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Abstract GABAergic interneurons can be subdivided into three subclasses: parvalbumin positive

(PV), somatostatin positive (SOM) and serotonin positive neurons. With principal cells (PCs) they

form complex networks. We examine PCs and PV responses in mouse anterior lateral motor cortex

(ALM) and barrel cortex (S1) upon PV photostimulation in vivo. In ALM layer five and S1, the PV

response is paradoxical: photoexcitation reduces their activity. This is not the case in ALM layer 2/

3. We combine analytical calculations and numerical simulations to investigate how these results

constrain the architecture. Two-population models cannot explain the results. Four-population

networks with V1-like architecture account for the data in ALM layer 2/3 and layer 5. Our data in S1

can be explained if SOM neurons receive inputs only from PCs and PV neurons. In both four-

population models, the paradoxical effect implies not too strong recurrent excitation. It is not

evidence for stabilization by inhibition.

Introduction
Local cortical circuits comprise several subclasses of GABAergic interneurons which together with

the excitatory neurons form complex recurrent networks (Goldberg et al., 2004; Jiang et al., 2015;

Karnani et al., 2016; Markram et al., 2004; Moore et al., 2010; Pfeffer et al., 2013; Tasic et al.,

2018; Tremblay et al., 2016). The architecture of these networks depends on the cortical area and

layer (Beierlein et al., 2003; Jiang et al., 2013; Rudy et al., 2011; Xu et al., 2013; Xu and Call-

away, 2009).

Optogenetics is now classically used to reversibly inactivate a particular cortical area or neuronal

population to get insights into their functions (Atallah et al., 2012; Guo et al., 2014b; Lee et al.,

2012; Li et al., 2015; Svoboda and Li, 2018). Optogenetics has also been applied to isolate the dif-

ferent components (e.g. feedforward vs. recurrent) of the net input into cortical neurons (Lien and

Scanziani, 2018; Lien and Scanziani, 2013). It can also be used to experimentally probe the archi-

tecture of local cortical circuits (Moore et al., 2018; Xu et al., 2013). However, because of the com-

plexity of these networks and of their nonlinear dynamics, qualitative intuition and simple reasoning

(e.g. ‘box-and-arrow’ diagrams) are of limited use to interpret the results of these manipulations.

‘Paradoxical effect’ designates the phenomenon that stimulation of a GABAergic interneuron

population not only decreases the average activity of the principal cells (PCs) but also decreases the

activity of the stimulated population (Murphy and Miller, 2009; Ozeki et al., 2009; Tsodyks et al.,

1997). Intuitively, paradoxical effect arises when the stimulation induces a strong activity suppression

in the PCs (Kato et al., 2017; Moore et al., 2018), such that the overall (synaptic+stimulus) excita-

tion to the stimulated population decreases. However, the precise conditions under which the para-

doxical effect occurs are difficult to establish without mathematical modeling.

In simple models consisting of only two populations (one excitatory and one inhibitory) these con-

ditions have been mathematically derived. The paradoxical effect occurs when the networks
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operates in the regime known as inhibition stabilized (inhibition stabilized networks, ISN) in which

the total the total recurrent excitation is so strong that inhibition is necessary to prevent a blow up

in the activity (Murphy and Miller, 2009; Ozeki et al., 2009; Tsodyks et al., 1997). Networks, with

several inhibitory populations have been recently investigated (Garcia Del Molino et al., 2017; Lit-

win-Kumar et al., 2016; Sadeh et al., 2017). These studies considered network models with synap-

tic currents small compared to neuronal rheobase currents (Gerstner et al., 2014; Lapicque, 1909).

However, interactions in cortex are stronger than what is assumed in these studies (Shadlen and

Newsome, 1994).

Simple networks with strong interactions comprising one excitatory and one inhibitory population

have been studied extensively. In a broad parameter range not requiring fine-tuning, such networks

dynamically evolve into a state in which strong excitation is balanced by strong inhibition such that

the net input into the neurons is comparable to their rheobases (van Vreeswijk and Sompolinsky,

1998; van Vreeswijk and Sompolinsky, 1996). The theory of balanced networks has been devel-

oped for a variety of single neuronal models including binary neurons (van Vreeswijk and Sompolin-

sky, 1998; van Vreeswijk and Sompolinsky, 1996), rate models (Harish and Hansel, 2015;

Kadmon and Sompolinsky, 2015), leaky-integrate-and fire neurons (Hansel and Mato, 2013;

Mongillo et al., 2012; Rosenbaum and Doiron, 2014; Roxin et al., 2011; Van Vreeswijk and Som-

polinsky, 2005) and conductance-based models (Hansel and van Vreeswijk, 2012;

Pattadkal et al., 2018).

In the present study, we investigate experimentally the effects of the photostimulation of PV

interneurons on the anterior lateral motor cortex (ALM) and barrel cortex (S1) of the mouse. We

show that two-population network models do not suffice to account for these effects. To overcome

this limitation, we develop a theory for the paradoxical effect in balanced networks that takes into

account the multiplicity of GABAergic neuronal populations. Combining analytical calculations and

numerical simulations, we study the responses of these networks at population and single neuron

level. For two-population balanced networks it has been shown that the paradoxical effect only

occurs when the network is inhibition stabilized (Pehlevan and Sompolinsky, 2014; Wolf et al.,

2014). Here we show that in contrast, in four-population networks, the paradoxical effect can occur

even if the network is not inhibition stabilized. We conclude with prescriptions for experiments that

according to the theory can be informative about network architectures in cortex.

Results

ALM layer 5 and S1 exhibit paradoxical effect but not ALM layer 2/3
We expressed a red-shifted channelrhodopsin (ReaChR) in PV interneurons to optogenetically drive

local inhibition in the barrel cortex (S1) and anterior lateral motor cortex (ALM) of awake mice

(Hooks et al., 2015). We used orange light (594 nm) to illuminate a large area of ALM or S1 (2 mm

diameter), photostimulating a large proportion of PV interneurons (Figure 1A). We measured the

light-induced effects on neural activity using silicon probe recordings. In both brain areas, putative

PCs and putative PV neurons were identified based on spike width (Methods). Neurons with wide

spikes were likely mostly PCs. Units with narrow spikes were fast spiking (FS) neurons and likely

expressed parvalbumin (Cardin et al., 2009; Guo et al., 2014b; Olsen et al., 2012; Resulaj et al.,

2018). We investigated the responses of these neurons as a function of the photostimulation inten-

sity in ALM layer 2/3 and layer 5, and in S1.

We found that in all recorded layers and areas, the population average activity of the PCs

decreased with the optogenetic drive (Figure 1B, Figure 2). In contrast in ALM, the PV population

exhibited a behavior which depended on the recorded layer.

In ALM layer 2/3, the population average firing rate of PV neurons monotonically increased with

the photostimulation intensity. However, individual neuron responses were heterogeneous. Most PV

neurons increased their spike rates from baseline with increased photostimulation intensity. Some

PV neurons initially decreased their spike rates below baseline for low light intensity.

In ALM layer 5, the response of the PV population was non-monotonic. For low laser intensity,

their activity paradoxically decreased with the optogenetic drive. The slope of the normalized firing

rate v.s. laser intensity was significantly different from zero for both the PC and PV populations

(Figure 1F). The ratio of their slopes was 0.62 ± 0.28. At high photostimulation intensity, the activity
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Figure 1. Effects of photostimulation of PV-positive interneurons in the mouse neocortex. (A) Scheme of the experiment. (B–C) Normalized spike rate

as a function of laser intensity in different layers and brain areas. Top, individual neuron responses of the PCs (red) and PV (blue) neurons; bottom,

population average responses. (B) ALM: layer 2/3: n = 26 (PCs), n = 9(PV); (C) ALM layer 5: n = 62 (PCs), n = 12 (PV). (D) S1: n = 52 (PCs), n = 8 (PV).

Mean ± s.e.m. across neurons, bootstrap. (E) Comparison of PV neurons’ normalized spike rates between ALM Layer 2/3 and Layer five at laser intensity

0.5 mW/mm2. (F).Slope of PCs and PVs’ normalized spike rate as a function of laser intensity. Data from ALM layer 5. Slopes are computed using data

from 0.3 mW/mm2 and below, before the spike rate of PV neurons begin to increase. Mean ± SEM, bootstrap (Methods). (G) Same as (F) but for data

from S1. In (F and G) the difference between the slopes for the PC and PV populations is not significant.
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Figure 2. Spike rates of PCs (top) and PV neurons (bottom). Dots correspond to individual neurons. Laser intensity is 0.5 mW/mm2. Pie charts represent

the fraction of neurons with different types of changes. Mean ± s.e.m. bootstrap. Black, fraction of neurons with activity increase larger than 0.1 Hz.

Light gray, fraction of neurons with activity decrease larger than 0.1 Hz. Dark gray, fraction of neurons with activity change smaller than 0.1 Hz. White,

fraction of neurons with activity smaller than 0.1 Hz upon PV photostimulation.
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of the PV population increased. At intermediate photostimulation intensity (0.5 mW/mm2), the

response of the PV neurons was significantly different between layer 2/3 and layer 5 (Figure 1E,

p<0.005, unpaired t-test, two-tailed test).

Paradoxical decrease in PV neurons activity with the optogenetic drive was also observed in S1.

Remarkably, the concomitant decrease of the PC and the PV population activities was proportional

(Figure 1G, ratio of slopes PV/PC, mean ± SEM; S1, 1 ± 0.29).

In both ALM layer 5 and S1, there was also a large diversity of responses. Most PV neurons

decreased their activity at low photostimulation intensity. At high laser intensity (5 mW/mm2), a frac-

tion of PV neurons (6/12 in ALM layer 5 and 6/10 in S1) had a larger response than baseline, while

the rest remained suppressed. Figure 2 shows the spike rates of PCs and PV neurons at an interme-

diate light intensity (0.5 mW.mm-2).

Network models
To assess the network mechanisms which may account for the experimental data from ALM and S1,

we first considered models consisting of one excitatory and one inhibitory population. Since it is well

established that cortical circuits involve a variety of inhibitory subpopulations, we later extended the

theory to network models of four populations of neurons representing PCs and three subtypes of

GABAergic interneurons in cortex. In all our models, neurons are described as integrate-and-fire ele-

ments. The data we seek to account for, were obtained in optogenetic experiments in which the

laser diameter was substantially larger than the spatial range of neuronal interactions and compara-

ble to the size of the area in which activity was recorded. Therefore, in all our models, we assume for

simplicity that the connectivity is unstructured. We modeled the ReachR-optogenetic stimulation of

the PV population as an additional external input, Iopto, into PV neurons. We assumed that it depends

on the intensity of the laser, Gopto, as Iopto ¼ I0log 1þ Gopto

G0

� �

where I0 and G0 are parameters (Figure 3—

figure supplement 1; Hooks et al., 2015).

Two-population model
The two-population network is depicted in Figure 3A. It is characterized by four recurrent interac-

tion parameters, Jab, and two feedforward interaction parameters, Ja0, a;b 2 E; If g (see Materials

and methods).

Results from numerical simulations of the model are depicted in Figure 3B and C where, the

dependence of the population activities normalized to baseline, are plotted against the intensity of

the laser, Gopto. Figure 3B shows the response of the network where the recurrent excitation, JEE, is

non zero. The activity of the PV population, r1 varies non-monotonically with the laser intensity. For

small intensities, r1 paradoxically decreases together with the activity of the PCs, rE. This paradoxical

effect stems from the fact that the decrease in the activity of the PCs yields a reduction in the excita-

tion to PV neurons which is not compensated for by the optogenetic drive. As a result, the net exci-

tation to PV neurons diminishes yielding a decrease in rI. When rE becomes very small, this

mechanism does not operate anymore and consequently, rI increases as Gopto is increased further. In

Figure 3C, JEE is zero, rI monotonically increases with the light intensity whereas rE monotonically

decreases. For small intensities, rI is close to a constant. It starts to increase appreciably only when

rE ’ 0. Therefore, the PV response is not paradoxical.

Qualitatively this model seems to account for our experimental data from ALM layer 2/3, ALM

layer 5 and S1. It would imply that in layer 5, JEE is sufficiently large to generate the paradoxical

effect, while in layer 2/3 this is not the case. On closer inspection however, there are major discrep-

ancies between the simulation results and the experimental data. In our recordings in both ALM

layer 5 and S1, the PV population activity reaches a minimum while the PCs are still significantly

active: relative to baseline the activity is 40% in ALM and 25% in S1. In contrast, in the two-popula-

tion model, the minimum of the PV activity is reached (Appendix 1B) when excitatory neurons are

virtually completely silenced (Figure 3B, Figure 3—figure supplement 2A). In fact one can show

that for sufficiently large K, when rI is minimum, the activity of the excitatory population is exponen-

tially small in K. As a result, to account for the data one needs to assume that K ’ 10.

In addition, in the experimental data the activities of the PC and PV populations in S1 decrease in

equal proportions before the minimum of the PV activity (Figure 1B). This cannot be accounted for

in a two-population model unless parameters are fine-tuned (Figure 3—figure supplement 3).
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Analytical calculations (Appendix 1B) supplemented with numerical simulations show that this pro-

portional decrease only happens when the determinant of the interaction matrix, Jab, is close to

zero. Moreover, the external input must also be fine-tuned so that the neurons have biologically real-

istic firing rates (Figure 3—figure supplement 3).

The experimental data from ALM layer 2/3 show that for already small light intensity the activity

of PV neurons increases appreciably. This is in contrast with Figure 3C. In Figure 3—figure supple-

ment 2B, we show that the two-population model can account for this feature only if the recurrent

excitation is very weak in that layer and the connectivity is extremely sparse.

These discrepancies prompted us to investigate whether models with several populations of

inhibitory neurons can account for our experimental data without fine-tuning. We focus on two four-

population network models. Both consist of three populations representing PCs, PV and SOM neu-

rons and a fourth population representing other inhibitory neurons. The main difference between

the two models lies in the inhibitory populations from which SOM neurons receive inputs.

A four-population model with V1-like architecture (Model 1)
We first investigated the dynamics of a four-population network with an architecture that is similar

to the one reported in layer 2/3 in V1 (Pfeffer et al., 2013) and S1 (Lee et al., 2013) (Figure 4A).

The model consists of four populations representing PCs, PV, SOM and VIP neurons. SOM neurons

do not interact with each other (Adesnik et al., 2012; Gibson et al., 1999; Hu et al., 2011). VIP

neurons only project to the SOM population (Jiang et al., 2015; Pfeffer et al., 2013). All neurons

A

JEE

I
JIE

JEI

JII
JI0 r0 

opto

JE0 r0 

B C 

Figure 3. Paradoxical effects in the two-population model. (A) The network. (B–C) Responses of PCs and PV neurons normalized to baseline vs. the

laser intensity, Gopto, for different values of the recurrent excitation, jEE. (B) jEE ¼ JEE=
ffiffiffiffi

K
p

, the network exhibits the paradoxical effect. (C) jEE = 0, the

population activity of PV neurons is almost insensitive to small laser intensities. Red: PCs. Blue: PV neurons. Thick lines: population averaged responses.

Thin lines: responses of 10 neurons randomly chosen in each population. Firing rates were estimated over 100s. Parameters: NE = 57600, N1 = 19200, K

= 500 N1 = 19200. Other parameters as in Tables 1–2. Baseline firing rates are: rE ¼ 5:7Hz, rI ¼ 11:7Hz (B) and rE ¼ 1:5Hz, rI ¼ 5:7Hz (C). At the

minimum of rI in (B), rE ¼ 0:06Hz.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Current, Iopto, v.s. laser intensity, Gopto.

Figure supplement 2. Effects of K on the responses of a two-population network to photoactivation of the inhibitory population.

Figure supplement 3. Two-population model.

Table 1. Connection strength matrix (rows: postsynaptic populations; columns: presynaptic

populations).

Jab �A:ms:cm�2ð Þ Feedforward PC PV

PC 17 29 30

PV 17 36 36

Parameters of the two-population model.
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except SOM receive inputs from sources external to the network (e.g. thalamus) (Beierlein et al.,

2003; Beierlein et al., 2000; Cruikshank et al., 2010; Ma et al., 2006; Xu et al., 2013). The same

architecture was considered in Litwin-Kumar et al. (2016).

Following Pfeffer et al. (2013), the PV population does not project to the SOM population.

Other studies have reported such a connection (Jiang et al., 2015). However, adding such a connec-

tion to Model 1 does not qualitatively affect the PC and PV responses (see Appendix 1C).

We considered parameter sets such that: 1) At baseline, the network is operating in the balanced

state with all populations active; 2) the activity of the PC population decreases with the laser inten-

sity as observed in our experiments.

Theory in the large N, K limit
It is instructive to consider the limit in which the number of neurons in the network, N, and the aver-

age number of connections per neuron, K, go to infinity. In this limit, the analysis of the stationary

Table 2. Synaptic time constants.

tab msð Þ E I

E 4 2

I 2 2

Default parameters of Model 1.

PV

PC SOM

VIP

JEE

JIE

JEI

JIS

JVE
JVS

JES

JSE

JSVJVI

JII
JI0 r0

Iopto

JE0 r0

JV0 r0

A B 

C

Figure 4. Population activities vs. Iopto in Model 1 in the large N, K limit. (A) The network is composed of four populations representing PCs, PV, SOM

and VIP neurons. The connectivity is as in Pfeffer et al. (2013). (B) Parameters as in Table 4. The activity of PV cells increases with Iopto while for the

three other populations it decreases. (C) Parameters as in Table 5. The activity of SOM neurons increases with Iopto while for the three other

populations it decreases. Right panels in B and C: the activities are normalized to baseline.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Graphical representation of the population susceptibilities upon stimulation of PV in Model 1 (large N, E limit).

Figure supplement 2. Population activities vs. Iopto in Model 1 (large N, K limit).
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state of the network simplifies (see Materials and methods). This stems from the fact that when inter-

actions are numerous, excitatory and inhibitory inputs are strong and only populations for which

excitation is balanced by inhibition have a finite and non-zero activity. The average activities of the

four populations are then completely determined by four linear equations, the balance equations,

which reflect this balance. Solving this system of equations yields the population activities, ra, a = E,

I, S, V, as a function of the external inputs to the network. In particular, when the laser intensity is

sufficiently small, the four populations are active and their firing rates vary linearly with the current

induced by the photostimulation (Appendix 1C).

Figure 4 plots the activities of the populations vs. the optogenetic input into PV neurons, Iopto,

for two sets of interaction parameters. In Figure 4B, the activity of the PV population, rI, increases

with Iopto. In contrast, in Figure 4C, rI decreases with Iopto: the response of the PV population is

paradoxical.

To characterize for which interaction parameters the PV response is paradoxical, we consider the

4 � 4 susceptibility matrix �ab

� �

. The element �ab a;b ¼ E; I; S;Vð Þ is the derivative of the population

activity,ra, with respect to a small additional input, into population b, Ib. Evaluated for small Ib, �ab

characterizes by how much ra varies with an increasing but weak extra input into population b. Its

sign indicates whether ra increases or decreases with Ib. The elements of the susceptibility matrix can

be decomposed in several terms corresponding to the contributions of different recurrent loops

embedded in the network (Appendix 1C). Using this decomposition one can show whether the PV

response is paradoxical or not depends on the interplay between two terms. One is the gain of the

disinhibitory feedback loop PC-VIP-SOM-PC and the other is the product of the recurrent excitation,

JEE, with the gain of the disinhibitory feedback loop VIP-SOM-VIP (Figure 4—figure supplement 1).

Remarkably, PV neurons are not involved in these two terms. A straightforward calculation

(Equation A37) then shows that the response of PV neurons increases with Iopto if the recurrent exci-

tation is sufficiently strong, namely if

JEE>J
�
EE ¼ JVEJES=JVS (1)

The denominator in J�EE is the strength of the connection from the SOM population to the VIP

population. The numerator is the gain of the pathway which connects these two populations via the

PCs. When JEE>J
�
EE the negative contribution of the disinhibitory loop PC-VIP-SOM-PC dominates in

the expression of �II . It is the opposite when JEE<J
�
EE. The stability of the balanced state provides

other necessary conditions that the interactions must satisfy (see Materials and methods). In particu-

lar, the determinant of the interaction matrix, J, must be positive.

The difference between the behaviors in Figure 4B and C can now be understood as follows: in

Figure 4B, JEE>J
�
EE and �II ¼ 1:6>0, thus, rI increases with Iopto; in Figure 4C, JEE<J

�
EE and

�II ¼ �5:1<0 and thus, rI decreases. Remarkably, in both cases the activities of the PC and VIP popu-

lations normalized to baseline, are always equal (Figure 4B–C, right panel). This is a consequence of

the balance of excitatory and inhibitory inputs into the SOM population which implies that rE and rV
are proportional (see Materials and methods, Equation 19.3).

In Figure 4B, the activity of the SOM population decreases with the laser intensity. This also

stems from the fact that JEE>J
�
EE (Appendix 1C, Equations A31-34). This qualitative behavior is

therefore independent of parameter sets, provided that inequality (1) is satisfied. In contrast, for

parameters for which JEE<J
�
EE the activity of the SOM population either decreases or increases with

Iopto depending on other parameters. Moreover, it is straightforward to prove that if JEE>J
�
EE, the

product �EI�IE is positive (Appendix 1C). Since we assumed that rE decreases upon photostimulation

of PV neurons, namely �EI<0, this implies that �IE is also negative. In other words, in Model 1, a non-

paradoxical response of the PV population upon PV photostimulation implies that the PV activity

decreases when PCs are photostimulated.

When Iopto is sufficiently large, the solution of the four balance equations will contain one or more

populations for which ra < 0. Obviously such a solution is inconsistent. Instead, other solutions

should be considered where at least one population has a firing rate which is zero and the firing

rates of the other populations is determined by a new system of linear equations with lower dimen-

sions (see Materials and methods, Appendix 1C). Consistency requires that in these solutions the net

input is hyperpolarizing for the populations with ra = 0. As a consequence, the network population

activities are in general piecewise linear in Iopto (Figure 4—figure supplement 2).

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 8 of 37

Research article Neuroscience

https://doi.org/10.7554/eLife.49967


The large N, K analysis provides precious insights into the dynamics of networks with reasonable

size and connectivity. In particular, we will show that the criterion for the paradoxical effect, Equa-

tion 1, remains valid up to small corrections. Although it is possible to treat analytically the depen-

dence of ra on Iopto for finite K, these calculations are very technical and beyond the scope of this

paper. Instead here, we proceed with numerical simulations.

Numerical simulations for JEE>J
�
EE

Figure 5 depicts the results of our numerical simulations of Model 1 for the same parameters as in

Figure 4B (see Materials and methods, Tables 3–4). The response of PV neurons is non-paradoxical:

the activity of the PV population increases monotonically with Gopto in the whole range (Figure 5A).

Concurrently, the population activities of PC, SOM and VIP neurons monotonically decrease with

Gopto (Figure 5A-B). For sufficiently large Gopto, PCs become very weakly active and the SOM and VIP

populations dramatically reduce their firing rates. The variations with Gopto of rE, rI, rS and rV and are

robust to changes in the average connectivity, K (Figure 5—figure supplement 1) and in qualitative

agreement with the predictions of the large N, K limit (Figure 4B Appendix 1C, Figure 4—figure

supplement 2).

To test the robustness of our results with respect to changes in the interaction strengths, we gen-

erated 100 networks with Jab chosen at random within a range of ±10% of those of Figure 4B. All

the networks exhibited a balanced state which was stable with respect to slow rates fluctuations in

the large N, K limit. We simulated those networks with K = 500 and computed the population activ-

ity at baseline and for Gopto ¼ 0:07mW:mm�2. For all these networks, the results were consistent with

the one of the control set: for Gopto ¼ 0:07mW :mm�2, rI was larger and rE, rS, rV were smaller than

baseline (Figure 5—figure supplement 2). However, a small percentage of these networks (10%)

exhibited oscillations with at most an amplitude 20% of their mean in the firing rates. Apart from

that, the results were robust to changes in Jab.

A B BA B B

Figure 5. Numerical simulations of Model 1 for JEE>J
�
EE . Responses of the neurons normalized to baseline vs. the intensity of the laser, Gopto. (A)

Activities of PCs and PV neurons: the PV response is not paradoxical. (B) Activities of SOM and VIP neurons. Color code as in Figure 4. Thick lines:

population averaged responses. Thin lines: responses of 10 neurons randomly chosen in each population. Firing rates were estimated over 100s.

Parameters: K = 500, N = 76800. Other parameters as in Tables 3–4. The baseline activities are: rE = 3.3 Hz, rI = 6.5 Hz, rS = 5.9 Hz, rV = 3.5 Hz.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Model 1 with JEE>J
�
EE .

Figure supplement 2. Model 1 with JEE>J
�
EE .

Figure supplement 3. Model 1 with JEE>J
�
EE .
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In contrast to what happens in the large N, K limit (Figure 4B, right panel), in the results depicted

in Figure 5 the activity of the PC and VIP populations are not proportional. Moreover, in the large K

limit, PC and VIP neurons are inactivated before the SOM population is. For K = 500, VIP is the first

population to be silenced followed by the SOM and finally the PC population. Simulations with

increasing values of K show that these differences are due to substantial finite K effects (Figure 5—

figure supplement 1).

Figure 5 also depicts the changes in the firing rates (normalized to baseline) with Gopto for several

example neurons. These changes are highly heterogeneous across neurons within each population.

Whereas the population average varies monotonically, individual cells activity can either increase or

decrease and the response can even be non-monotonic with Gopto.

The heterogeneity in the single neuronal responses are also clear in Figure 6A–B that plots, for

two different light intensities, the perturbed firing rate vs. baseline for PCs and PV neurons. Remark-

ably, in both populations a significant fraction of neuron exhibits a response which is incongruous

with the population average. The pie charts in Figure 6 depict the fraction of PCs and PV neurons

which increased, decreased, or did not change their firing rates. The fraction of neurons whose activ-

ity is almost completely suppressed, is also shown. Remarkably, even for Gopto ¼ 1:0mW :mm�2, some

of the PCs show an activity increase. Moreover, the fraction of PV neurons whose firing rate

increases is less for Gopto ¼ 1:0mW :mm�2 than Gopto ¼ 0:5mW :mm�2. It should be noted that in the

model all PV neurons receive the same optogenetic input, therefore, the heterogeneity in the

response is not due to whether or not the PV neurons were “infected”. This heterogeneity is solely

due to the randomness in the connectivity.

Numerical simulations for JEE<J
�
EE

Figure 7 depicts the results of our numerical simulations of Model 1 when JEE<J
�
EE. Parameters are

the same as in Figure 4C (see Materials and methods, Tables 3–5). The population activities of PCs

and VIP neurons, rE and rV, decrease monotonically with the laser intensity, Gopto. Conversely, the var-

iations of the activities of the PV and SOM populations, rI and rS, are non-monotonic with Gopto. For

small light intensities, rI decreases and then abruptly increases with larger Gopto; rS exhibits the oppo-

site behavior. Remarkably, when rI is minimum, rS is maximum for nearly the same value of Gopto. We

show in Figure 7—figure supplement 1 that this proportional decrease only happens in a small

region of parameter space when the determinant of the interaction matrix, Jab �b, is close to zero.

This behavior is qualitatively similar to the one derived in the large N, K limit (Figure 4—figure

supplement 2). As suggested by the large N, K analysis, the paradoxical response of the PV neurons

in the simulations, is driven by the positive feedback loop PC-VIP-SOM-PC (Figure 4—figure sup-

plement 1). Remarkably, when the activity of the PV neurons is minimum, the PCs are still

Table 3. Synaptic time constants.

tab (ms) PC PV SOM VIP

PC 4 2 2 N/A

PV 2 2 4 N/A

SOM 2 N/A N/A 4

VIP 4 2 4 N/A

Table 4. Connection strength matrix for JEE>J
�
EE (rows: postsynaptic populations; columns:

presynaptic populations)

Jab (mA. ms.cm-2) Feedforward PC PV SOM VIP

PC 34 20 26.4 41 0

PV 27 44 28 35.6 0

SOM 0 24 0 0 14

VIP 39 12 35.2 35 0

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 10 of 37

Research article Neuroscience

https://doi.org/10.7554/eLife.49967


substantially active (40% of baseline level). This is due to finite K corrections to the large N, K predic-

tions (Figure 7—figure supplement 2). These corrections are strong and scale as 1
ffiffiffi

K
p (Appendix 1C).

Indeed, even for K as large as 2000, rE is still 25% of the baseline when rI is minimum.

We checked the robustness of these results with respect to changes in the interaction parameters

as we did for JEE>J
�
EE. We found that for small light intensity all the 100 simulated networks were

operating in the balanced state and exhibited the paradoxical effect (Figure 7—figure supplement

3).

Finally, the single neuron responses are highly heterogeneous. Figure 8 plots the perturbed activ-

ities of PCs and PV neurons vs. their baseline firing rates for two light intensities. In Figure 8A, the

PV response is paradoxical. This is not the case in Figure 8B. Interestingly, the fraction of PV neurons

incongruous with the population activity is larger for Gopto ¼ 0:5mW :mm�2 than for

Gopto ¼ 1:0mW :mm�2. For both light intensities the activity of almost all the PCs is decreased.

Four-population network: Model 2
In S1, in the range of laser intensities in which the PV response is paradoxical, the decrease of the

PC and PV activity is proportional. This feature of the data can be accounted for in Model 1 but only

with a fine-tuning of the interaction parameters (Figure 7—figure supplement 1 and Figure 7—fig-

ure supplement 4). This prompted us to investigate whether a different architecture could account

robustly for this remarkable property. Our hypothesis is that this property is a direct consequence of

the balance of excitation and inhibition.

Theory in the large N;K limit
We first considered the three-population model depicted in Figure 9A. It consists of the PC, PV and

SOM populations. SOM neurons receive strong inputs from PCs and PV neurons, but do not interact
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Figure 6. Single neuron firing rates in the PC and PV populations upon PV activation for two values of the light intensity (Model 1 with JEE>J
�
EE ). (A)

Single neuron firing rates at baseline vs. at Gopto ¼ 0:5mW :mm�2. (B) Same for Gopto ¼ 1mW:mm�2. Top: PCs (red). Bottom: PV neurons (blue). Scatter plots

of 300 randomly chosen PC and PV neurons. Pie charts for the whole population. The pie charts show the fraction of neurons which increase (black) or

decrease (light gray) their activity compared to baseline. Dark gray: Fraction of neurons with relative change smaller than 0.1Hz. White: fraction of

neurons with activity smaller than 0.1Hz upon PV photostimulation. Firing rates were estimated over 100s. Neurons with rates smaller than 0.01Hz are

plotted at 0.01Hz. Parameters as in Figure 5.
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with each other and do not receive feedforward external inputs. In the large N, K limit, the balance

of excitation and inhibition of the SOM population reads (see Materials and methods,

Equation 20.2).

JSErE � JSIrI ¼ 0 (2)

Therefore, the activities of the PC and PV populations are always proportional. However, as we

show in (Appendix 1D) a three-population network with such an architecture cannot exhibit the para-

doxical effect.

We therefore considered a network model in which a third inhibitory population, referred to as

‘X’, is added without violating Equation (3) (Figure 9B). This requires that SOM neurons do not

receive inputs from X neurons (Appendix 1D). This network exhibits the paradoxical effect if and

only if JSEJEXJXS>JXXJESJSE, that is if the gain of the positive feedback loop, SOM-X-PC-SOM, is suffi-

ciently strong (Appendix 1D). Obviously, this condition simplifies and reads

A B

Figure 7. Numerical simulations of Model 1 for JEE<J
�
EE . Responses of the neurons normalized to baseline vs. the intensity of the laser, Gopto. (A)

Activities of PCs and PV neurons: the PV response is paradoxical. (B) Activities of SOM and VIP neurons. Color code as in Figure 4. Thick lines:

population averaged responses. Thin lines: responses of 10 neurons in each population. Firing rates were estimated over 100s. Parameters:

K = 500, N = 76800. Other parameters as in Tables 3–5. The baseline activities are: rE = 4.8 Hz, rI = 11.2 Hz, rS = 7.1 Hz, rV = 5.3 Hz.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Model 1 for JEE<J
�
EE .

Figure supplement 2. Model 1 with JEE>J
�
EE .

Figure supplement 3. Model 1 with JEE<J
�
EE .

Figure supplement 4. Model 1.

Figure supplement 5. Model 1 with JEE<J
�
EE .

Table 5. Connection strength matrix for JEE<J
�
EE (rows: postsynaptic populations; columns:

presynaptic populations).

Jab (mA. ms.cm-2) Feedforward PC PV SOM VIP

PC 52 17.4 34.4 32.8 0

PV 39 36.6 29.2 28.8 0

SOM 0 24.2 0 0 16.8

VIP 30 31.2 31 14.6 0
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JEXJXS>JXXJES (3)

Remarkably, this inequality does not depend on JEE. This is in contrast to what happens in Model

1 where the paradoxical effect occurs only if JEE is small enough (see Equation (2)).

As in Model 1, we further required that the activity of the PC population increases with its feed-

forward external input. This adds the constraint (Appendix 1D):

JIXJXS>JXXJIS (4)

Equations (3-5) do not depend on JXI. For simplicity, we take JXI =0 and refer to the resulting

architecture as Model 2.

In Figure 9C, the slope of the PV population activity changes from negative to positive while PCs

are still active. This is because if SOM neurons are completely suppressed, the loop SOM-X-PC-SOM

which is responsible for the paradoxical effect, is not effective anymore. Interestingly, the analytical

calculations also show that, when the SOM population activity vanishes, the activity of the X popula-

tion is maximum. Since the SOM population is inactive before PCs, there is a range of laser intensi-

ties where the activity of the latter keeps decreasing while the activity of the PV population

increases. Once PCs are inactive, the activity of the X population do not vary with Iopto. This is

because then they only receive a constant feedforward excitation from outside the network which is

balanced by their strong recurrent mutual coupling, JXX.

Simulations for finite K
These features are also observed in our simulations depicted in Figure 10. For small laser intensities,

the network exhibits a paradoxical effect where the activities of the PC and PV populations decrease

with Gopto and in a proportional manner (Figure 10A), until the SOM neurons become virtually inac-

tive (Figure 10B). At that value, rI is minimum and rX is maximum. For larger Gopto, rI increases while

rE keeps decreasing and is still substantial. After rE has vanished, rX saturates but rI continues to
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Figure 8. Single neuron firing rates in the PC and PV populations upon PV activation for two values of the light intensity (Model 1 with JEE<J
�
EE ).

(A) Single neuron firing rates at baseline vs. at Gopto ¼ 0:5mW :mm�2. (B) Same for Gopto ¼ 1mW :mm�2. Top: PCs. Bottom: PV neurons. Scatter plots of 300

randomly chosen PC and PV neurons. Pie charts for the whole population. Firing rates were estimated over 100s simulation time. Neurons with rates

smaller than 0.01Hz are plotted at 0.01Hz. Color code as in Figure 6. Parameters as in Figure 7.
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increase. All these results are robust to changes in the connectivity, K (Figure 10—figure supple-

ment 1) as well as to changes in the interaction parameters (Figure 10—figure supplement 2). Sin-

gle neuron responses are more heterogeneous than in the experimental data (Figure 11). It should

be noted however that we did not tune parameters to match the experimental heterogeneity.

Discussion
We studied the response of cortex to optogenetic stimulation of parvalbumin positive (PV) neurons

and provided a mechanistic account for it. We photostimulated the PV interneurons in layer 2/3 and

layer 5 of the mouse anterior motor cortex (ALM). In layer 2/3 photostimulation increased PV activity

and decreased the response of the PCs on average. In contrast, in layer five the response of the PV

population was paradoxical: both PC and PV activity decreased on average. This is similar to what

we found in the mouse somatosensory cortex (S1) (Li et al., 2019). To account for these results, we

first investigated the dynamics of networks of one excitatory and one inhibitory population of spiking

neurons. We showed that two-population network models of strongly interacting neurons do not

fully account for the experimental data. This prompted us to investigate the dynamics of networks

consisting of more than one inhibitory population.

We considered two network models both consisting of one excitatory and three inhibitory popu-

lations. Interneurons are known to be unevenly distributed throughout the cortex. For instance,

SOM neurons have been reported to be most prominent in layer five whereas VIP neurons are

mostly found in layer 2/3 (Tremblay et al., 2016). Instead of giving a complete description of these

layers and all neuronal populations they include, we propose here models with the minimal number

of inhibitory populations that can account for the data.

The three inhibitory populations in Model 1 represent PV, somatostatin positive (SOM) and vaso-

active intestinal peptide (VIP) interneurons with a connectivity similar to the one reported in primary

visual cortex (Pfeffer et al., 2013) and S1 layer 2/3 (Lee et al., 2013). In Model 2, the first two inhib-

itory populations likewise represent PV and SOM neurons and the third population, denoted as X,

represents an unidentified inhibitory subtype. The main difference with Model one is that here, the

third population does not project to SOM neurons.

Depending on network parameters, the response of PV neurons in Model one can be paradoxical

or not. To have equal relative suppression of the PCs and PV activities, however, interaction
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Figure 9. Network models with proportional change in the PC and PV activities upon photostimulation of the PV population. (A) A three-population

network consisting of PCs, PV and SOM neurons. SOM neurons only receive projections from the PC and PV populations. (B) Model 2 consists of four

populations: PC, PV, SOM and an unidentified inhibitory population, X. The population X projects to the PC, the PV population and to itself. The PC

population projects to X. (C) Population activities normalized to baseline vs. Iopto in the large N, K limit. PC and PV populations decrease their activity

with Iopto in a proportional manner. Parameters as in Tables 6–7. Baseline firing rates are: rE = 3.0 Hz, rI = 6.7 Hz, rS = 6.4 Hz, rX = 3.8 Hz.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Model 2.

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 14 of 37

Research article Neuroscience

https://doi.org/10.7554/eLife.49967


parameters have to be fine-tuned. In Model 2, the relative changes in the PC and PV activity are the

same independent of interaction parameters.

For a two-population network, the paradoxical effect only occurs when it is inhibition stabilized

(Pehlevan and Sompolinsky, 2014; Wolf et al., 2014). This is because the mechanism requires

strong recurrent excitation. In the four-population networks we studied, however, the mechanism

responsible for paradoxical effect is different. It involves a disinhibitory loop. In fact, strong recurrent

excitation prevents the paradoxical effect in these networks. Therefore, the observation of the para-

doxical effect upon PV photo-excitation is not a proof that the network operates in the ISN regime.

Strong vs. weak interactions
Cortical networks consist of a large number (N) of neurons each receiving a large number of inputs

(K). Because N and K are large, one expects that a network behaves similar to a network where N

and K are infinite. In this limit the analysis is simplified and the mechanisms underlying the dynamics

are highlighted. When taking the large K limit one needs to decide how the interaction strengths

scale with K. Two canonical scalings can be used: in one the interactions scale as 1/K (Hansel and

Sompolinsky, 1992; Hennequin et al., 2018; Knight, 1972; Rubin et al., 2015), in the other as

1=
ffiffiffiffi

K
p

(Darshan et al., 2017; Renart et al., 2010; Rosenbaum et al., 2017; van Vreeswijk and Som-

polinsky, 1996). These differ in the strength of the interactions. For instance, for K = 900 interac-

tions are weaker by a factor 30 in the first scaling than in the second. Importantly, these two scalings

give rise to qualitatively different dynamical regimes.

When interactions are strong, the excitatory and inhibitory inputs are both very large (of the order

of K: 1
ffiffiffi

K
p ¼ 1). They, however, dynamically balance so that the temporal average of the net input and

its spatial and temporal fluctuations are comparable to the rheobase (Van Vreeswijk and Sompolin-

sky, 2005; van Vreeswijk and Sompolinsky, 1998), Appendix 1A). In this balanced regime, the

average firing rates of the populations are determined by a set of linear equations: the “balance

A B

Figure 10. Numerical simulations of Model 2. Responses of the neurons normalized to baseline vs. the intensity of the laser, Gopto. (A) Activities of PCs

and PV neurons: for small Gopto, the PV response is paradoxical and the suppression of the PC and PV population activities relative to baseline are the

same. (B) Activities of SOM and X neurons. Color code as in Figure 9. Thick lines: population averaged responses. Thin lines: responses of 10 neurons

randomly chosen in each population. Firing rates were estimated over 100s. Parameters: K = 500, N = 76800. Other parameters as in Tables 6–7. The

baseline activities are: rE = 4.2 Hz, rI = 6.8 Hz rS = 7.0 Hz, rX = 3.9 Hz.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Model 2.

Figure supplement 2. Model 2.

Figure supplement 3. Model 2.
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equations”. These do not depend on the neuronal transfer function. For large but finite K, the net-

work operates in an approximately balanced regime. In this regime, the population activities are well

approximated by the balance equations, interspike intervals are highly irregular and firing rates are

heterogeneous across neurons.

When the interactions are weak, excitatory and inhibitory inputs are both comparable to the rheo-

base even when K is large, but their spatial and temporal fluctuations vanish as K increases. The

activity of the network is determined by a set of coupled non-linear equations which depends on the

neuronal transfer function. For large but finite K, the firing of the neurons is weakly irregular and het-

erogeneities mostly arise from differences in the intrinsic properties of the neurons.

In which of these regimes does cortex operate in-vivo? This may depend on the cortical area and

on whether the neuronal activity is spontaneous or driven (e.g. sensory, associative, or motor

related). There are, however, several facts indicating that the approximate balanced regime may be

ubiquitous. Many cortical areas exhibit highly irregular spiking (Shinomoto et al., 2009) and hetero-

geneous firing rates (Hromádka et al., 2008; Roxin et al., 2011). Excitatory and inhibitory postsyn-

aptic potentials (PSPs) are typically of the order of 0.2 to 2mV or larger (Levy and Reyes, 2012;

Ma et al., 2012; Pala and Petersen, 2015; Seeman et al., 2018). Model networks with PSPs of
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Figure 11. Single neuron firing rates in the PC and PV populations upon PV activation for two values of the light intensity (Model 2). (A) Single neuron

firing rates at baseline vs. at Gopto ¼ 0:5mW :mm�2. (B) Same for Gopto ¼ 1mW :mm�2. Top: PCs. Bottom: PV neurons. Scatter plots of 300 randomly chosen

PC and PV neurons. Pie charts for the whole population. Firing rates were estimated over 100s. Neurons with rates smaller than 0.01Hz are plotted at

0.01Hz. Color code as in Figure 6. Parameters as in Figure 10.

Table 6. Default parameters of Model 2.

Synaptic time constants in Model 2.

tab (ms) PC PV SOM X

PC 4 2 2 4

PV 2 2 4 4

SOM 2 2 N/A N/A

X 2 N/A 4 2
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these sizes and reasonable number of neurons and connections exhibit all the hallmarks of the bal-

anced regime (Amit and Brunel, 1997; Hansel and Mato, 2013; Hansel and van Vreeswijk, 2012;

Lerchner et al., 2006; Pehlevan and Sompolinsky, 2014; Argaman and Golomb, 2018; Rao et al.,

2019; Roudi and Latham, 2007; Roxin et al., 2011 Van Vreeswijk and Sompolinsky, 2005). More-

over, there is experimental evidence of co-variation of excitatory and inhibitory inputs into cortical

neurons (Haider et al., 2006; Shu et al., 2003). Finally, in cortical cultures synaptic strengths have

been shown to approximately scale as 1=
ffiffiffiffi

K
p

(Barral and D Reyes, 2016). Therefore in this paper we

focused on cortical network models in which interactions are strong, that is of the order of 1=
ffiffiffiffi

K
p

.

Model 1 accounts for the responses in ALM layer 2/3 and layer 5
In Model 1, whether the network exhibits a paradoxical effect depends on the value of the ratio

� ¼ JEE=J
�
EE where J�EE � JVEJES=JVS. Here, Jab; a;b 2 E; S;Vf g, is the strength of the connection

from population b to population a. When r > 1, the PV response is non-paradoxical and its activity

increase can be substantial well before suppression of the PC activity. On the other hand when

r > 1, the PV response is paradoxical and the PV activity reaches its minimum for light intensities at

which the PCs are still substantially active.

In ALM layer 2/3, the activity of the PV population increases with the light intensity while the

activity of the PC decreases on average. Remarkably, our experiments showed that the increase in

the PV activity was already substantial for small light intensities, where the PCs were still significantly

active. In ALM layer 5 the activity of the PV population initially decreased with the light intensity

together with the activity of the PC population. As the light intensity is further increased, the PV

activity reaches a minimum after which it increases. At this minimum, the PC activity is still

substantial.

Thus, Model 1 accounts for our experimental findings in ALM layer 2/3 provided that JEE is suffi-

ciently large. It accounts for the paradoxical effect in layer 5 provided that JEE is sufficiently small.

Note that this does not mean that JEE, is larger in the former layer as compared to the latter. The

interactions JVE, JES and JVS are likely to be layer dependent (Jiang et al., 2015) and therefore so is

the value of J�EE.

Model 2 accounts for the paradoxical effect in S1 while model 1 would
require fine-tuning
Similar to ALM layer 5, the PV response in S1 is paradoxical. Remarkably however, in S1 the relative

suppression of the PC and PV activities is the same for low light intensity. Model 1 can account for

this feature only when the interaction parameters are fine-tuned. In contrast, in Model 2 the co-mod-

ulation of the PC and PV activities stems from the architecture and therefore occurs in a robust man-

ner. Furthermore, it can equally well account for the fact that in S1 the PV activity reaches its

minimum when the PC population is active.

Note that in ALM layer 5 the difference between the slopes of the PC and PV population activities

is not significantly different (p>0.05). Therefore, we cannot exclude that Model 2 describes ALM

layer 5.

The main difference between Models 1 and 2 is that in Model 1, the third inhibitory population

(VIP) projects to SOM neurons while in Model 2, the third population (X) does not. This suggests

that population X is not the VIP population. For example, X could be chandelier cells that do not

express the PV marker (Jiang et al., 2015) Alternatively, population X could describe the effective

interaction of several inhibitory populations with PC and PV neurons.

Table 7. Connection strength matrix (rows: postsynaptic populations; columns: presynaptic

populations).

Jab (mA ms.cm-2) Feedforward PC PV SOM VIP

PC 48 20 30 32 36

PV 29 40 28 16 32

SOM 0 26 12 0 0

VIP 24 24 0 36 22
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Models 1 and 2 account for the heterogeneity of single neuron
responses
The responses of PCs and PV neurons in the experimental data are highly heterogeneous across

cells. Indeed in ALM layer 5 and S1, PV neurons on average show a paradoxical response but at the

single neuron level the effect of the laser stimulation is very diverse. Moreover, the firing rate of a

neuron can vary monotonically or non-monotonically with the laser intensity. For instance, when stim-

ulated, the firing rates of many PV neurons increase, although, on average the activity is substantially

smaller than baseline. Conversely, for some PV neurons the paradoxical effect is so strong that the

laser completely suppresses their activity.

We observed an even larger diversity in single neuron responses in our simulations of Model 1

and 2. We should emphasize that in the simulated networks all the neurons were identical and the

cells in the same population received the same feedforward constant external input. The only possi-

ble source of heterogeneity therefore comes from the randomness in the network connectivity. The

effect of this randomness on the network recurrent dynamics is however non-trivial: one may think

that the effect of the fluctuations in the number of connections from neuron to neuron should aver-

age out since in the models the number of recurrent inputs per neuron is large (K = 500 or more).

This is not what happens because in our simulations populations which are active operate in the bal-

anced excitation/inhibition regime (Roxin et al., 2011; van Vreeswijk and Sompolinsky, 1998;

van Vreeswijk and Sompolinsky, 1996). In this state, relatively small homogeneity in the number of

connections per neuron is amplified to a substantial inhomogeneity in the response. Thus, strong

heterogeneity in the response of neurons is not a prima facie evidence for the heterogeneity of the

level of Channelrhodopsin expression in the cells nor is it for the diversity of the single neuron intrin-

sic properties.

Limitations
We give here a qualitative account for the mechanisms underlying the responses of different cortical

areas to optical stimulation. A quantitative analysis of the data, in particular of the heterogeneity is

beyond our scope. Such an analysis would require a much larger number of PV neurons. Moreover,

it would necessitate the use of more complicated neuronal models making the mathematical analysis

intractable, limiting the investigation to simulations only and thus obscuring the mechanisms.

In our experiments, we expressed ReaChR in all PV neurons and in all layers in ALM. In particular,

all PV neurons in layer 2/3 and layer five were simultaneously affected by the photostimulus. PCs in

layer 2/3 project to layer 5 and receive feedback from the latter (Hooks et al., 2013; Naka and

Adesnik, 2016). Interlaminar interactions are likely to also contribute to the effect of the

photostimulation.

In our models, we did not take into account such interactions. Including strong connections from

layer 2/3 PCs to neurons in layer 5 and/or feedback connections from layer 5 neurons to layer 2/3,

could alter our interpretations. In the absence of data that reveal the nature of interlaminar interac-

tions, extending our model to incorporate these is impractical given the large number of parameters

to vary. Experiments in ALM and S1 where the optogenetic marker is expressed in only one layer at

a time would constraint models which include interlaminar interactions and facilitate their analysis

(Moore et al., 2018).

There is a large amount of experimental evidence indicating that different synapses can exhibit

diverse dynamics depending on their pre and postsynaptic populations (Ma et al., 2012). For

instance, recent studies have shown that PCs to PV synapses are depressing while the PCs to SOM

synapses are highly facilitating (Karnani et al., 2016; Xu et al., 2013). Synaptic facilitation and

depression mechanisms could give rise to dynamics which will make the network responses depend

on the duration of the photostimulation. Here, we did not take into account short term plasticity.

Mice neocortex mostly comprises PV, SOM and 5HT3aR expressing interneurons. There is a growing

amount of experimental evidence indicating that these populations include different subtypes which

may have distinct connectivity patterns (Naka and Adesnik, 2016; Nigro et al., 2018;

Tremblay et al., 2016). In the present work, we only considered three populations of identical inter-

neurons: PV, SOM and VIP or X. As the number of populations increases, the number of interaction

parameters increases quadratically, making it a great challenge to uncover even simple mechanisms

that could underlie the network responses.

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 18 of 37

Research article Neuroscience

https://doi.org/10.7554/eLife.49967


Comparison with previous theoretical work
The paradoxical effect was first described in Tsodyks et al. (1997) and Ozeki et al. (2009) for weak

interactions using coarse grained two-population rate models (Wilson and Cowan, 1972). These

models were extended in Rubin et al. (2015) to a spatially structured network to explain center-sur-

round interactions and other contextual effects in primary visual cortex. They found that these

effects can be accounted for if the neuronal transfer function is supralinear and the network is oper-

ating in the inhibition stabilized regime (ISN). With supralinear transfer functions, whether or not the

network exhibits a paradoxical effect depends on the background rate of the inhibitory neurons.

These models were further extended by Litwin-Kumar et al. (2016) to networks consisting of PC,

PV, SOM and VIP neurons with an architecture similar to Pfeffer et al. (2013). They studied the

effect of photostimulation of the different inhibitory populations on the responses and orientation

tuning properties of the neurons. In a recent study (Sadeh et al., 2017) have investigated the effects

of partial activation of PV neurons upon photostimulation in an ISN. They argued that depending on

the degree of viral expression, the average response of the infected neurons can decrease or

increase with the light intensity: it decreases only if a large proportion of the population is infected.

(Garcia Del Molino et al., 2017) showed that due to the non-linearity in the neuronal transfer func-

tion, the response of the network to stimulation can be different for different background rates. In

particular, they showed that it can reverse the response of SOM neurons to VIP stimulation.

All these works considered inhibition stabilized networks in which the total recurrent excitation is

so strong that the activity would blow up in the absence of inhibitory feedback. With our notations,

this means that GEjEE>1=K, where GE is the gain of the noise average transfer function (f-I curve) of

the excitatory neurons. In fact, in these models all the interactions jab are of order 1/K so they are

weak in our sense. Moreover, these studies considered networks that are so small that it is impossi-

ble to extrapolate their results to mouse cortex size networks. Here we studied large network mod-

els (N = 76800) with strong interactions, that is jab are of order 1=
ffiffiffiffi

K
p

operating in the balanced

regime. Note that such networks are ISNs provided that jEE 6¼ 0. We showed that paradoxical effect

can be present or not depending on the interaction parameters.

Since we used static synapses, changes in the background rates cannot reverse the paradoxical

effect in our models. This is because with static synapses the balance equations are linear. One can

recover this reversal if one introduces short-term plasticity which will make the balance equations

nonlinear. We did not consider partial expression of channelrhodopsin in the PV population because

our goal was to account for experimental data where virtually all neurons were infected. These

effects have been studied in Gutnisky et al. (2017); Sanzeni et al. (2019) in strongly coupled net-

works of two populations yielding to the same conclusions as (Sadeh et al., 2017).

Predictions
Our theory (Model 1) predicts that in ALM layer 2/3 the activity of the SOM and VIP populations will

decrease upon PV photostimulation (Figure 4B). It also predicts that upon PC photoinhibition, the

PV activity will increase whereas the activity of the SOM and VIP populations will decrease

(Figure 12A). This is because in Model 1 when the PV response is non-paradoxical (�II>0) the prod-

uct XEI XIE is also positive (see Appendix 1C). Furthermore, in ALM layer 2/3 the population activity

of PCs decreases upon PV photostimulation, XEI < 0. Hence, XIE is negative. The balance of the PC

and the VIP inputs into SOM neurons implies that VIP and PC activity covary. Finally, in Appendix 1C

we show that if XEE > 0 and XIE < 0 then necessarily XSE > 0. Thus, in ALM layer 2/3, the SOM popu-

lation activity should decrease upon PC photoinhibition (Figure 12A).

In auditory and prefrontal cortex (Pi et al., 2013) as well as in S1 (Lee et al., 2013), photostimula-

tion of VIP neurons, activates them (XVV > 0) and disinhibits the PCs (XEV > 0) through an inhibition

of the SOM population (XSV > 0). If this is also true in ALM layer 2/3, our model predicts that photo-

stimulation of VIP neurons should increase the PV activity (XIV > 0) (Appendix 1C, Figure 12B).

In S1 our theory (Model 2) predicts that the PC and PV activities will proportionally decrease

upon PC photoinhibition (Equation (3), Appendix 1D, Figure 12C). Photostimulation of the SOM

neurons modifies Equation (3) and consequently, the changes in PC and PV activity no longer covary

(Figure 12D). Thus, our theory can be tested by photostimulating PV neurons as in our experiment,

while also photostimulating SOM neurons with a second laser with constant power. In this case, the
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model predicts that S1 will still exhibit the paradoxical effect but that the responses of the PC and

PV populations will no longer be proportional (Figure 12E).
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Figure 12. Predictions of the theory. (A) In ALM layer 2/3, the activity of the PV population decreases upon photoinhibition of the PCs. (B) In ALM layer

2/3, photostimulation of VIP neurons increases the activity of the PV population. (C) In S1, PV and PC activity decrease proportionally upon

photoinhibition of the latter. (D) In S1, the PC and PV responses are not proportional upon photoinhibition of the SOM population. (E) In S1, upon

photostimulation of PV neurons and photoinhibition of the SOM population with a constant input, the PV response is paradoxical but PC and PV

responses are no longer proportional.

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 20 of 37

Research article Neuroscience

https://doi.org/10.7554/eLife.49967


Perspectives
We only considered response of the neurons for a large radius of the laser beam. In a recent study

Li et al. (2019), have investigated the spatial profile of the response and its dependence on the light

intensity. Our theory can be extended to incorporate spatial dependencies. Studying the interplay

between the connectivity pattern and laser beam width in the response profile of the networks will

provide further constraints on cortical architectures.

Due to the strong interactions in our models, the nonlinearity of the single neuron f-I curves

hardly affects the population average responses. However, it influences the response heterogeneity

that naturally arises in our theory (Figures 6–8). An alternative model for the paradoxical effect is

the supralinear stabilized network (SSN) (Rubin et al., 2015) which relies on an expansive non-linear-

ity of the input-output transfer function of the inhibitory populations. Whether this mechanism can

account for our experimental data is an issue for further study. In particular, it would be interesting

to know whether the SSN scenario can account for the strong heterogeneity in the responses and

for the proportionality of the PC and PV population activities in S1. Answering these questions may

provide a way to discriminate between the balance network and SSN theory.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(Mus musculus)

Pvalb-Ires-Cre The Jackson
Laboratory

JAX #008069

Genetic reagent
(Mus musculus)

R26-CAG-LSL-
ReaChR-mCitrine

The Jackson
Laboratory

JAX #026294

Animals and surgery
The experimental data are from 9 PV-Ires-Cre x R26-CAG-LSL-ReaChR-mCitrine mice (age >P60,

both male and female mice) (Hooks et al., 2015). three mice were used for photoinhibition in

somatosensory cortex (S1). six mice were used for photoinhibition in anterior lateral motor cortex

(ALM). All procedures were in accordance with protocols approved by the Janelia Research Campus

and Baylor College of Medicine Institutional Animal Care and Use Committee.

Mice were prepared for photostimulation and electrophysiology with a clear-skull cap and a head-

post (Guo et al., 2014a; Guo et al., 2014b). The scalp and periosteum over the dorsal surface of

the skull were removed. A layer of cyanoacrylate adhesive (Krazy glue, Elmer’s Products Inc) was

directly applied to the intact skull. A custom made headbar was placed on the skull (approximately

over visual cortex) and cemented in place with clear dental acrylic (Lang Dental Jet Repair Acrylic;

Part# 1223-clear). A thin layer of clear dental acrylic was applied over the cyanoacrylate adhesive

covering the entire exposed skull, followed by a thin layer of clear nail polish (Electron Microscopy

Sciences, Part# 72180).

Photostimulation
Light from a 594 nm laser (Cobolt Inc, Colbolt Mambo 100) was controlled by an acousto-optical

modulator (AOM; MTS110-A3-VIS, Quanta Tech; extinction ratio 1:2000; 1ms rise time) and a shutter

(Vincent Associates), coupled to a 2D scanning galvo system (GVA002, Thorlabs), then focused onto

the brain surface (Guo et al., 2014a). The laser at the brain surface had a diameter of 2 mm. We

tested photoinhibition in barrel cortex (bregma posterior 0.5 mm, 3.5 mm lateral) and ALM (bregma

anterior 2.5 mm, 1.5 mm lateral).

To prevent the mice from detecting the photostimulus, a ‘masking flash’ pulse train (40 1 ms

pulses at 10 Hz) was delivered using a LED driver (Mightex, SLA-1200–2) and 590 nm LEDs (Luxeon

Star) positioned near the eyes of the mice. The masking flash began before the photostimulus

started and continued through the end of the epoch in which photostimulation could occur.

The photostimulus had a near sinusoidal temporal profile (40 Hz) with a linear attenuation in

intensity over the last 100–200 ms (duration: 1.3 s including the ramp). The photostimulation was

delivered at ~7 s intervals. The power (0.5, 1.2, 2.2, 5, 12 mW for S1 photostimulation; 0.3, 0.5, 1,
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1.5, 2, 3.3, 5, 8, 15 mW for ALM photostimulation) were chosen randomly. Because we used a time-

varying photostimulus, the power values reported here reflect the time-average.

Electrophysiology
All recordings were carried out while the mice were awake but not engaged in any behavior. Extra-

cellular spiking activity was recorded using silicon probes. We used 32-channel NeuroNexus silicon

probes (A4 � 8–5 mm-100-200-177) or 64-channel Cambridge NeuroTech silicon probes (H2 acute

probe, 25 mm spacing, two shanks). The 32-channel voltage signals were multiplexed, digitized by a

PCI6133 board at 400 kHz (National Instruments) at 14 bit, demultiplexed (sampling at 25,000 Hz)

and stored for offline analysis. The 64-channel voltage signals were amplified and digitized on an

Intan RHD2164 64-Channel Amplifier Board (Intan Technology) at 16 bit, recorded on an Intan

RHD2000-Series Amplifier Evaluation System (sampling at 20,000 Hz) using Open-Source RHD2000

Interface Software from Intan Technology (version 1.5.2), and stored for offline analysis.

A 1 mm diameter craniotomy was made over the recording site. The position of the craniotomy

was guided by stereotactic coordinates for recordings in ALM (bregma anterior 2.5 mm, 1.5 mm lat-

eral) or barrel cortex (bregma posterior 0.5 mm, 3.5 mm lateral).

Prior to each recording session, the tips of the silicon probe were brushed with DiI in ethanol

solution and allowed to dry. The surface of the craniotomy was kept moist with saline. The silicon

probe was positioned on the surface of the cortex and advanced manually into the brain at ~3 mm/s,

normal to the pial surface. The electrode depth was inferred from manipulator depth and verified

with histology. For ALM recordings, putative layer 2/3 units were above 450 mm and putative layer 5

units were below 450 mm (Hooks et al., 2013). For S1, our recording did not distinguish layers.

Data analysis
The extracellular recording traces were band-pass filtered (300–6 kHz). Events that exceed an ampli-

tude threshold (four standard deviations of the background) were subjected to manual spike sorting

to extract single units (Guo et al., 2014a).

Our final data set comprised of 204 single units (S1, 95; ALM, 109). For each unit, its spike width

was computed as the trough to peak interval in the mean spike waveform (Guo et al., 2014a). We

defined units with spike width <0.35 ms as FS neurons (31/204) and units with spike width >0.45 ms

as putative pyramidal neurons (170/204). Units with intermediate values (0.35–0.45 ms, 3/204) were

excluded from our analyses.

To quantify photoinhibition strength, we computed ‘normalized spike rate’ during photostimula-

tion. For each neuron, we computed its spike rate during the photostimulus (1 s time window) and

its baseline spike rate (500 ms time window before photostimulus onset). The spike rates under pho-

tostimulation were divided by the baseline spike rate. The ‘normalized spike rate’ thus reports the

total fraction of spiking output under photostimulation. For normalized spike rate of individual neu-

rons, each neuron’s spike rate with photostimulation was normalized by dividing its baseline spike

rate (Figure 1B–D, top). For normalized spike rate of the neuronal population (Figure 1B–D, bot-

tom), the spike rates with photostimulation were first averaged across the population (without nor-

malization) and then normalized by dividing the averaged baseline spike rate.

Bootstrap was performed over neurons to obtain standard errors of the mean. For each round of

bootstrapping, repeated 1000–10000 times, we randomly sampled with replacement neurons in the

dataset. We computed the means of the resampled datasets. The standard error of the mean was

the standard deviation of the mean estimates from bootstrap.

Network models
All the models we consider consist of strongly interacting leaky integrate-and-fire neurons. We first

study networks of one excitatory (E) and one inhibitory (I) population. We then investigate two mod-

els comprising three inhibitory populations, namely parvalbumin positive (PV or I), somatostatin posi-

tive (SOM or S) and a third population either corresponding to the vasoactive intestinal peptide

positive (VIP or V) neurons (Model 1) or to an unidentified population denoted by X (Model 2).

In all models the total number of neurons is N = 76800. In the two population model, 75% are

excitatory and 25% inhibitory. In the four-population networks, 75% are excitatory and the number

of cells is the same, N/12, for all GABAergic inhibitory population.

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 22 of 37

Research article Neuroscience

https://doi.org/10.7554/eLife.49967


The data we seek to account for, were obtained in optogenetic experiments in which the laser

diameter was substantially larger than the spatial range of neuronal interactions and comparable to

the size of the cortical area were the recordings were performed. Therefore, in all models we assume

for simplicity that the connectivity is unstructured: neuron (i, a), (a = E, I, S, V/X), is postsynaptically

connected to neuron (j) (j, b) with probability

P
ab
ij ¼Kab

Nb

(5)

For simplicity, we take Kab the same for all populations, Kab ¼K.

Neuron dynamics: The dynamics between spikes of the membrane potential of the neuron (i, a) is

given by

CM

dVa
i tð Þ
dt

¼�galeak Va
i tð Þ�VR

� �

þ Iairec tð ÞþLa
ext þLai

opto (6)

Here, Iairec tð Þ is the net recurrent input into neuron i;að Þ, La
ext represents inputs from outside the cir-

cuit (e.g. thalamic excitation) to population a, and Lai
opto is the optogenetic input into neuron (i, a).

We assumed that the capacitance, CM, is identical for all neurons and the leak conductance, galeak,

is identical for all the cells in the same population. We take CM ¼ 1�F:cm�2, gIleak ¼ 0:1mS:cm�2 and

gEleak=g
S
leak=g

V=X
leak ¼ 0:05mS:cm�2.

Equation (2) has to be supplemented by a reset condition: if at time t the membrane potential of

the neuron (i, a) crosses the threshold Va
i ðt�Þ ¼ Vth ¼ �50mV , the neuron fires a spike and its volt-

age is reset to the resting potential Va
i ðtþÞ ¼ VR ¼ �70mV .

Recurrent inputs: The net recurrent input into neuron (i, a) is

Iairec tð Þ ¼
X

b;j

jab �b C
ab
ij S

ab
j tð Þ (7)

where Cab is the connectivity matrix between (presynaptic) population b and (postsynaptic) popula-

tion a, such that Cab
ij ¼ 1 if neuron (j, b) projects to neuron (i, a) and C

ab
ij ¼ 0 otherwise. The parame-

ter jab is the strength of the interaction from neurons in population b to neurons population a. We

assumed it to depend on the pre and postsynaptic populations only. The polarity (excitation or inhi-

bition) of the interaction is denoted by eb. Therefore if b = E, eb = 1 and eb = -1 otherwise.

The function S
ab
j tð Þ is

S
ab
j tð Þ ¼

X

k

fab t� tkbj

� �

(8)

where tkbj is the time at which neuron (j, b) has emitted its kth spike, the sum is over all the spikes

emitted by neuron (j, b) prior to time t and

fab tð Þ ¼ 1

tab
e�t=tab (9)

where tab is the synaptic time constant of the interactions between neurons in population b and a.

External and optogenetic inputs: The feedforward input, La
ext, into the neurons in population a is

described by inputs from 2K external neurons with constant firing rate r0 = 5 Hz and an interaction

strength ja0, therefore, L
a
ext ¼ 2Kja0r0.

We model the ReachR photostimulation as an additional external constant input to the stimulated

population. For simplicity, we assume that this input, Lai
opto ¼ La

opto, is the same for all stimulated neu-

rons. Unless specified otherwise, we only consider LI
opto ¼ Lopto and La

opto ¼ 0 for a 6¼ I.

In qualitative agreement with Figure 3, and Figures 5, 7, Figure 7—figure supplement 1, Fig-

ure 10; (Hooks et al., 2015) we take
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Lopto ¼La
0
log 1þGopto

Ga
0

� �

(10)

where Gopto is the laser intensity and L0 and G0 are parameters.

Architectures of the four-population models
The network of Model one is depicted in Figure 4A. In line with the results of Pfeffer et al. (2013),

there are no connections from PV to SOM, VIP to PC and VIP to PV neurons. There is no mutual inhi-

bition between SOM as well as between VIP neurons. All the populations except SOM receive feed-

forward external input.

The interaction matrix of the network is

jAB"B½ � ¼

jEE �jEI �jES 0

jIE �jII �jIS 0

jSE 0 0 �jSV

jVE �jVI �jVS 0

2

6

6

6

4

3

7

7

7

5

(11)

The network of Model two is depicted in Figure 9B. SOM only receives projections from PCs and

PV neurons. X neurons are recurrently connected and project to PCs and PV neurons. The PC and

SOM populations project to the population X. All the populations except SOM receive feedforward

external input.

The interaction matrix is

jAB"B½ � ¼

jEE �jEI �jES �jEX

jIE �jII �jIS �jIX

jSE �jSI 0 0

jXE 0 �jXS �jXX

2

6

6

6

4

3

7

7

7

5

(12)

Numerical simulations: The dynamics of the models was integrated numerically using a second-

order Runge-Kutta scheme (Press et al., 1986) without spike time interpolation. Unless specified

otherwise the time step was Dt = 0.01 ms and the temporally averaged firing rates were estimated

over 100s.

The balance equations
We consider recurrent networks of strongly interacting neurons (van Vreeswijk and Sompolinsky,

1996) in which order
ffiffiffiffi

K
p

excitatory synaptic inputs are sufficient to bring the voltage above thresh-

old. To understand the behavior of such networks, it is imperative to analyse how it behaves when K

goes to infinity. To this end, we scale the interactions as

jab ¼
Jab
ffiffiffiffi

K
p (13)

where Jab does not depend on K. Since a neuron receives on average K inputs from each of its pre-

synaptic populations, the total interaction from population b to a neuron in population a is Jab
ffiffiffiffi

K
p

.

To keep the relative strength of the optogenetic input, La
opto, as K increases we take

La
opto ¼ Iaopto

ffiffiffiffi

K
p

(14)

where Iaopto depends on the intensity of the laser:

Iaopto ¼ Ia
0
log 1þGopto

Ga
0

� �

(15)

We take: Ia
0
¼ I0 ¼ 8nA and Ga

0
¼ G0 ¼ 0:5mW :mm�2.

The net input into the neurons must remain finite in the infinite K limit. This implies that up to cor-

rections which are of the order of 1
ffiffiffi

K
p ,
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2 Ja0 r0 þ Iaopto þ
X

b

Jab �b rb ¼ 0 (16)

In a n-population network, these n equations determine the n firing rates, ra; a2 1; :::;nf g.
This set of linear equations express the fact that, for the population activities to be finite, excit-

atory and inhibitory inputs to the neurons must compensate. These ’balance’ equations have a

unique solution (unless the determinant of the matrix Jab�b is zero). To be meaningful the solution

must be such that all population activities are positive. This constrains the feedforward and recurrent

interaction parameters.

The stability of this balanced solution further constraints the interaction parameters and synaptic

time constants. A necessary condition for the stability is that det Jab�b
� �

>0. This condition guarantees

that the ’balanced state’ is stable with respect to divergence of the firing rates. A complete study of

these constraints for our LIF networks is beyond the scope of this paper.

In all the models, we study parameter ranges in which, at baseline (Iaopto ¼ 0), the network oper-

ates in a stable balanced state where distributions of rates exhibit a quasi-lognormal shape and

spikes are emitted irregularly as in a Poisson process (Figure 5—figure supplement 3; Figure 7—

figure supplement 5; Figure 10—figure supplement 3). For Iaopto sufficiently large, it may happen

that one or more population activity reaches zero. In this case, the network evolves to a partially bal-

anced state in which the rates of the populations that remain active satisfy a reduced set of balanced

equations. For example, if we consider a solution were the rate of population g, rg is zero and all

other rates are positive, the reduced balance equations are

2 Ja0 r0 þ Iaoptoþ
X

b 6¼g

Jab �b rb ¼ 0 ; for a 6¼ g: (17)

Consistency of this solution leads to the requirement that the input into population g is

hyperpolarizing.

2 Jg0 r0 þ Igopto þ
X

b 6¼g

Jgb �b rb<0 (18)

Note that they may be multiple self-consistent solutions which are partially balanced.

Upon photostimulation of PV, in Model 1, the balanced equations are

2 JE0 r0 þ JEE rE � JEI rI � JES rS ¼ 0 (19.1)

2 JI0 r0 þ IIoptoþ JIE rE � JII rI � JIS rS ¼ 0 (19.2)

JSE rE � JSV rV ¼ 0 (19.3)

2 JV0 r0 þ JVE rE � JVI rI � JVS rS ¼ 0 (19.4)

In particular, Equation (19.3) implies that rE and rV are always proportional (JSE;JSV>0).

Similarly, in Model 2, the balanced equations are

2 JE0 r0þ JEE rE � JEI rI � JES rS� JEX rX ¼ 0 (20.1)

2 JI0 r0 þ IIopto þ JIErE � JII rI � JIS rS� JIX rX ¼ 0 (20.2)

JSE rE � JSI rI ¼ 0 (20.3)

2 JX0 r0 þ JVE rE � JVS rS � JXX rX ¼ 0 (20.4)

Equation (20.3) implies that in this network rE and rI are always proportional JSE; JSI>0ð Þ.

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 25 of 37

Research article Neuroscience

https://doi.org/10.7554/eLife.49967


Acknowledgements
We thank Karel Svoboda for illuminating discussions and comments on the manuscript. We are also

thankful to Ran Darshan and Tohar Yarden for discussions. DH thanks Svoboda’s lab. and Janelia

Research Campus for their warm hospitality. This work was supported by ANR grants ANR-14-

NEUC-0001–01 (CvV and DH), ANR-13-BSV4-0014-02 (DH, CvV), the ANR-09-SYSC-002–01 (DH,

CvV), the Janelia Research Campus visiting program (DH), the Helen Hay Whitney Foundation fellow-

ship (NL), the Robert and Janice McNair Foundation (NL), Whitehall Foundation (NL), Alfred P Sloan

Foundation (NL), Searle Scholars Program (NL), NIH NS104781 (NL), the Pew Charitable Trusts (NL),

and Simons Collaboration on the Global Brain (#543005, NL). Work performed in the framework of

the France-Israel Center for Neural Computation (CNRS/Hebrew University of Jerusalem).

Additional information

Funding

Funder Grant reference number Author

Agence Nationale de la Re-
cherche

14-NEUC-0001-01 Carl van Vreeswijk

Agence Nationale de la Re-
cherche

13-BSV4-0014-02 David Hansel

Agence Nationale de la Re-
cherche

09-SYSC-002-01 David Hansel

Helen Hay Whitney Foundation Nuo Li

Robert and Janice McNair
Foundation

Nuo Li

Alfred P. Sloan Foundation Nuo Li

National Institutes of Health NS104781 Nuo Li

Pew Charitable Trusts Nuo Li

Simons Foundation 543005 Nuo Li

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Alexandre Mahrach, Conceptualization, Software, Formal analysis, Validation, Investigation, Visuali-

zation, Methodology; Guang Chen, Conceptualization, Resources, Investigation, Methodology; Nuo

Li, Conceptualization, Supervision, Funding acquisition, Investigation, Methodology; Carl van Vrees-

wijk, Conceptualization, Formal analysis, Supervision, Funding acquisition, Investigation, Methodol-

ogy; David Hansel, Conceptualization, Formal analysis, Supervision, Funding acquisition,

Investigation, Methodology, Project administration

Author ORCIDs

Alexandre Mahrach https://orcid.org/0000-0002-9077-5808

David Hansel https://orcid.org/0000-0002-1352-6592

Ethics

Animal experimentation: All procedures were in accordance with protocols approved by the Janelia

Research Campus and Baylor College of Medicine Institutional Animal Care and Use Committee.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.49967.sa1

Author response https://doi.org/10.7554/eLife.49967.sa2

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 26 of 37

Research article Neuroscience

https://orcid.org/0000-0002-9077-5808
https://orcid.org/0000-0002-1352-6592
https://doi.org/10.7554/eLife.49967.sa1
https://doi.org/10.7554/eLife.49967.sa2
https://doi.org/10.7554/eLife.49967


Additional files
Supplementary files
. Transparent reporting form

Data availability

All simulation, raw, and processed data software is available on GitHub (https://github.com/Amah-

rach/Paper4pop; copy archived at https://github.com/elifesciences-publications/Paper4pop).

References
Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. 2012. A neural circuit for spatial summation in visual
cortex. Nature 490:226–231. DOI: https://doi.org/10.1038/nature11526, PMID: 23060193

Amit DJ, Brunel N. 1997. Model of global spontaneous activity and local structured activity during delay periods
in the cerebral cortex. Cerebral Cortex 7:237–252. DOI: https://doi.org/10.1093/cercor/7.3.237, PMID:
9143444

Argaman T, Golomb D. 2018. Does layer 4 in the barrel cortex function as a balanced circuit when responding to
whisker movements? Neuroscience 368:29–45. DOI: https://doi.org/10.1016/j.neuroscience.2017.07.054,
PMID: 28774782

Atallah BV, Bruns W, Carandini M, Scanziani M. 2012. Parvalbumin-expressing interneurons linearly transform
cortical responses to visual stimuli. Neuron 73:159–170. DOI: https://doi.org/10.1016/j.neuron.2011.12.013,
PMID: 22243754

Barral J, D Reyes A. 2016. Synaptic scaling rule preserves excitatory-inhibitory balance and salient neuronal
network dynamics. Nature Neuroscience 19:1690–1696. DOI: https://doi.org/10.1038/nn.4415, PMID: 2774
9827

Beierlein M, Gibson JR, Connors BW. 2000. A network of electrically coupled interneurons drives synchronized
inhibition in neocortex. Nature Neuroscience 3:904–910. DOI: https://doi.org/10.1038/78809, PMID: 10966621

Beierlein M, Gibson JR, Connors BW. 2003. Two dynamically distinct inhibitory networks in layer 4 of the
neocortex. Journal of Neurophysiology 90:2987–3000. DOI: https://doi.org/10.1152/jn.00283.2003, PMID: 12
815025

Capocelli RM, Ricciardi LM. 1971. Diffusion approximation and first passage time problem for a model neuron.
Kybernetik 8:214–223. DOI: https://doi.org/10.1007/BF00288750, PMID: 5090384

Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI. 2009. Driving fast-spiking
cells induces gamma rhythm and controls sensory responses. Nature 459:663–667. DOI: https://doi.org/10.
1038/nature08002, PMID: 19396156

Cruikshank SJ, Urabe H, Nurmikko AV, Connors BW. 2010. Pathway-specific feedforward circuits between
thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65:230–245. DOI: https://
doi.org/10.1016/j.neuron.2009.12.025, PMID: 20152129

Darshan R, Wood WE, Peters S, Leblois A, Hansel D. 2017. A canonical neural mechanism for behavioral
variability. Nature Communications 8:15415. DOI: https://doi.org/10.1038/ncomms15415, PMID: 28530225

Garcia Del Molino LC, Yang GR, Mejias JF, Wang XJ. 2017. Paradoxical response reversal of top-down
modulation in cortical circuits with three interneuron types. eLife 6:e29742. DOI: https://doi.org/10.7554/eLife.
29742, PMID: 29256863

Gerstner W, Kistler WM, Naud R, Paninski L. 2014. Neuronal Dynamics: From Single Neurons to Networks and
Models of Cognition. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781107447615

Gibson JR, Beierlein M, Connors BW. 1999. Two networks of electrically coupled inhibitory neurons in neocortex.
Nature 402:75–79. DOI: https://doi.org/10.1038/47035

Goldberg JH, Lacefield CO, Yuste R. 2004. Global dendritic calcium spikes in mouse layer 5 low threshold
spiking interneurones: implications for control of pyramidal cell bursting. The Journal of Physiology 558:465–
478. DOI: https://doi.org/10.1113/jphysiol.2004.064519, PMID: 15146046

Guo ZV, Hires SA, Li N, O’Connor DH, Komiyama T, Ophir E, Huber D, Bonardi C, Morandell K, Gutnisky D,
Peron S, Xu NL, Cox J, Svoboda K. 2014a. Procedures for behavioral experiments in head-fixed mice. PLOS
ONE 9:e88678. DOI: https://doi.org/10.1371/journal.pone.0088678, PMID: 24520413

Guo ZV, Li N, Huber D, Ophir E, Gutnisky D, Ting JT, Feng G, Svoboda K. 2014b. Flow of cortical activity
underlying a tactile decision in mice. Neuron 81:179–194. DOI: https://doi.org/10.1016/j.neuron.2013.10.020,
PMID: 24361077

Gutnisky DA, Yu J, Hires SA, To MS, Bale MR, Svoboda K, Golomb D. 2017. Mechanisms underlying a
thalamocortical transformation during active tactile sensation. PLOS Computational Biology 13:e1005576.
DOI: https://doi.org/10.1371/journal.pcbi.1005576, PMID: 28591219

Haider B, Duque A, Hasenstaub AR, McCormick DA. 2006. Neocortical network activity in vivo is generated
through a dynamic balance of excitation and inhibition. Journal of Neuroscience 26:4535–4545. DOI: https://
doi.org/10.1523/JNEUROSCI.5297-05.2006, PMID: 16641233

Hansel D, Mato G. 2013. Short-Term plasticity explains irregular persistent activity in working memory tasks.
Journal of Neuroscience 33:133–149. DOI: https://doi.org/10.1523/JNEUROSCI.3455-12.2013

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 27 of 37

Research article Neuroscience

https://github.com/Amahrach/Paper4pop
https://github.com/Amahrach/Paper4pop
https://github.com/elifesciences-publications/Paper4pop
https://doi.org/10.1038/nature11526
http://www.ncbi.nlm.nih.gov/pubmed/23060193
https://doi.org/10.1093/cercor/7.3.237
http://www.ncbi.nlm.nih.gov/pubmed/9143444
https://doi.org/10.1016/j.neuroscience.2017.07.054
http://www.ncbi.nlm.nih.gov/pubmed/28774782
https://doi.org/10.1016/j.neuron.2011.12.013
http://www.ncbi.nlm.nih.gov/pubmed/22243754
https://doi.org/10.1038/nn.4415
http://www.ncbi.nlm.nih.gov/pubmed/27749827
http://www.ncbi.nlm.nih.gov/pubmed/27749827
https://doi.org/10.1038/78809
http://www.ncbi.nlm.nih.gov/pubmed/10966621
https://doi.org/10.1152/jn.00283.2003
http://www.ncbi.nlm.nih.gov/pubmed/12815025
http://www.ncbi.nlm.nih.gov/pubmed/12815025
https://doi.org/10.1007/BF00288750
http://www.ncbi.nlm.nih.gov/pubmed/5090384
https://doi.org/10.1038/nature08002
https://doi.org/10.1038/nature08002
http://www.ncbi.nlm.nih.gov/pubmed/19396156
https://doi.org/10.1016/j.neuron.2009.12.025
https://doi.org/10.1016/j.neuron.2009.12.025
http://www.ncbi.nlm.nih.gov/pubmed/20152129
https://doi.org/10.1038/ncomms15415
http://www.ncbi.nlm.nih.gov/pubmed/28530225
https://doi.org/10.7554/eLife.29742
https://doi.org/10.7554/eLife.29742
http://www.ncbi.nlm.nih.gov/pubmed/29256863
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1038/47035
https://doi.org/10.1113/jphysiol.2004.064519
http://www.ncbi.nlm.nih.gov/pubmed/15146046
https://doi.org/10.1371/journal.pone.0088678
http://www.ncbi.nlm.nih.gov/pubmed/24520413
https://doi.org/10.1016/j.neuron.2013.10.020
http://www.ncbi.nlm.nih.gov/pubmed/24361077
https://doi.org/10.1371/journal.pcbi.1005576
http://www.ncbi.nlm.nih.gov/pubmed/28591219
https://doi.org/10.1523/JNEUROSCI.5297-05.2006
https://doi.org/10.1523/JNEUROSCI.5297-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16641233
https://doi.org/10.1523/JNEUROSCI.3455-12.2013
https://doi.org/10.7554/eLife.49967


Hansel D, Sompolinsky H. 1992. Synchronization and computation in a chaotic neural network. Physical Review
Letters 68:718–721. DOI: https://doi.org/10.1103/PhysRevLett.68.718, PMID: 10045972

Hansel D, van Vreeswijk C. 2012. The mechanism of orientation selectivity in primary visual cortex without a
functional map. Journal of Neuroscience 32:4049–4064. DOI: https://doi.org/10.1523/JNEUROSCI.6284-11.
2012, PMID: 22442071

Harish O, Hansel D. 2015. Asynchronous rate Chaos in spiking neuronal circuits. PLOS Computational Biology
11:e1004266. DOI: https://doi.org/10.1371/journal.pcbi.1004266, PMID: 26230679

Hennequin G, Ahmadian Y, Rubin DB, Lengyel M, Miller KD. 2018. The dynamical regime of sensory cortex:
stable dynamics around a single Stimulus-Tuned attractor account for patterns of noise variability. Neuron 98:
846–860. DOI: https://doi.org/10.1016/j.neuron.2018.04.017, PMID: 29772203

Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GM. 2013. Organization of cortical and
thalamic input to pyramidal neurons in mouse motor cortex. Journal of Neuroscience 33:748–760. DOI: https://
doi.org/10.1523/JNEUROSCI.4338-12.2013, PMID: 23303952

Hooks BM, Lin JY, Guo C, Svoboda K. 2015. Dual-Channel circuit mapping reveals sensorimotor convergence in
the primary motor cortex. Journal of Neuroscience 35:4418–4426. DOI: https://doi.org/10.1523/JNEUROSCI.
3741-14.2015

Hromádka T, DeWeese MR, Zador AM. 2008. Sparse representation of sounds in the unanesthetized auditory
cortex. PLOS Biology 6:e16. DOI: https://doi.org/10.1371/journal.pbio.0060016

Hu H, Ma Y, Agmon A. 2011. Submillisecond firing synchrony between different subtypes of cortical interneurons
connected chemically but not electrically. Journal of Neuroscience 31:3351–3361. DOI: https://doi.org/10.
1523/JNEUROSCI.4881-10.2011, PMID: 21368047

Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ. 2013. The organization of two new cortical interneuronal circuits.
Nature Neuroscience 16:210–218. DOI: https://doi.org/10.1038/nn.3305, PMID: 23313910

Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, Patel S, Tolias AS. 2015. Principles of connectivity
among morphologically defined cell types in adult neocortex. Science 350:aac9462. DOI: https://doi.org/10.
1126/science.aac9462, PMID: 26612957

Kadmon J, Sompolinsky H. 2015. Transition to Chaos in random neuronal networks. Physical Review X 5:041030.
DOI: https://doi.org/10.1103/PhysRevX.5.041030

Karnani MM, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, Snider WG, Yuste R. 2016. Cooperative
subnetworks of molecularly similar interneurons in mouse neocortex. Neuron 90:86–100. DOI: https://doi.org/
10.1016/j.neuron.2016.02.037, PMID: 27021171

Kato HK, Asinof SK, Isaacson JS. 2017. Network-Level control of frequency tuning in auditory cortex. Neuron 95:
412–423. DOI: https://doi.org/10.1016/j.neuron.2017.06.019, PMID: 28689982

Knight BW. 1972. Dynamics of encoding in a population of neurons. The Journal of General Physiology 59:734–
766. DOI: https://doi.org/10.1085/jgp.59.6.734, PMID: 5025748

Lapicque L. 1909. Definition experimentale de l’excitabilite. Social Biology 77:280–283.
Lee S-H, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, Taniguchi H, Huang ZJ, Zhang
F, Boyden ES, Deisseroth K, Dan Y. 2012. Activation of specific interneurons improves V1 feature selectivity and
visual perception. Nature 488:379–383. DOI: https://doi.org/10.1038/nature11312

Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B. 2013. A disinhibitory circuit mediates motor integration in the
somatosensory cortex. Nature Neuroscience 16:1662–1670. DOI: https://doi.org/10.1038/nn.3544, PMID: 240
97044

Lerchner A, Ursta C, Hertz J, Ahmadi M, Ruffiot P, Enemark S. 2006. Response variability in balanced cortical
networks. Neural Computation 18:634–659. DOI: https://doi.org/10.1162/neco.2006.18.3.634, PMID: 164
83411

Levy RB, Reyes AD. 2012. Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary
auditory cortex. Journal of Neuroscience 32:5609–5619. DOI: https://doi.org/10.1523/JNEUROSCI.5158-11.
2012, PMID: 22514322

Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K. 2015. A motor cortex circuit for motor planning and movement.
Nature 519:51–56. DOI: https://doi.org/10.1038/nature14178, PMID: 25731172

Li N, Chen S, Guo ZV, Chen H, Huo Y, Inagaki HK, Davis C, Hansel D, Guo C, Svoboda K. 2019. Spatiotemporal
limits of optogenetic manipulations in cortical circuits. eLife 8:e48622. DOI: https://doi.org/10.7554/eLife.
48622

Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nature
Neuroscience 16:1315–1323. DOI: https://doi.org/10.1038/nn.3488, PMID: 23933748

Lien AD, Scanziani M. 2018. Cortical direction selectivity emerges at convergence of thalamic synapses. Nature
558:80–86. DOI: https://doi.org/10.1038/s41586-018-0148-5, PMID: 29795349

Litwin-Kumar A, Rosenbaum R, Doiron B. 2016. Inhibitory stabilization and visual coding in cortical circuits with
multiple interneuron subtypes. Journal of Neurophysiology 115:1399–1409. DOI: https://doi.org/10.1152/jn.
00732.2015, PMID: 26740531

Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A. 2006. Distinct subtypes of somatostatin-containing neocortical
interneurons revealed in transgenic mice. Journal of Neuroscience 26:5069–5082. DOI: https://doi.org/10.
1523/JNEUROSCI.0661-06.2006, PMID: 16687498

Ma Y, Hu H, Agmon A. 2012. Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the
presynaptic interneuron subtype. Journal of Neuroscience 32:983–988. DOI: https://doi.org/10.1523/
JNEUROSCI.5007-11.2012, PMID: 22262896

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 28 of 37

Research article Neuroscience

https://doi.org/10.1103/PhysRevLett.68.718
http://www.ncbi.nlm.nih.gov/pubmed/10045972
https://doi.org/10.1523/JNEUROSCI.6284-11.2012
https://doi.org/10.1523/JNEUROSCI.6284-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22442071
https://doi.org/10.1371/journal.pcbi.1004266
http://www.ncbi.nlm.nih.gov/pubmed/26230679
https://doi.org/10.1016/j.neuron.2018.04.017
http://www.ncbi.nlm.nih.gov/pubmed/29772203
https://doi.org/10.1523/JNEUROSCI.4338-12.2013
https://doi.org/10.1523/JNEUROSCI.4338-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23303952
https://doi.org/10.1523/JNEUROSCI.3741-14.2015
https://doi.org/10.1523/JNEUROSCI.3741-14.2015
https://doi.org/10.1371/journal.pbio.0060016
https://doi.org/10.1523/JNEUROSCI.4881-10.2011
https://doi.org/10.1523/JNEUROSCI.4881-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21368047
https://doi.org/10.1038/nn.3305
http://www.ncbi.nlm.nih.gov/pubmed/23313910
https://doi.org/10.1126/science.aac9462
https://doi.org/10.1126/science.aac9462
http://www.ncbi.nlm.nih.gov/pubmed/26612957
https://doi.org/10.1103/PhysRevX.5.041030
https://doi.org/10.1016/j.neuron.2016.02.037
https://doi.org/10.1016/j.neuron.2016.02.037
http://www.ncbi.nlm.nih.gov/pubmed/27021171
https://doi.org/10.1016/j.neuron.2017.06.019
http://www.ncbi.nlm.nih.gov/pubmed/28689982
https://doi.org/10.1085/jgp.59.6.734
http://www.ncbi.nlm.nih.gov/pubmed/5025748
https://doi.org/10.1038/nature11312
https://doi.org/10.1038/nn.3544
http://www.ncbi.nlm.nih.gov/pubmed/24097044
http://www.ncbi.nlm.nih.gov/pubmed/24097044
https://doi.org/10.1162/neco.2006.18.3.634
http://www.ncbi.nlm.nih.gov/pubmed/16483411
http://www.ncbi.nlm.nih.gov/pubmed/16483411
https://doi.org/10.1523/JNEUROSCI.5158-11.2012
https://doi.org/10.1523/JNEUROSCI.5158-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22514322
https://doi.org/10.1038/nature14178
http://www.ncbi.nlm.nih.gov/pubmed/25731172
https://doi.org/10.7554/eLife.48622
https://doi.org/10.7554/eLife.48622
https://doi.org/10.1038/nn.3488
http://www.ncbi.nlm.nih.gov/pubmed/23933748
https://doi.org/10.1038/s41586-018-0148-5
http://www.ncbi.nlm.nih.gov/pubmed/29795349
https://doi.org/10.1152/jn.00732.2015
https://doi.org/10.1152/jn.00732.2015
http://www.ncbi.nlm.nih.gov/pubmed/26740531
https://doi.org/10.1523/JNEUROSCI.0661-06.2006
https://doi.org/10.1523/JNEUROSCI.0661-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16687498
https://doi.org/10.1523/JNEUROSCI.5007-11.2012
https://doi.org/10.1523/JNEUROSCI.5007-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22262896
https://doi.org/10.7554/eLife.49967


Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. 2004. Interneurons of the neocortical
inhibitory system. Nature Reviews Neuroscience 5:793–807. DOI: https://doi.org/10.1038/nrn1519, PMID: 1537
8039

Mongillo G, Hansel D, van Vreeswijk C. 2012. Bistability and spatiotemporal irregularity in neuronal networks
with nonlinear synaptic transmission. Physical Review Letters 108:158101. DOI: https://doi.org/10.1103/
PhysRevLett.108.158101, PMID: 22587287

Moore CI, Carlen M, Knoblich U, Cardin JA. 2010. Neocortical interneurons: from diversity, strength. Cell 142:
184–188. DOI: https://doi.org/10.1016/j.cell.2010.07.005

Moore AK, Weible AP, Balmer TS, Trussell LO, Wehr M. 2018. Rapid rebalancing of excitation and inhibition by
cortical circuitry. Neuron 97:1341–1355. DOI: https://doi.org/10.1016/j.neuron.2018.01.045, PMID: 29503186

Murphy BK, Miller KD. 2009. Balanced amplification: a new mechanism of selective amplification of neural
activity patterns. Neuron 61:635–648. DOI: https://doi.org/10.1016/j.neuron.2009.02.005, PMID: 19249282

Naka A, Adesnik H. 2016. Inhibitory circuits in cortical layer 5. Frontiers in Neural Circuits 10:35. DOI: https://doi.
org/10.3389/fncir.2016.00035, PMID: 27199675

Nigro MJ, Hashikawa-Yamasaki Y, Rudy B. 2018. Diversity and connectivity of layer 5 Somatostatin-Expressing
interneurons in the mouse barrel cortex. The Journal of Neuroscience 38:1622–1633. DOI: https://doi.org/10.
1523/JNEUROSCI.2415-17.2017, PMID: 29326172

Olsen SR, Bortone DS, Adesnik H, Scanziani M. 2012. Gain control by layer six in cortical circuits of vision. Nature
483:47–52. DOI: https://doi.org/10.1038/nature10835, PMID: 22367547

Ozeki H, Finn IM, Schaffer ES, Miller KD, Ferster D. 2009. Inhibitory stabilization of the cortical network underlies
visual surround suppression. Neuron 62:578–592. DOI: https://doi.org/10.1016/j.neuron.2009.03.028, PMID: 1
9477158

Pala A, Petersen CCH. 2015. In vivo measurement of cell-type-specific synaptic connectivity and synaptic
transmission in layer 2/3 mouse barrel cortex. Neuron 85:68–75. DOI: https://doi.org/10.1016/j.neuron.2014.
11.025, PMID: 25543458

Pattadkal JJ, Mato G, van Vreeswijk C, Priebe NJ, Hansel D. 2018. Emergent orientation selectivity from random
networks in mouse visual cortex. Cell Reports 24:2042–2050. DOI: https://doi.org/10.1016/j.celrep.2018.07.
054, PMID: 30134166

Pehlevan C, Sompolinsky H. 2014. Selectivity and sparseness in randomly connected balanced networks. PLOS
ONE 9:e89992. DOI: https://doi.org/10.1371/journal.pone.0089992, PMID: 24587172

Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. 2013. Inhibition of inhibition in visual cortex: the logic of
connections between molecularly distinct interneurons. Nature Neuroscience 16:1068–1076. DOI: https://doi.
org/10.1038/nn.3446, PMID: 23817549

Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. 2013. Cortical interneurons that specialize in
disinhibitory control. Nature 503:521–524. DOI: https://doi.org/10.1038/nature12676, PMID: 24097352

Press WR, Flannery BP, Teulosky SA, Vetterling WT. 1986. Numerical Recipies: The Art of Super Computing.
Cambridge University Press.

Rao S, Hansel D, van Vreeswijk C. 2019. Dynamics and orientation selectivity in a cortical model of rodent V1
with excess bidirectional connections. Scientific Reports 9:3334. DOI: https://doi.org/10.1038/s41598-019-
40183-8, PMID: 30833654

Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD. 2010. The asynchronous state in
cortical circuits. Science 327:587–590. DOI: https://doi.org/10.1126/science.1179850, PMID: 20110507

Resulaj A, Ruediger S, Olsen SR, Scanziani M. 2018. First spikes in visual cortex enable perceptual discrimination.
eLife 7:e34044. DOI: https://doi.org/10.7554/eLife.34044, PMID: 29659352

Rosenbaum R, Smith MA, Kohn A, Rubin JE, Doiron B. 2017. The spatial structure of correlated neuronal
variability. Nature Neuroscience 20:107–114. DOI: https://doi.org/10.1038/nn.4433, PMID: 27798630

Rosenbaum R, Doiron B. 2014. Balanced networks of spiking neurons with spatially dependent recurrent
connections. Physical Review X 4:021039. DOI: https://doi.org/10.1103/PhysRevX.4.021039

Roudi Y, Latham PE. 2007. A balanced memory network. PLOS Computational Biology 3:e141. DOI: https://doi.
org/10.1371/journal.pcbi.0030141

Roxin A, Brunel N, Hansel D, Mongillo G, van Vreeswijk C. 2011. On the distribution of firing rates in networks of
cortical neurons. Journal of Neuroscience 31:16217–16226. DOI: https://doi.org/10.1523/JNEUROSCI.1677-11.
2011, PMID: 22072673

Rubin DB, Van Hooser SD, Miller KD. 2015. The stabilized supralinear network: a unifying circuit motif underlying
multi-input integration in sensory cortex. Neuron 85:402–417. DOI: https://doi.org/10.1016/j.neuron.2014.12.
026, PMID: 25611511

Rudy B, Fishell G, Lee S, Hjerling-Leffler J. 2011. Three groups of interneurons account for nearly 100% of
neocortical GABAergic neurons. Developmental Neurobiology 71:45–61. DOI: https://doi.org/10.1002/dneu.
20853, PMID: 21154909

Sadeh S, Silver RA, Mrsic-Flogel TD, Muir DR. 2017. Assessing the role of inhibition in stabilizing neocortical
networks requires Large-Scale perturbation of the inhibitory population. The Journal of Neuroscience 37:
12050–12067. DOI: https://doi.org/10.1523/JNEUROSCI.0963-17.2017, PMID: 29074575

Sanzeni A, Akitake B, Goldbach HC, Leedy CE. 2019. Inhibition stabilization is a widespread property of cortical
networks. bioRxiv. DOI: https://doi.org/10.1101/656710

Seeman SC, Campagnola L, Davoudian PA, Hoggarth A, Hage TA, Bosma-Moody A, Baker CA, Lee JH, Mihalas
S, Teeter C, Ko AL, Ojemann JG, Gwinn RP, Silbergeld DL, Cobbs C, Phillips J, Lein E, Murphy G, Koch C,

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 29 of 37

Research article Neuroscience

https://doi.org/10.1038/nrn1519
http://www.ncbi.nlm.nih.gov/pubmed/15378039
http://www.ncbi.nlm.nih.gov/pubmed/15378039
https://doi.org/10.1103/PhysRevLett.108.158101
https://doi.org/10.1103/PhysRevLett.108.158101
http://www.ncbi.nlm.nih.gov/pubmed/22587287
https://doi.org/10.1016/j.cell.2010.07.005
https://doi.org/10.1016/j.neuron.2018.01.045
http://www.ncbi.nlm.nih.gov/pubmed/29503186
https://doi.org/10.1016/j.neuron.2009.02.005
http://www.ncbi.nlm.nih.gov/pubmed/19249282
https://doi.org/10.3389/fncir.2016.00035
https://doi.org/10.3389/fncir.2016.00035
http://www.ncbi.nlm.nih.gov/pubmed/27199675
https://doi.org/10.1523/JNEUROSCI.2415-17.2017
https://doi.org/10.1523/JNEUROSCI.2415-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29326172
https://doi.org/10.1038/nature10835
http://www.ncbi.nlm.nih.gov/pubmed/22367547
https://doi.org/10.1016/j.neuron.2009.03.028
http://www.ncbi.nlm.nih.gov/pubmed/19477158
http://www.ncbi.nlm.nih.gov/pubmed/19477158
https://doi.org/10.1016/j.neuron.2014.11.025
https://doi.org/10.1016/j.neuron.2014.11.025
http://www.ncbi.nlm.nih.gov/pubmed/25543458
https://doi.org/10.1016/j.celrep.2018.07.054
https://doi.org/10.1016/j.celrep.2018.07.054
http://www.ncbi.nlm.nih.gov/pubmed/30134166
https://doi.org/10.1371/journal.pone.0089992
http://www.ncbi.nlm.nih.gov/pubmed/24587172
https://doi.org/10.1038/nn.3446
https://doi.org/10.1038/nn.3446
http://www.ncbi.nlm.nih.gov/pubmed/23817549
https://doi.org/10.1038/nature12676
http://www.ncbi.nlm.nih.gov/pubmed/24097352
https://doi.org/10.1038/s41598-019-40183-8
https://doi.org/10.1038/s41598-019-40183-8
http://www.ncbi.nlm.nih.gov/pubmed/30833654
https://doi.org/10.1126/science.1179850
http://www.ncbi.nlm.nih.gov/pubmed/20110507
https://doi.org/10.7554/eLife.34044
http://www.ncbi.nlm.nih.gov/pubmed/29659352
https://doi.org/10.1038/nn.4433
http://www.ncbi.nlm.nih.gov/pubmed/27798630
https://doi.org/10.1103/PhysRevX.4.021039
https://doi.org/10.1371/journal.pcbi.0030141
https://doi.org/10.1371/journal.pcbi.0030141
https://doi.org/10.1523/JNEUROSCI.1677-11.2011
https://doi.org/10.1523/JNEUROSCI.1677-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22072673
https://doi.org/10.1016/j.neuron.2014.12.026
https://doi.org/10.1016/j.neuron.2014.12.026
http://www.ncbi.nlm.nih.gov/pubmed/25611511
https://doi.org/10.1002/dneu.20853
https://doi.org/10.1002/dneu.20853
http://www.ncbi.nlm.nih.gov/pubmed/21154909
https://doi.org/10.1523/JNEUROSCI.0963-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29074575
https://doi.org/10.1101/656710
https://doi.org/10.7554/eLife.49967


Zeng H, et al. 2018. Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human
cortex. eLife 7:e37349. DOI: https://doi.org/10.7554/eLife.37349, PMID: 30256194

Shadlen MN, Newsome WT. 1994. Noise, neural codes and cortical organization. Current Opinion in
Neurobiology 4:569–579. DOI: https://doi.org/10.1016/0959-4388(94)90059-0, PMID: 7812147

Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, Fujita I, Tamura H, Doi T, Kawano K, Inaba
N, Fukushima K, Kurkin S, Kurata K, Taira M, Tsutsui K, Komatsu H, Ogawa T, Koida K, Tanji J, et al. 2009.
Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLOS Computational Biology 5:
e1000433. DOI: https://doi.org/10.1371/journal.pcbi.1000433, PMID: 19593378

Shu Y, Hasenstaub A, McCormick DA. 2003. Turning on and off recurrent balanced cortical activity. Nature 423:
288–293. DOI: https://doi.org/10.1038/nature01616, PMID: 12748642

Svoboda K, Li N. 2018. Neural mechanisms of movement planning: motor cortex and beyond. Current Opinion
in Neurobiology 49:33–41. DOI: https://doi.org/10.1016/j.conb.2017.10.023

Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, Goldy J, Garren E, EconomoMN, Viswanathan
S, Penn O, Bakken T, Menon V, Miller J, Fong O, Hirokawa KE, Lathia K, Rimorin C, Tieu M, Larsen R, et al. 2018.
Shared and distinct transcriptomic cell types across neocortical Areas.Nature 563:72–78. DOI: https://doi.org/
10.1038/s41586-018-0654-5

Tremblay R, Lee S, Rudy B. 2016. GABAergic interneurons in the neocortex: from cellular properties to circuits.
Neuron 91:260–292. DOI: https://doi.org/10.1016/j.neuron.2016.06.033, PMID: 27477017

Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL. 1997. Paradoxical effects of external modulation of
inhibitory interneurons. The Journal of Neuroscience 17:4382–4388. DOI: https://doi.org/10.1523/JNEUROSCI.
17-11-04382.1997, PMID: 9151754

van Vreeswijk C, Sompolinsky H. 1996. Chaos in neuronal networks with balanced excitatory and inhibitory
activity. Science 274:1724–1726. DOI: https://doi.org/10.1126/science.274.5293.1724, PMID: 8939866

van Vreeswijk C, Sompolinsky H. 1998. Chaotic balanced state in a model of cortical circuits. Neural
Computation 10:1321–1371. DOI: https://doi.org/10.1162/089976698300017214, PMID: 9698348

Van Vreeswijk C, Sompolinsky H. 2005. Irregular Activity in Large Networks of neurons. In: Chow C. C, Gutkin B,
Hansel D, Meunier C, Dalibard J (Eds). Methods and Models in Neurophysics. 80 Elsevier. p. 341–406.
DOI: https://doi.org/10.1016/S0924-8099(05)80015-0

Wilson HR, Cowan JD. 1972. Excitatory and inhibitory interactions in localized populations of model neurons.
Biophysical Journal 12:1–24. DOI: https://doi.org/10.1016/S0006-3495(72)86068-5, PMID: 4332108

Wolf F, Engelken R, Puelma-Touzel M, Weidinger JD, Neef A. 2014. Dynamical models of cortical circuits.
Current Opinion in Neurobiology 25:228–236. DOI: https://doi.org/10.1016/j.conb.2014.01.017, PMID: 2465
8059

Xu H, Jeong HY, Tremblay R, Rudy B. 2013. Neocortical somatostatin-expressing GABAergic interneurons
disinhibit the thalamorecipient layer 4. Neuron 77:155–167. DOI: https://doi.org/10.1016/j.neuron.2012.11.004,
PMID: 23312523

Xu X, Callaway EM. 2009. Laminar specificity of functional input to distinct types of inhibitory cortical neurons.
Journal of Neuroscience 29:70–85. DOI: https://doi.org/10.1523/JNEUROSCI.4104-08.2009, PMID: 19129386

Mahrach et al. eLife 2020;9:e49967. DOI: https://doi.org/10.7554/eLife.49967 30 of 37

Research article Neuroscience

https://doi.org/10.7554/eLife.37349
http://www.ncbi.nlm.nih.gov/pubmed/30256194
https://doi.org/10.1016/0959-4388(94)90059-0
http://www.ncbi.nlm.nih.gov/pubmed/7812147
https://doi.org/10.1371/journal.pcbi.1000433
http://www.ncbi.nlm.nih.gov/pubmed/19593378
https://doi.org/10.1038/nature01616
http://www.ncbi.nlm.nih.gov/pubmed/12748642
https://doi.org/10.1016/j.conb.2017.10.023
https://doi.org/10.1038/s41586-018-0654-5
https://doi.org/10.1038/s41586-018-0654-5
https://doi.org/10.1016/j.neuron.2016.06.033
http://www.ncbi.nlm.nih.gov/pubmed/27477017
https://doi.org/10.1523/JNEUROSCI.17-11-04382.1997
https://doi.org/10.1523/JNEUROSCI.17-11-04382.1997
http://www.ncbi.nlm.nih.gov/pubmed/9151754
https://doi.org/10.1126/science.274.5293.1724
http://www.ncbi.nlm.nih.gov/pubmed/8939866
https://doi.org/10.1162/089976698300017214
http://www.ncbi.nlm.nih.gov/pubmed/9698348
https://doi.org/10.1016/S0924-8099(05)80015-0
https://doi.org/10.1016/S0006-3495(72)86068-5
http://www.ncbi.nlm.nih.gov/pubmed/4332108
https://doi.org/10.1016/j.conb.2014.01.017
http://www.ncbi.nlm.nih.gov/pubmed/24658059
http://www.ncbi.nlm.nih.gov/pubmed/24658059
https://doi.org/10.1016/j.neuron.2012.11.004
http://www.ncbi.nlm.nih.gov/pubmed/23312523
https://doi.org/10.1523/JNEUROSCI.4104-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19129386
https://doi.org/10.7554/eLife.49967


Appendix 1

Mean field theory
Let us consider a network consisting of n populations (e.g. n = 4) receiving feedforward input,

La
ext, from an external population with constant firing rate, r0r0, and an optogenetic input, La

opto

(Materials and Methods). The total input into neuron (i, a) is
Iaitot tð Þ ¼ Iairec tð ÞþLa

ext þLa
opto (A1)

If the size of the network, N, and mean connectivity, K are large and the synaptic time

constants are sufficiently small compared to the membrane time constants, one can take the

diffusion approximation and neglect the temporal correlations and write

Iaitot tð Þ ¼ uaþ
ffiffiffiffiffiffi

Aa

p

zai þ
ffiffiffiffiffiffi

Ba

p
ha
i tð Þ (A2)

where zai is an i.i.d. Gaussian with zero mean and unit variance, and ha
i tð Þ is a Gaussian white

noise with zero mean and unit variance. The mean input, ua, is

ua¼ ½< Iaitot tð Þ>� ¼La
extþLa

opto þK
X

b

jab�brb (A3)

where the population average firing rate of population b is rb ¼ ½rbj � and r
b
j is the firing rate of

the neuron (j, b). Here <.> denotes temporal average (i.e. over ha
i tð Þ) and :½ � is the average

over the quenched disorder (zai ). The latter stems from heterogeneities in the in-degree of the

inputs into the neurons.

In Equation (A2), Aa is the variance of the quenched disorder which is given by

Aa¼ ½<Iaitot tð Þ>2� u2a� ¼K
X

b

j2abqb (A4)

while Ba is the variance of the temporal fluctuations (Van Vreeswijk and Sompolinsky, 2005;

Roxin et al., 2011)

Ba ¼
1

tam Dt!0

lim
1

Dt

Z tþDt

t

dt0Iaitot t
0ð Þ�<Iaitot t

0ð Þ>
� �2

� �

(A5)

In Equation (A4), qb¼ ½ðrbj Þ2�.
Equations (A4-A5) have to be supplemented with the expression of the input-output

transfer function which relates the average firing rate, rai , to the statistics of Iaitot tð Þ,

rai ¼Faðuaþ
ffiffiffiffiffiffi

Aa

p

zai ;BaÞ (A6)

ra ¼
Z

Dz Faðua þ
ffiffiffiffiffiffi

Aa

p

z;BaÞ (A7)

qa ¼
Z

Dz Faðua þ
ffiffiffiffiffiffi

Aa

p

z;BaÞ2 (A8)

where Dz= 1
ffiffiffiffi

2p
p e�z2=2, and Fa is given by Capocelli and Ricciardi (1971)

Fa x;yð Þ¼
ffiffiffiffiffiffiffiffiffi

ptam
y

r
Z X�

a

Xþ
a

dwew
2

erfc wð Þ
� ��1

(A9)

where X�
a ¼ x�ga

leak
VR
ffiffi

y
p , Xþ

a ¼ x�ga
leak

VTh
ffiffi

y
p and ta ¼ CM

ga
leak

is the membrane time constant of the neurons in

population a.

With jab ¼ Jab
ffiffiffi

K
p , La

ext ¼ 2
ffiffiffiffi

K
p

and La
opto ¼ Iaopto

ffiffiffiffi

K
p

(see Materials and methods), we obtain
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ua ¼
ffiffiffiffi

K
p

2Ja0 r0þIaoptoþ
X

b

Jab �b rb

 !

(A10)

Aa ¼
X

b

J2abqb (A11)

Ba ¼
1

tam

X

b

J2abrb (A12)

For finite, but large K, the average activity of population a is

ra ¼	a ua;Aa;Ba½ � (A13)

where 	a is the right hand-side of Equation (A7).

In the limit where ua ! �¥, it can be shown that

	a½ua;Aa;Ba�~�
ua

tam
ffiffiffiffi

p
p Ba

2AaþBað Þ3=2
e�

u2a
2AaþBa (A14)

In the large K limit, the activities, ra, have to satisfy a set of n linear balance equations

(Equation (12), Materials and methods) and are given by

ra ¼��a
X

b

J�1
� �

ab
2 Jb0 r0þ Ibopto

� �

(A15)

We define the susceptibility matrix, Xab , as the derivative of the activity, ra, with respect to

I
b
opto,

�ab ¼��a J�1
� �

ab
(A16)

At baseline I
b
opto ¼ 0

� �

, the positivity of ra;8a imposes conditions on the recurrent and

feedforward interaction strengths, Jab and Ja0. The requirement that there are no ’partially’

balanced solutions for which one or more of the n populations is inactive or saturates and the

stability of the balanced solution imposes further constraints.

Two-population model

Large K limit
For a two-population (one excitatory E and one inhibitory I) network, solving Equation (13)

gives for a perturbation, Iopto, upon I,

rE¼
2 JIIJE0�JEIJI0ð Þr0 � JEI Iopto

D
(A17)

rI ¼
2 JIEJE0 � JEEJI0ð Þr0 � JEEIopto

D
(A18)

where D¼ JEIJIE � JEEJII .

The requirement that at baseline the network state is fully balanced and stable implies that

JE0

JI0
>
JEI

JII
>
JEE

JIE
(A19)

Therefore, D>0.

The susceptibilities with respect to a perturbation of I are

�EI ¼
�JEI

D
(A20)
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�II ¼
�JEE

D
(A21)

which both are negative. Therefore, rE and rI decrease linearly with Iopto, that is the response

of the I population is paradoxical.

It is useful to consider the susceptibilities normalized to baseline rate

��EI¼� JEI

2 JIIJE0� JEIJI0ð Þr0
(A22)

��II¼� JEE

2 JIEJE0 � JEEJI0ð Þr0
(A23)

Equation (A19) implies that, ��EIj j is larger than ��IIj j.
Moreover, whereas ��EI is independent of JEE, ��II depends on JEE. When JEE ¼ 0, ��II is zero:

the PV activity is insensitive to Iopto.

The identity of the two normalized susceptibilities can only be achieved with a fine-tuning

of the interaction parameters such that D ’ 0 for

JEE ’ JEIJIE=JII (A24)

Concurrently, as JEE ! JEIJIE=JII , the activity of the two populations diverge as 1

D with a

constant ratio equal to JIE
JII
. Thus, to keep the activities finite, 2 JIIJE0 � JEIJI0ð Þr0 and

2 JIEJE0 � JEEJI0ð Þr0 must also tend to zero.

Finally, if Iopto¼I�opto � 2 JE0JII=JEI � JI0ð Þr0, rE vanishes (Figure 3—figure supplement 1).

When Iopto>I
�
opto, the balance between the total external excitatory (optogenetic+feedforward)

and recurrent inhibitory inputs into I implies that rI linearly increases with Iopto and the slope is

1=JII .

Finite K corrections to rE and rI near I
�
opto

When K is finite, rI starts to increase with Iopto when rE is exponentially small in K. To show

that, we have to derive the leading order correction to the activities near I�opto.

We make the ansatz that when Iopto ¼ I�opto þ dI

ffiffiffiffiffiffiffiffiffiffi

log Kð Þ
K

q

, rE ¼ nE

ffiffiffiffiffiffiffiffiffiffi

log Kð Þ
p

K
and rI ¼ r¥I þ nI

ffiffiffiffiffiffiffiffiffiffi

log Kð Þ
K

q

,

where nE and nI are O 1ð Þ and r¥I ¼ 2JE0r0=JEI is the inhibitory firing rate at Iopto¼I�opto in the

large K limit.

To leading order:

r¥I ¼	E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log Kð Þ
p

dIþ JIEnE � JIInIð Þ;A¥I ;B¥I
h i

(A25.1)

nE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log Kð Þ
K

r

¼	E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log Kð Þ
p

JEEnE � JEInIð Þ;A¥E ;B¥I
h i

(A25.2)

where A¥a and B¥a , a2 E; If g, are the variance of the temporal and quenched noise in the large

K limit (Equations (A11-A12)).

Equation (A25.1) implies that

dIþ JIEnE � JIInI ¼O
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log Kð Þ
p

 !

(A26)

Together with Equation (A25.2) one obtains

nE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log Kð Þ
K

r

¼	E � JEIdIþ nEDð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log Kð Þ
p

=JII

� �

;A¥E ;B
¥

I

h i

(A27)

where D¼ JEIJIE � JEEJII .

For large K,
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nE
ffiffiffiffi

K
p ¼ Q

JII
JEIdIþ nEDð Þe

� JEI dIþnEDð Þ2 log Kð Þ

2A¥
E
þB¥

Eð ÞJ2II (A28)

where Q¼ 1

tEm
ffiffiffi

p
p B¥

E

2A¥
E
þB¥

Eð Þ3=2.

Since nE must be positive, JEIdI þ nEDð Þ must also be positive, Equation (A28) then implies

that to leading order

nE ¼
1

D
JII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A¥E þ
B¥E
2

r

� JEIdI

 !

(A29)

Hence, nI is

nI ¼
1

D
JIE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A¥E þ
B¥E
2

r

� JEEdI

 !

(A30)

Therefore, both nE and nI decrease with dI. This holds for dI � JII
JEI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A¥E þ
B¥
E

2

q

. Beyond this

range rE is exponentially small, nI ¼ dI
JII

and rI increases with Iopto.

In conclusion, when the response of the I population is minimum the firing rate of the

excitatory population is exponentially small in K.

Four-population model: Model 1

Large K limit
In Model 1, the population susceptibilities in response to a perturbation of the PV population

are given by Equation (A16)

�EI ¼ JSV JEIJVS� JESJVIð Þ=D (A31)

�II ¼ JSV JEEJVS � JESJVEð Þ=D (A32)

�SI ¼ JSV JEIJVE � JEEJVIð Þ=D (A33)

�VI ¼
JSE

JSV
�EI (A34)

where D¼ det JAB�B½ �ð Þ.
Note, in this model we do not take into account any PV to SOM connections. Nevertheless

even If one includes these, the expressions of the PC and PV susceptibility will only differ by a

scaling factor from the ones in A31 and A32 (because of D) and therefore their sign will

depends on the same conditions than A31 and A32.

Interestingly, for stable solutions D>0ð Þ, then �II>0 implies that JEE JVS>JES JVE. while �EI<0

implies that JES JVI>JEI JVS. Therefore, JEE JVS JVI>JVE JES JVI . and JES JVI JVE>JEI JVS JVE.

Combining the latter one has JEE JVS JVI>JEI JVS JVE. Therefore, JEE JVI>JEI JVE which is

equivalent to �SI<0.

Similarly one can show that if �EE>0 and �IE<0 necessarily �SE>0.Let us consider a particular

set of parameters for which a stable balanced solution exists when JEE ¼ 0 D 0ð Þ>0ð Þ.
The susceptibility �II as a function of JEE is

�II JEEð Þ ¼ JSV
JVSJEE � JVEJES

D JEEð Þ (A35)

D JEEð Þ ¼��̂EEJEE þD 0ð Þ (A36)

where �̂EE � �EE:D JEEð Þ ¼ JSV JVIJIS� JIIJVSð Þ, is the numerator in the susceptibility �EE.
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In our models, we assumed �EE>0. When JEE ¼ 0, D 0ð Þ is positive thus, �II 0ð Þ<0. As JEE
increases, the sign of �II JEEð Þ depends on the order relationship between two quantities. The

first one, J�EE, is the value of JEE for which the numerator in Equation (A35) changes sign

J�EE ¼
JVEJES

JVS
(A37)

The second one, JcEE, is defined by D JcEE
� �

¼ 0

JcEE ¼
D 0ð Þ
�EE

(A38)

Therefore, for JEE>J
c
EE, the dynamics is unstable. Two cases can be distinguished:

1. If J�EE<J
c
EE, then �II is an increasing function of JEE. It is negative if JEE<J

�
EE and becomes posi-

tive for JEE>J
�
EE.

2. If J�EE<J
c
EE, �II is a decreasing function of JEE and is negative in all the region where the

dynamics is stable.

The derivative of �II , (Equation (A35)), with respect to JEE, has the same sign as �EI�IE.

Therefore, �EI�IE is positive in the first case and negative in the second.

Experimental data shows that the activity of the PC population decreases upon PV

photostimulation, i.e., �EI<0. Therefore, if �II>0 as in ALM layer 2/3, �IE must be negative, i.e.,

the activity of the PV population decreases upon PC photostimulation.

Finite K
When Iopto is sufficiently strong, a fully balanced solution ra>0; 8að Þ no longer exists in our case

rE ¼ rV ¼ 0 for Iopto>I
�
opto where

I�opto ¼
JE0 JISJVI � JIIJVSð Þþ JI0 JEIJVS� JESJVIð Þþ JV0 JESJII � JEIJISð Þ

JESJVI � JEIJVSð Þ

To understand the network behavior after this point we need to consider finite K

corrections.

Since the PC and VIP population activities decrease with Iopto, when Iopto is sufficiently large

and due to the balance of the SOM input, rE and rV will both be at most O 1
ffiffiffi

K
p
� �

. Let us write:

rE � nE
ffiffiffi

K
p and rV � nV

ffiffiffi

K
p where nE and nV are at most O 1ð Þ:

One should consider four cases:

1) nE and nV are O 1ð Þ
In this case, the average net input into the SOM population, uS ¼ JSEnE � JSVnV , is O 1ð Þ and

the temporal fluctuations, BS, and heterogeneities, AS, are negligible. If uS is larger than the

rheobase, Vth � VRð Þ=gSleak, rS is also O 1ð Þ. Otherwise, rS ¼ 0.

Because nE and nV are O 1ð Þ, uE and uV are o 1
ffiffiffi

K
p
� �

. Thus, to leading order,

2JE0r0 � JEIrI � JESrS ¼ 0 (A39)

2JV0r0 � JVIrI � JVSrS ¼ 0 (A40)

Moreover, the balance of the PV population implies that

2JI0r0þ Iopto� JIIrI � JISrS ¼ 0 (A41)

Thus, there are three linear equations (Equations (A39-A41)) for two unknowns rI and rsð Þ.
These cannot be satisfied and hence, in this case, there is no consistent solution.

2) nE ¼ o 1ð Þ and nV ¼ O 1ð Þ
Here, to leading order, uS ¼ �JSVnV<0, while AS ¼ BS ¼ 0. As a result, to leading order,

rS ¼ 0. The activity of the PV population is then
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rI ¼ 2JI0r0þ Iopto
� �

=JII (A42)

Because nV is O 1ð Þ,

2JV0r0 � JVIrI ¼ 0 (A43)

Equations (A42, A43) cannot both be satisfied. This solution is also inconsistent.

3) nE ¼ O 1ð Þ and nV ¼ o 1ð Þ
In this case uS ¼ JSEnE>0 and therefore rS can be O 1ð Þ. Equations (A39) and (A41) imply

2JE0r0 � JEIrI � JESrS ¼ 0 (A44)

2JI0r0þ Iopto� JIIrI � JISrS ¼ 0 (A45)

which determine rI and rS as rI ¼ JESJI0�JISJE0ð Þr0þJESIopto
JESJII�JEIJIS

and rS ¼ JIIJE0�JEIJE0ð Þr0�JEI Iopto
JESJII�JEIJIS

.

Provided that the parameters are such that they are positive, nE is given by

rS ¼	S JSEnE;0;0½ � (A46)

Finally, since nV ¼ o 1ð Þ consistency implies that

2JV0r0 � JVIrI � JVSrS<0 (A47)

This solution is valid for a finite range of Iopto. It exists as long as rs>0 which implies that

JE0
JII
JEI

� JI0>Iopto>I
�
opto.

4) nE ¼ o 1ð Þ and nV ¼ o 1ð Þ
Here, uS ¼ AS ¼ BS ¼ 0 and thus, rS ¼ 0. This solution exists only for sufficiently large Iopto

such that uE and uV are O
ffiffiffiffi

K
p� �

and negative. Therefore, PV is the only active population and rI

is given by Equations (A40).

In conclusion, in this model at the minimum of rI , rE is of order 1
ffiffiffi

K
p in contrast to the two-

population case where rE is exponentially small in K.

Four-population model: Model 2

Large K limit
To get insights on the network architecture that could explain the proportional paradoxical

effect observed in layer 5 of ALM and S1, we first considered a three-population network

consisting of the PC, PV and SOM populations (Figure 9A).

In this network, the population activities are

rE ¼ JSI
2 JESJI0 � JISJE0ð Þr0 þ JESIopto

D
(A48)

rI ¼
JSE

JSI
rE (A49)

rS ¼
2 JIIJSE � JIEJSIð ÞJE0 � JEIJSE � JEEJSIð ÞJI0ð Þr0 � JEIJSE � JEEJSIð ÞIopto

D
(A50)

where D¼ JIIJSE � JIEJSIð ÞJES þ JEEJSI � JEIJSEð ÞJIS>0.
The full balance of the network activities implies

JES

JIS
>

2JE0r0

2JI0r0þ Iopto
>
JEI

JII
(A51)

The inequality on the left side stems from the positivity of the rates. The inequality on the

right side stems from the fact that the balanced state is the only solution of the dynamics,

namely that no partially balanced solution (in particular, rE ¼ 0, rI ¼O 1ð Þ and rS ¼ 0 and rE ¼ 0,

rI ¼O 1ð Þ and rS ¼O 1ð Þ) exists.
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rE and rI are proportional Equations (A49) and increase with Iopto. As a consequence, the

network never exhibits the paradoxical effect.

In this three-population network, the proportionality of rE and rI stems from the balance of

inputs into the SOM population. To account for the proportional paradoxical effect, we

consider a network model with an additional inhibitory population, denoted X (Figure 9B).

Because in this network the SOM neurons only receive inputs from PCs and PV neurons, here,

the balance of the SOM input also ensure the proportionality of rE and rI .

The susceptibilities upon PV stimulation are

�EI ¼ JSI JESJXX � JEXJXSð Þ=D (A52)

�II ¼
JSE

JSI
�EI (A53)

�SI ¼ JEEJSIJXX � JXEJSIJXE � JEIJSEJXXð Þ=D (A54)

�XI ¼ JESJSIJXE þ JEIJSEJXS� JEEJSIJXSð Þ=D (A55)

where D¼ det JAB�B½ �ð Þ (see Material and methods).

Paradoxicality implies that

JEX>J
�
EX �

JESJXX

JXS
(A56)

The susceptibilities upon PC stimulation are

�EE ¼ JSI JIXJXS � JISJXXð Þ=D (A57)

�IE ¼
JSE

JSI
�EE (A58)

�SE ¼ JIXJSIJXE þ JIIJSEJXX � JIEJSIJXXð Þ=D (A59)

�XE ¼ JIEJSIJXS� JISJSIJXE � JIIJSEJXSð Þ=D (A60)

Therefore, the PC population activity increases upon PC stimulation if

JIXJXS>JISJXX (A61)

One can find a range of parameters (e.g. Figure 9C) such that:
1. The relative decrease in the SOM population is larger than that in the E and I populations. As

a consequence, as Iopto is increased, rS approaches zero when the PC and PV activities are still

finite.
2. As Iopto is increased further, the network settles into a partially balanced state where rE, rI

and rX are finite and rI increases with Iopto, while rE continues to decrease.

Thus, rI reaches its minimum value when rE is finite even in the large K limit.
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