic demons (DD)(29) DIR methods were evaluated using the 4D CT data 
of the sheep with manually delineated landmarks in the end-expiration and end-inspiration 
phases in this study. The deformation transformations were used to map the landmarks from 
the expiration phase to the inspiration phase. The mapped landmarks were then compared with 
the manually delineated landmarks in the inspiration phase and the difference was defined as 
the target registration error (TRE). There were 220 landmark pairs in each case. The registra-
tions were performed with the multiscale feature.(30) Four levels of resolution were used in the 
registration, namely, 64 ×64, 128 × 128, 256 × 256, and 512 × 512. They were validated previ-
ously with average ± S.D. TRE (end-expiration to end-inspiration) was equal to 1.4 ± 0.6 mm 
for DM and 1.4 ± 0.7 mm for DD.(30) 

Based on the evaluation results alluded to above, the DM DIR method was selected for the 
ventilation calculation in this study. The DM DIR computer program was developed by a group 
in the Netherlands.(27) It runs within the MATLAB platform (MathWorks, Natick, MA). Each 
registration took about 3 hrs on a personal computer using a 3 GHz CPU. The deformation 
transformations from the 4D CT data were used for ventilation matrices calculation. 

C. 	 Ventilation calculation

C.1  ΔV ventilation calculation algorithm
This study used the ΔV ventilation calculation algorithm(14,31) to derive ventilation from 4D 
CT data for four sheep. In the expiration phase of a 4D CT dataset, each voxel is a cuboid 
defined by eight vertices. In the inspiration phase, this cuboid is changed into a 12-face poly-
hedron which is still comprised of the corresponding eight vertices. Any hexahedron or 12-face 
polyhedron can be divided into six tetrahedrons. The volumes of the cuboid and the 12-face 
polyhedron (deformed cuboid) are the sums of the volumes of their six corresponding tetra-
hedrons. In the inspiration phase, the DIR algorithm calculated the corresponding locations of 
the eight vertices that define the cuboid in the expiration phase. The volumes of each cuboid 
and the corresponding deformed cuboid are calculated using the corresponding vertices of each 
respective polyhedron. 

The fundamental volume calculation is based on the volume calculation for each tetrahedron. 
The coordinates of the four vertices of a tetrahedron are used to determine its volume:

	 V = (b - a) • [(c - a) × (d - a)] / 6	 (5)

where a, b, c, d are the vertices’ coordinates expressed as vectors. The volumes of the six tetra
hedrons are summed up to generate the volume of the given polyhedron.

The ventilation distribution was calculated as the distribution of, 

	 P = ΔV/Vex	 (6)

where ΔV is the volume change between expiration and inspiration, and Vex is the initial volume 
for all voxels at expiration, which is constant across the whole exhale image.(11)
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C.2  Jacobian algorithm
The Jacobian is a mathematical method where volume change is estimated using the first 
derivative of the deformation field.(13,24,32,33) Local volume change of the lung is calculated 
using the Jacobian of the transformation that maps the end expiration phase of 4D CT image 
to the end inspiration phase. Consider a vector displacement D(x,y,z) that transforms a voxel 
from its end expiration image to its corresponding location in the end inspiration image. The 
Jacobian operator J of this transformation is given by,

		  (7)

	
	

det

where I is the identity matrix, Dx(x,y,z) is the x component of D(x,y,z), Dy(x,y,z) is the y compo-
nent of D(x,y,z), and Dz(x,y,z) is the z component of D(x,y,z). The determinant of the Jacobian 
is calculated at each voxel position according to Eq. (7). If the determinant of the Jacobian is 
unity, then no expansion or contraction of the voxel occurs. If the determinant is greater than 
one, there is local voxel (lung tissue) expansion; if less than one, there is local voxel contraction. 

C.3  Hounsfield units (HU) method
The HU method uses deformable image registration to correlate voxels from the expiration 
image set to the anatomically corresponding voxels in the inspiration image. The change in 
density for each voxel is calculated by direct comparison of HUs.(11,12) The fraction of air in a 
CT lung volume may be estimated as,

		  (8)
	

where HU represents the average Hounsfield unit value within the volume. Let Fexh be the frac-
tion of air in the exhale CT volume, and Fin the fraction of air in the inhale CT volume, then 
the change in volume is given by: 

 		  (9)
	

Substitute Eq. (8) into Eq. (9), we get:

		  (10)
	

C.4  Ventilation comparison
Due to the limits in dynamic scans, the volumes of the ventilation distributions by Xe-enhanced 
CT imaging are usually limited to partial lungs. These partial lung distributions served as the 
masks in the ventilation distribution calculations with the 4D CT datasets. Thus the volumes 
with calculated ventilation matched with the XeCT data and the calculated ventilation distribu-
tions can be directly compared with the Xe ventilation images.
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Image smoothing techniques are often used in image processing to reduce noise(34) and an 
averaging filter is a simple smoothing technique.(35) Different averaging filter sizes were applied 
to the 4D CT ventilation distributions before the comparison with the Xe ventilation distribu-
tions in order to reduce registration errors; these were 9 × 9 × 9, 19 × 19 × 19, and 29 × 29 × 
29 mm3 filters. Blood vessels and other high-density regions were excluded in the ventilation 
calculation by all three methods. The ventilation value of the central voxel was the average 
value inside the box defined by the averaging filter. When the averaging filter mask was at the 
edge of the calculated ventilation region or where some ventilation values were not available 
due to the presence of blood vessels, the actual number of valid voxels inside the filter mask 
was used for the averaging calculation.

Because of the different metrics between the two ventilation imaging modalities, namely 
density difference for the XeCT versus volume change for the ΔV method, the two ventilation 
distributions were converted to the relative percentile distribution(32) first and then the Dice 
similarity coefficient (DSC)(36) was applied to calculate the similarity between the two ventila-
tion volumes. When volumes A and B are compared, DSC is calculated as,

		  (11)
	

The values of DSC index range between 1.0 and 0.0. A DSC of 1.0 indicates a complete simi-
larity of the two volumes whereas a DSC of 0.0 indicates no similarity at all, with intermediate 
values describing proportional amounts of similarity. Similar to the cumulative dose-volume 
histogram, if a certain percentage of lung volume is covered by no more than a certain ventila-
tion value, this ventilation value is associated with the corresponding percentage value of the 
lung volume in the percentile distribution. The two aligned ventilation datasets were compared 
for similarity for the higher 30% and 50% of ventilation volumes (or 70 and 50 percentile). 

Another way to compare the ventilation distributions is to calculate the Spearman correlation 
coefficient (SCC) between the ventilation data sets.(17) The voxel-wise correlation was calcu-
lated between the distribution by XeCT and the other three 4D CT methods for all four cases. 
The absolute ventilation distributions without conversion to percentile ventilation distributions 
were used for the SCC calculations.

 
III.	 RESULTS 

The average TRE with one standard deviation (1 SD) in the lungs for the four cases was 1.9 ± 
1.5 mm for DM and 2.0 ± 1.6 mm for DD. The majority of the errors were within 3 mm, which 
is comparable to other studies(15,37) and consistent with our previous study.(30) Based on the 
evaluation results, DM DIR was selected for the ventilation calculations in this study.

The average Spearman coefficient r with 1 SD was 0.44 ± 0.13 (range 0.29–0.61) between 
the XeCT and ΔV ventilation distributions over the four cases (sheep). It was 0.45 ± 0.13  
(range 0.31–0.61) between the XeCT and the Jacobian ventilation distributions, and 0.30 ± 
0.10 (range 0.17–0.42) between the XeCT and the HU ventilation distributions. Based on the 
Spearman coefficient, Figs. 1 and 2 show the ventilation distributions for the best (r = 0.61) and 
worst (r = 0.29) cases, respectively, between XeCT, and XXDV, Jacobian, and HU methods. 
The qualitative agreements are patent by visual inspection.

The average DSC value for the upper 50% ventilation volumes between the XeCT and ΔV 
ventilation distributions was 0.67 ± 0.05 (range 0.61–0.74), while for the upper 70% ventila-
tion volumes, it was 0.81 ± 0.03 (range 0.78–0.84). The average DSC results between XeCT 
and Jacobian ventilation distributions were the same (the individual values were different), 
while between XeCT and HU they were 0.63 ± 0.05 for the upper 50% ventilation volumes 
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(range 0.58–0.68) and 0.79 ± 0.03 for the upper 70% ventilation volumes (range 0.74–0.81). 
The similarity of the lower 30% ventilation volumes was 0.55 ± 0.07 between the XeCT and 
ΔV and 0.52 ± 0.08 between the XeCT and HU, respectively.

It was found that the similarity between the ventilations calculated using 4D CT and XeCT 
depends on the averaging filter size applied to the 4D CT ventilation data. Figure 3(a) shows the 
mean Dice similarity coefficient versus averaging filter size and Fig. 3(b) the mean Spearman 
coefficient versus averaging filter size for the four cases. The dependence of the HU method on 
filter size was flat with the size larger than 9 × 9 × 9 mm3. At the filter size of 9 × 9 × 9 mm3 and 
smaller, HU method demonstrated better similarity to the ventilation distribution from XeCT 
than the other two methods, while with the larger filter size, the other two methods showed 
better similarity than HU method.

Fig. 1.  Ventilation distribution comparison between the XeCT and ΔV methods for best case: (a) absolute ventilation by 
Xe, (b) percentile distribution by Xe, (c) absolute ventilation by ΔV, (d) percentile distribution by ΔV, (e) absolute venti-
lation by Jacobian, (f) percentile distribution by Jacobian, (g) absolute ventilation by HU and (h) percentile distribution 
by HU. The averaging filter sizes used in this figure were 29 × 29 × 29 mm3 for the ΔV and Jacobian methods and 9 × 
9 × 9 mm3 for the HU method.

Fig. 2.  Ventilation distribution comparison between the XeCT and ΔV methods for the worst case: (a) absolute ventila-
tion by Xe, (b) percentile distribution by Xe, (c) absolute ventilation by ΔV, (d) percentile distribution by ΔV, (e) absolute 
ventilation by Jacobian, (f) percentile distribution by Jacobian, (g) absolute ventilation by HU and (h) percentile distribu-
tion by HU. The averaging filter sizes used in this figure were 29 × 29 × 29 mm3 for the ΔV and Jacobian methods and  
9 × 9 × 9 mm3 for the HU method.
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Figure 4 shows the mean DSC versus averaging filter size and ventilation volume between 
the ventilation calculated using ΔV and the ones calculated using the Jacobian and HU methods. 
DSC was high between the XXDV and Jacobian methods, while DSC was strongly dependent 
on ventilation volume and averaging filter size between the ΔV and HU methods; more smooth-
ing (larger filter size) resulted in better similarity. 

 

Fig. 3.  Mean Dice similarity coefficient (a) vs. averaging filter size and (b) mean Spearman coefficient vs. averaging 
filter size over the four cases between XeCT ventilation distribution and ventilation distributions calculated using 4D CT.

Fig. 4.  Mean dice similarity coefficient vs. averaging filter size and ventilation volume between ΔV ventilation and those 
calculated by Jacobian and HU methods.
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IV.	 DISCUSSION

No matter how accurate the deformable image registration algorithm is, registration errors 
are inevitable due to the noise inherent in CT images.(38) The registration errors in DIR are 
the reason for the similarity dependence on averaging filter size. The averaging is applied to 
smooth the ventilation distributions. The ventilation difference introduced by the registration 
error is reduced by smoothing, and the resulting ventilation distribution is thus closer to that 
obtained with XeCT.

The other major source of errors in DIR is artifacts in CT images. The sheep 4D CT data 
used in this study did not show obvious artifacts because they were mechanically ventilated and 
therefore breathed regularly. For clinical human 4D CT, motion artifacts exist when irregular 
motion is involved, in which mushroom artifacts due to the irregular motion of the large surface 
of the diaphragm are most obvious.(39) Such artifacts introduce DIR errors and images with 
such artifacts should not be used in ventilation calculations.(40)

The HU method needs less smoothing compared to the other two methods because during 
the ventilation calculation it excludes voxels in which large density difference occurs after 
registration. The registration errors often yield nonperfect matches between the two phases 
of a 4D CT dataset, such as chest wall–lung tissue and blood vessels–lung tissue interfaces, 
which could introduce large density differences at such interfaces.(14) These edge artifacts are 
easily removed during the ventilation calculation using the HU method by checking if any 
of the involved two sets of CT data has a higher HU number than normal lung tissue for any 
given voxel. The ventilation values for the artifact voxels were set to the values of the closest 
valid voxels. Because of the removal of the large errors during the ventilation calculation, HU 
method does not need much smoothing of the resulted ventilation distribution. For the other 
two methods, the deformation transformation from the registration is used to calculate the vol-
ume change, and the volume change errors introduced by the registration errors are not easily 
removed in the ventilation calculation. Additional smoothing of the ventilation distribution is 
an effective way to reduce the ventilation errors.

Both ΔV and Jacobian methods calculate ventilation based on the local volume change. 
One performs a direct geometric calculation and the other approximates volume change using 
the Jacobian determinant of a transformation. The volume change calculations are performed 
based on the same deformation transformation in each case. Thus the ventilation distributions 
generated by these two methods are similar to each other. HU method calculates ventilation 
based on the local HU change. Although the same deformation transformation is used, different 
target properties from the transformation are used in the calculations. The resulted ventilation 
distributions could be different due to registration errors and thus can be reduced by smooth-
ing, which is seen in Fig. 4. 

Because the accuracy of the ventilation distribution generated from 4D CT data and deform-
able image registration depends on the accuracy of the registration, which in turn depends 
on the registration algorithm and the quality of the 4D CT data, high-quality 4D CT data are 
essential for producing accurate ventilation calculation(38) — registration algorithms need to 
be validated for such applications.(41)

Validation of the ΔV-4D CT ventilation calculation method is important because 4D CT-based 
techniques are finding medical applications given that these scans are faster and do not require 
injection of radioactive materials or contrast agents. For example, 4D CT-based ventilation has 
been used in radiation therapy treatment planning to avoid functional lung and to estimate loss 
of lung function or normal tissue toxicity after radiotherapy in a dose-dependent manner.(40,42-45) 
Additional medical applications, such as in diagnostic imaging, may be possible.  
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V.	 CONCLUSIONS 

Ventilation distributions calculated using 4D CT and deformable image registration were com-
pared to the ventilation distribution derived from Xe-enhanced CT data, which was considered 
the gold standard, for four sheep. The 4D CT-based ventilation distributions agreed with the 
ones from XeCT reasonably well. Ventilation differences introduced by registration errors 
can be reduced by smoothing. This evaluation study and previous reports(15,18) support the 
use of ventilation calculated using 4D CT in clinical applications such as radiation treatment 
planning,(12,23,24,40,42-45) pulmonary function,(15,18) and lung disease.(22)
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