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Abstract
Despite the widespread use of the SH-SY5Y human neuroblastoma cell line in modeling human neurons in vitro, protocols 
for growth, differentiation and experimentation differ considerably across the literature. Many studies fully differentiate SH-
SY5Y cells before experimentation, to investigate plasticity measures in a mature, human neuronal-like cell model. Prior 
to experimentation, serum is often removed from cell culture media, to arrest the cell growth cycle and synchronize cells. 
However, the exact effect of this serum removal before experimentation on mature, differentiated SH-SY5Y cells has not 
yet been described. In studies using differentiated SH-SY5Y cells, any effect of serum removal on plasticity markers may 
influence results. The aim of the current study was to systematically characterize, in differentiated, neuronal-like SH-SY5Y 
cells, the potentially confounding effects of complete serum removal in terms of morphological and gene expression markers 
of plasticity. We measured changes in commonly used morphological markers and in genes related to neuroplasticity and 
synaptogenesis, particularly in the BDNF-TrkB signaling pathway. We found that complete serum removal from already 
differentiated SH-SY5Y cells increases neurite length, neurite branching, and the proportion of cells with a primary neurite, 
as well as proportion of βIII-Tubulin and MAP2 expressing cells. Gene expression results also indicate increased expression 
of PSD95 and NTRK2 expression 24 h after serum removal. We conclude that serum deprivation in differentiated SH-SY5Y 
cells affects morphology and gene expression and can potentially confound plasticity-related outcome measures, having 
significant implications for experimental design in studies using differentiated SH-SY5Y cells as a model of human neurons.
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Introduction

SH-SY5Y cells are a human neuroblastoma-derived cell 
line used to model human neurons in vitro. The original 
cells were derived from a bone marrow biopsy in 1970, 
and were cloned to produce the neuron-like SH-SY5Y 
cells that are used in a wide range of research applications 
today (Biedler et al. 1978). These cells synthesize vari-
ous neurotransmitters, express neural markers, and can be 
further differentiated in vitro to a mature human neuronal 
phenotype (Jahn et al. 2017; Encinas et al. 2000, 1999; 
Shipley et al. 2016). Once differentiated, SH-SY5Y cells 
express a catecholaminergic phenotype, with the potential 
to synthesize both dopamine and noradrenaline (Krishna 
et al. 2014). They can be used to study synapse modifi-
cations and functional cellular activity with live calcium 
imaging or electrophysiology (Santillo et al. 2014; Toselli 
et al. 1996; Jahn et al. 2017). They are often used as a 
cell model for Parkinson’s Disease (Xicoy et al. 2017), 
as well as Alzheimer’s Disease (Agholme et al. 2010), 
neuropathogenesis of viruses (Christensen et al. 2011), 
screening for neurotropic properties of pharmaceuticals 
(Henkel et al. 2008; Xu et al. 2019), neurotoxicity (De 
Simone et al. 2018; Forster et al. 2016), and even as a 
multicellular 3D culture (Cui et al. 2017; Kapalczynska 
et al. 2018).

With the widespread use of this cell line to study human 
neuron synapse activity and neuronal plasticity in vitro, 
it is important to understand the effects of cell handling, 
such as the removal of serum before experimental manipu-
lation in fully differentiated cells.

SH-SY5Y cells are grown in a basic medium containing 
Dulbecco’s Modified Eagle’s- Medium (DMEM), glucose, 
antibiotics, and supplemented with 10–20% Fetal Bovine 
Serum (FBS)(Xicoy et al. 2017). The use of FBS in culture 
media to promote growth of cells and to maintain tissues 
in vitro was introduced in 1958 (Puck et al. 1958). This 
serum supplementation is vital for the growth and main-
tenance of cell lines, as it contains many crucial proteins, 
vitamins, hormones and growth factors important for cell 
survival and proliferation (van der Valk et al. 2018).

To induce differentiation of SH-SY5Y cells to a more 
mature neuronal phenotype, the serum concentration is 
commonly reduced to 1% or 3%, along with the addition of 
retinoic acid (Xicoy et al. 2017; Encinas et al. 2000). After 
5–20 days, depending on the differentiation protocol, the 
cells reach their maximum differentiation state (Encinas 
et al. 2000; Shipley et al. 2016; Jahn et al. 2017). Prior 
to experimental manipulation, e.g. exposure to potential 
pharmaceutical compounds, serum is often completely 
removed from the cultures. This is done to ensure all cells 
are in the same growth cycle phase before manipulation 

(Langan and Chou 2011), and to prevent confounding 
effects of the myriad of proteins and other molecular fac-
tors present in serum, which differ by serum batch and 
therefore introduce phenotypic variations in cell cultures 
(van der Valk et al. 2010). Serum components may also 
mask certain intrinsic growth factor (e.g. brain-derived 
neurotrophic factor, BDNF) effects, therefore, serum may 
be removed to assess the effects of BDNF in the absence 
of external growth factors (Zainullina et al. 2019).

Despite the common practice of serum removal before 
experimental manipulation in already differentiated SH-
SY5Y cells, the effects of removing serum from culture 
media on plasticity-related gene expression and morphol-
ogy markers have not yet been examined. Understanding the 
effects of serum removal is essential in standardizing pre-
experimental protocols. If serum removal has strong effects 
on gene and morphological markers in already differentiated 
cells, any effect of experimentation may be confounded.

Here, we aim to systematically characterize the effects of 
completely removing serum from differentiated SH-SY5Y 
culture media on gene expression markers of plasticity, spe-
cifically related to an important pathway in synaptic plastic-
ity and long-term potentiation, the BDNF-TrkB signaling 
pathway (Kowianski et al. 2018; Minichiello 2009; Yoshii 
and Constantine-Paton 2010; Andero et al. 2014; Leal et al. 
2017; Niculescu et al. 2018). We also investigated the effects 
of serum removal on cytoskeletal markers of neuron mor-
phology by visualizing changes in MAP2 and βIII-Tubulin.

Methods

Cell Culture

Cells were obtained from ATCC ® (CRL2266™, 
RRID:CVCL_0019) and were maintained and expanded 
according to the provided protocol. For experiments, cells 
were not used above passage 26.

Undifferentiated cells were cultured in DMEM/ F12, Glu-
taMAX™ Supplement (GibcoTM, Thermo Scientific) sup-
plemented with 10% heat inactivated Fetal Bovine Serum 
(FBS, Merck), 1% penicillin–streptomycin (P/S) and 1% 
L-Glutamate at 37 °C and 5%  CO2, and split at 80–90% 
confluency.

Differentiation

All cells were fully differentiated to a mature neuronal-
like state before experimentation. For differentiation, cells 
were plated in 6-well culture plates (Greiner CELLSTAR®, 
Merck) at approximately 2.4 ×  104 cells per well. Serum 
concentration was decreased to 3% FBS three days prior 
to the addition of 10 µM retinoic acid (RA; Sigma-Aldrich, 
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R2625). A stock solution of RA was prepared in dimethyl-
sulphoxide (DMSO; Sigma-Aldrich, 41,640) at 10 mM, and 
stored at −20 °C until dilution in cell culture media to a 
final concentration of 10 µM. Starting from the day RA was 
added, medium with 3% FBS supplementation was replaced 
every two days for a total of ten days.

Serum Deprivation

Differentiated SH-SY5Y cells were used for serum removal 
experiments. Medium containing 3% serum (FBS) was 
removed, and the cell surface was rinsed with PBS (warmed 
to 37 °C) to remove all remaining serum. Next, medium 
without supplemented serum (0% FBS), or medium with 
serum (3% FBS) was added for 1 h, 3 h, 6 h or 24 h. In total 
there were 8 different conditions; serum and no serum for 
each of the 4 time points (1 h, 3 h, 6 h, 24 h).

Microscopy

Cells were grown on 12 mm glass coverslips (VWR, 631-
1577) coated with 100 µg/mL Poly-L-Ornithine (Sigma, 
P4957) and 1 µg/mL Laminin (Sigma, L2020) and differen-
tiated as described above.

At the specified collection time points following com-
plete serum removal, cells were washed in PBS (warmed to 
37 °C), and fixed for 10 min in cold 4% paraformaldehyde. 
To stop fixation, cells were washed 3 times 5 min in cold 
PBS and stored in PBS at 4 °C for a maximum of two days 
before antibody incubation. Cells were then blocked in PBS-
Tween 20, prepared with 0.2% Tween-20, and 10% donkey 
serum. Antibodies for visualizing neurite outgrowth (βIII-
Tubulin; Cell Signaling, Cat #5568S, RRID:AB_10694505), 
and dendrites (MAP2; Sigma, Cat #M2320, AB_609904) 
were used. Both markers were chosen as they are often com-
bined to capture all neuronal processes (Paik et al. 2019), 
and they have consistently been used as markers of differ-
entiation in experiments with SH-SY5Y cells (Jahn et al. 
2017; Shipley et al. 2016; Encinas et al. 2000; Kovalevich 
and Langford 2013; Paik et al. 2019). Following primary 
antibody incubation, cells were washed in alternating PBS 
and PBS-Tween 20 and incubated with secondary antibod-
ies donkey anti-rabbit Alexa 488 (Invitrogen, Cat #A-21206 
RRID:AB_141708), donkey anti-mouse Alexa 594 (Invit-
rogen, Cat #A-21203, RRID:AB_141633), and cell nuclei 
were stained with DAPI (CarlRoth, Cat #6843.3). Following 
secondary antibody incubation, coverslips were washed in 
cold PBS and mounted on glass microscope slides. Fluo-
rescence imaging was done with the Olympus BX51WI 
microscope and disc spinning unit. Pictures were taken using 
the 20X objective lens. Micro-Manager software (Edelstein 
et al. 2014)(RRID:SCR_016865) was used to collect images. 
Further details on the primary and secondary antibody 

dilutions as well as microscope exposure times can be found 
in the Supplementary Material (Table S1 and S2).

qRT‑PCR

Cells in 6-well plates were first rinsed with PBS at 37 °C 
and then kept on ice for the rest of the extraction. RNA was 
extracted with TRIzol (Invitrogen, 15,596,026) according to 
the manufacturer’s protocol. RNA concentration was deter-
mined using the NanoDrop™ spectrophotometer, and cDNA 
was synthesized using RevertAid H Minus First Strand 
cDNA Synthesis Kit (Thermo Scientific, K1632). RNA was 
stored at −80 °C and cDNA at −20 °C. Three cell culture 
replicates were collected per time point, per condition.

Primers for qPCR were designed using NCBI gene ref-
erence database and Primer-BLAST (National Library of 
Medicine). The following primers were analyzed: Activ-
ity Regulated Cytoskeleton associated protein (ARC,Gene 
ID: 23,237), Early Response 1 (EGR1, Gene ID: 1958), 
cAMP Responsive Element Binding Protein 1 (CREB1, 
Gene ID: 1385), B-cell lymphoma 2 (BCL2, Gene ID: 
596), BCL2- Associated X (BAX, Gene ID: 581), Brain 
Derived Neurotrophic Factor (BDNF, Gene ID: 627), Neu-
rotrophic Receptor Tyrosine Kinase 2 (NTRK2, GeneID: 
4915), Discs Large MAGUK scaffold protein 4 (DLG4 
also known as PSD95, GeneID:1742), Synaptophysin (SYP, 
GeneID:6855), in conjunction with three House Keeping 
Genes (HKG’s): Glyceraldehyde-3-Phosphate Dehydroge-
nase (GAPDH, GeneID:2597), TATA-box Binding Protein 
(TBP,GeneID:6908), Peptidylprolyl Isomerase B (PPiB, 
GeneID:5479). Primer sequences can be found in Supple-
mentary Material Table S3. Primers at 600 nM concentration 
were mixed with Fast Start Universal Sybr Green Master 
ROX (Roche,491,385,001). Samples were run in 384-well 
qPCR plates (Roche,4TI-0382), using the LightCycler 
480 Real-Time PCR system (Roche Life Sciences). qPCR 
program details are described in Supplementary Material 
Table S4.

Analysis

Microscopy

Image processing and analysis was done in Fiji (ImageJ ver-
sion 1.52i, RRID:SCR_002285) (Schindelin et al. 2012). A 
DAPI nucleus staining was used to count total cells in each 
image. Neurite length and branching was measured in the 
488 (βIII-Tubulin) channel, using the segmented line tool 
at 20X magnification. Per condition 70–100 neurites were 
measured. Typically, in differentiated SH-SY5Y cultures, 
many cells have only one or no neurites. Therefore, from 
each cell, we measured the length of the primary neurite, 
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defined as the single neurite, or the longest neurite for cells 
having more than one neurite. An example of tracings of 
primary neurites as well as cells without neurite exten-
sions can be seen in Fig. 2a. The NeuronJ plugin (Meijer-
ing et al. 2004) was used to quantify neurite length and 
neurite branching. For each image, primary neurites and 
branches were semi-automatically traced, and manually 
labeled as either primary neurites, or branches. The number 
of branches were divided by the total neurons (counted with 
DAPI), to give the number of branches per neuron in each 
image. An example neuron with branching can be seen in 
Fig. 2b. To identify whether the proportion of total cells 
with a primary extension changes due to serum deprivation, 
the number of primary neurites was also divided by total 
number of neurons (as counted with DAPI).

Total fluorescence of βIII-Tubulin staining was quantified 
using the 488 channel. First, the fluorescence threshold was 
set with the minimum intensity as the maximum background 
intensity. The total fluorescence intensity in the image was 
then measured, and corrected for cell area by dividing by the 
total area of cells in the 488 channel.

βIII-Tubulin stained cells were counted manually by set-
ting the brightness contrast settings to 834 (min) and 7474 
(max). Cells with visible green neurites were counted. 
MAP2 was manually counted in the 594 channel, at bright-
ness contrast settings of 596 (min) and 6007 (max). These 
cell counts were divided by the total cells to calculate the 
proportion of βIII Tubulin or MAP2 cells.

Gene Expression

A standard curve was used to calculate relative concentra-
tions of gene expression per gene. An average of technical 
duplicates was made, and normalized to the average of 3 
HKGs (TBP, PPiB, GAPDH). Analyses were performed 
with LightCycler 480 software version 1.5.1.62 (Roche Life 
Sciences) and Excel.

Statistics

Statistical analysis and graphs were made with Prism 5 
(Graphpad Software, USA, RRID:SCR_002798) and IBM 
Statistics 24 (SPSS for windows version 24.0, Armonk, 
NY:IBM Corp). Data collected from 2 independent experi-
ments were pooled for statistical analysis. This resulted 
in a total of 4–14 images per condition being included in 
statistical analysis. For analysis of neurite length, an aver-
age neurite length per image was calculated from 70 to 100 
neurites, for a total of 8 images per condition included in 
the 2-way ANOVA. For the analysis of primary neurites per 
neuron and neurite branching per neuron, the number of pri-
mary neurites in an image (between 30 and 100 per image) 
were divided by the total neurons in the image (between 210 

and 250 cells per image), with 4–6 images per condition 
included in the 2-way ANOVA. For analysis of βIII-Tubulin 
Immunoreactivity, a total of 10–14 images per condition 
were included in the 2-way ANOVA. A 2-way ANOVA with 
factors Serum (serum, no serum) and Time (1,3,6, 24 h) was 
used for all comparisons of microscopy quantification and 
HKG normalized expression values. Bonferroni-corrected 
post-hoc tests were done in the case of significant interac-
tion events. Reported results are mean ± standard error of 
the mean. Figures show bar graphs of the HKG normalized 
mean expression values; error bars are standard errors of 
the mean.

Results

Differentiation

Differentiation was verified as explained previously (Thom-
son et al. 2020). Representative images comparing undiffer-
entiated and differentiated cells can be seen in Fig. 1.

Microscopy

Full statistical results of main effects (Time, Serum) and 
Time x Serum interaction effects for each parameter (Neurite 
Length, Neurite Branching, Primary Neurites, βIII-Tubulin 
immunoreactivity, and βIII-Tubulin and MAP2 positive 
cells) can be found in Supplementary Material Table S5. In 
case of significant main or interaction effects, the p-value of 
Bonferroni-corrected post-hoc tests are reported below. An 
example of the parameters measured can be seen in Fig. 2. 
An example of the morphology of cells immediately fol-
lowing serum removal can be seen in Supplementary Fig. 2.

Neurite Length

We found a significant effect of Serum (p < 0.0001), but no 
significant effect of Time (p = 0.382), or Time x Serum inter-
action (p = 0.338) on neurite length. Serum deprived neurons 
had significantly longer outgrowths than neurons with serum 
at 3 h (54.93 ± 20.22 μm vs. 45.43 ± 17.76 μm, p = 0.03) and 
at 24 h (65.53 ± 27.74 μm vs. 46.89 ± 18.24 μm, p < 0.0001) 
(Fig. 3a).

Neurite Branching

There was a significant effect of Time (p = 0.0105) and 
Serum (p < 0.0001), but not a significant Time × Serum 
interaction (p = 0.062) on neurite branching. Serum 
deprived neurons had significantly more branches per neu-
ron at 3 h (0.058 ± 0.008 vs. 0.011 ± 0.003, p < 0.0001), 6 h 
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Fig. 1  Visual representation SH-SY5Y cells. a Undifferentiated cells. b Neuron-like cells at 10 days differentiation

Fig. 2  Morphological param-
eters analyzed. a Tracing of 
primary neurite extension in 
purple. An example of cells 
showing no neurite extensions 
are indicated with red arrows. 
b An example neuron tracing 
with branch. Primary neurite 
is traced in purple, branch is 
traced in green

Fig. 3  Morphological Parameters. a Neurite Length b Neurite 
Branching c. Primary Neurites d βIII-Tubulin immunoreactivity e 
Proportion βIII-Tubulin positive cells f Proportion MAP2 positive 

cells (Significant post hoc comparisons are indicated as *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001)
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(0.041 ± 0.007 vs. 0.015 ± 0.003, p < 0.028), and at 24 h 
(0.033 ± 0.008 vs. 0.0045 ± 0.003, p < 0.028) (Fig. 3b).

Primary Neurites

Similarly, we found a significant effect of Time (p = 0.0368), 
Serum (p = 0.0006), but not a significant Time x Serum inter-
action (p = 0.109). At 3 h, serum deprived neurons showed 
a greater proportion with a primary neurite (0.45 ± 0.034 vs 
0.25 ± 0.020, p = 0.001) (Fig. 3c).

βIII‑Tubulin Immunoreactivity

A significant effect of Serum (p = 0.0006) and a Time x 
Serum interaction (p = 0.0035) was found, but no effect of 
Time (p = 0.14) on βIII-Tubulin immunoreactivity. There 
was a significant increase in βIII-Tubulin immunoreac-
tivity in the serum deprived cells at 3 h (120.23 ± 25.58 
vs. 37.03 ± 4.96, p < 0.01) and 6  h (110.49 ± 28.55 vs. 
22.94 ± 3.03, p < 0.01) (Fig. 3d).

βIII‑Tubulin and MAP2 Positive Cells

There was a significant effect of Time (p < 0.0001), Serum 
(p < 0.0001), and a Time × Serum interaction (p = 0.0012), 
on cells expressing βIII-Tubulin after serum deprivation. 
Serum deprived neurons showed a significant increase 
in the percentage of βIII-Tubulin expressing cells at 3 h 
(42.04 ± 4.92% vs. 23.16 ± 3.78%, p = 0.009) and 6  h 
(30.80 ± 2.77% vs. 17.40 ± 2.21%, p = 0.023), and 24 h 
(26.69 ± 2.41 vs. 8.90 ± 2.35, p = 0.00012) (Fig. 3e).

There was also a significant effect of Time (p < 0.0001), 
Serum (p < 0.0001), and a Time x Serum interaction 
(p = 0.0011), on percentage of cells expressing MAP2 after 
serum deprivation. Serum deprived cells also showed a 
significant increase in percentage MAP2 expressing cells 
at 3 h (29.08 ± 5.02% vs. 15.30 ± 2.28%, p < 0.01), 6 h 

(23.65 ± 2.12% vs. 12.51 ± 1.87%, p < 0.05), and 24 h 
(19.85 ± 2.50 vs. 7.27 ± 2.21, p < 0.01) (Fig. 3f).

Gene Expression

We were most interested in gene expression changes fol-
lowing serum deprivation, specifically in genes related to 
IEG expression (ARC, EGR1), apoptosis (BCL2, BAX), 
plasticity (BDNF, NTRK2, CREB1) and synaptogenesis 
(PSD95, SYP). Full statistical results of main (Time, 
Serum) and Time x Serum interaction effects can be found 
in Supplementary Material Table S6. In case of significant 
main or interaction effects, p values and Bonferroni-cor-
rected post hoc tests are reported in the text. Graphs show 
mean HKG normalized expression levels for each condi-
tion, error bars are standard error of the mean.

Immediate Early Gene Expression

We measured the expression of IEG’s ARC  and EGR1, 
finding high expression levels in both genes in the 1 h 
serum condition only. Expression levels were low in all 
other samples (3 h, 6 h and 24 h), many of which were too 
low to detect (Ct value ≥ 34). Gene expression results can 
be found in Supplementary Material and Supplementary 
Fig. 1.

Apoptosis Markers BCL2 Expression We also found no sig-
nificant main effects of Time (p = 0. 362), Serum (p = 0.618), 
or Time × Serum interaction (p = 0.216) on BCL2 expres-
sion (Fig. 4a).

Fig. 4  Results of gene expression analysis of a. BCL2 mRNA and b. BAX mRNA. Expression values have been normalized to the average of 3 
housekeeping genes (TBP, PPiB, GAPDH)
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BAX Expression We found no significant main effect of Time 
(p = 0.169), Serum (p = 0.380), or Time × Serum interaction 
(p = 0.228) on BAX expression (Fig. 4b).

Expression of BDNF Signaling

BDNF Expression We found a significant effect of Time 
(p < 0.001), Serum (p < 0.001) and Time × Serum interac-
tion (p < 0.001) on BDNF expression. There was a significant 
decrease in BDNF expression in the serum deprived cells 
at 1 h (p < 0.0001), 3 h (p < 0.0001), and 6 h (p < 0.0001). 
Compared to time-matched serum controls, serum deprived 
cells express 25.71 ± 5.76% BDNF at 1 h, 8.07 ± 1.35% at 
3 h, 12.01 ± 0.61% at 6 h and 94.58 ± 5.89% at 24 h (Fig. 5a).

NTRK2 Expression There was also a significant effect of 
Time (p = 0. 008), Serum (p = 0.006), and Time  ×  Serum 
interaction (p = 0.021) on NTRK2 expression. There was 
a significant increase in expression of NTRK2 mRNA 
at 24  h (p < 0.01), with serum deprived cells expressing 
242.11 ± 33.00% of the NTRK2 expressed in serum controls 
(Fig. 5b).

CREB Expression There was no significant main effect of 
Time (p = 0. 393) or Serum (p = 0.942), on CREB expres-

sion. However, there was a slight Time  ×  Serum interac-
tion effect (p = 0.043). Initially, there is a decrease in CREB 
expression in serum deprived cells at 1 h (to 65.25 ± 1.26% 
serum controls), at 6  h this is reversed (164.71 ± 30.31% 
serum controls) (Fig. 5c). None of these time points are sig-
nificant in Bonferroni-corrected post hoc tests.

Synaptogenesis Genes

PSD95 Expression There was a significant effect of Time 
(p = 0.001), and a Time  ×  Serum interaction (p = 0.020), 
but no effect of Serum (p = 0.153), on PSD95 expres-
sion. There was a significant increase in expression in the 
serum-deprived cells at 24  h (p < 0.01).Serum-deprived 
cells express 192.85 ± 17.78% of the serum controls at 24 h 
(Fig. 6a).

SYP Expression Again, we found a significant effect of Time 
(p = 0.017), but no effect of Serum (p = 0.575). We found a 
trend towards a significant Time × Serum interaction effect 
(p = 0.059). (Fig. 6b).

Fig. 5  Results of gene expression analysis of a. BDNF mRNA and 
b. NTRK2 mRNA, and c. CREB mRNA. Expression values have 
been normalized to the average of 3 housekeeping genes (TBP, 

PPiB, GAPDH). Significant post hoc comparisons are indicated as, 
**p < 0.01, ****p < 0.0001
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Discussion

In this study, we aimed to systematically characterize, in 
fully differentiated SH-SY5Y cells, the effects of complete 
serum removal on several morphological and gene expres-
sion markers of plasticity. We found that serum removal, 
over 24 h, increased primary neurite length as well as neu-
rite branching when compared to serum controls. Serum 
deprived neurons also showed higher levels of βIII-Tubulin 
immunoreactivity, and a greater proportion of βIII-Tubulin- 
and MAP2-positive neurons. MAP2 is mainly localized in 
mature dendrites (Dehmelt and Halpain 2005), and βIII-
Tubulin is a widely used neuronal maturity marker (Katsetos 
et al. 1993). These findings suggest that in fully differenti-
ated cells, complete serum removal may promote additional 
plasticity-like effects. This can be seen as early as 3 h fol-
lowing removal of serum, and lasts at least 24 h.

We also found that complete serum removal has a spe-
cific effect on the expression of several genes involved in 
BDNF-TrkB signaling and synaptogenesis. Serum depri-
vation resulted in a significant increase in the expression 
of NTRK2, PSD95 and SYP over time, with the strongest 
effect on the expression of NTRK2 and PSD95 mRNA at 
24 h following deprivation. NTRK2, the gene coding for the 
TrkB receptor, has been shown to be important in activ-
ity dependent plasticity leading to long term potentiation 
(LTP) (Minichiello 2009; Minichiello et al. 1999). PSD-95 
is an important scaffolding protein, regulating the strength 
of excitatory synapses (Chen et al. 2015), and the SYP gene 
codes for synaptophysin, an important protein involved in 
neurotransmitter release (Südhof et al. 1987; Arthur and 
Stowell 2007). An increase in the expression of NTRK2, 
PSD95 and SYP mRNA over time in serum-deprived cells 
therefore aligns with our morphology results. Our results 
suggest that complete serum removal induces an increased 
expression of genes and morphological markers of plasticity 
and synaptic strength, potentially confounding experiments 
interested in these outcome measures.

While these observations are in line with the differenti-
ation-inducing effect of serum deprivation (Encinas et al. 
2000; Jahn et al. 2017; Shipley et al. 2016; Kaplan et al. 
1993), these cells are already fully differentiated, therefore 
the additional changes in morphological markers that we 
present here may indicate additional, confounding plastic-
ity effects. Indeed, systematic transcriptomic profiling SH-
SY5Y cells has identified NTRK2 as well as many genes 
involved in neurogenesis and cytoskeletal reorganization as 
upregulated in differentiated compared to undifferentiated 
cells (Pezzini et al. 2017). However, once cells have been 
differentiated, the expression of these genes is stable over 
time; in contrast to the serum removal effects we report here. 
This semi-acute increase in plasticity-related gene expres-
sion and morphological markers is problematic in studies 
using these genes or morphological plasticity markers as 
outcome measures.

Interestingly, we also report a strong effect of serum on 
the expression of BDNF, ARC  and EGR1. BDNF expression 
increased in the in the serum control cells after 1, 3 and 
6 h, returning to low expression levels at 24 h. The serum 
control cells underwent a regular medium change, includ-
ing a PBS wash step. This increase in BDNF mRNA in the 
serum condition is surprising, but may be related to the addi-
tion of fresh medium and serum. In serum-deprived cells, 
this temporary increase is absent, likely due to the disrup-
tion of growth and protein production as a consequence of 
serum withdrawal (Inoue et al. 1996; Irie et al. 1999; Ozturk 
et al. 2003; Ozturk and Palsson 1991). We also report an 
increase in expression of the immediate early genes ARC  
and EGR1 in the serum condition at 1 h after PBS wash and 
serum replacement. The removal and re-addition of serum 
could have induced an immediate but transient increase in 
the expression of ARC  and EGR1 mRNA, in line with the 
expected expression pattern of an immediate early gene 
(Lyford et al. 1995; Schratt et al. 2001).

We did not find any effects of serum deprivation on the 
expression of genes linked to apoptosis, BAX and BCL2. 

Fig. 6  Gene expression analysis of A.PSD95 mRNA and B. SYP mRNA. Expression values have been normalized to the average of 3 house-
keeping genes (TBP, PPiB, GAPDH). Significant post hoc comparisons are indicated as, **p < 0.01
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Encinas et al. (2000) showed that SH-SY5Y cells show signs 
of apoptosis 6 and 24 h after serum removal as measured by 
caspase activity and TUNEL assay (Encinas et al. 2000). 
Encinas et al. (2000) used cells that were treated with RA 
for only five days and in medium containing 15% FBS. The 
shock of serum removal in the not-fully differentiated cells 
is likely much stronger compared to our protocol, and may 
explain the different finding. Based on the gene expression 
markers in our experiments, we cannot confirm that serum 
starvation influences apoptotic processes after 24 h in in 
fully differentiated SH-SY5Y cells.

Conclusion

Despite being common practice to remove serum from the 
culture medium of already differentiated SH-SY5Y cultures 
before experimentation, the effects on morphology and gene 
expression had not been systematically characterized. Here, 
we show that complete serum deprivation has an effect on 
commonly used morphological and gene expression mark-
ers of cellular and synaptic plasticity in differentiated SH-
SY5Y cells, and may thus confound results when examin-
ing plasticity-related outcome measures. For future research 
involving differentiated SH-SY5Y cells as a model of human 
neural plasticity, our findings provide some key considera-
tions for experimental design. Studies interested in measur-
ing plasticity effects in differentiated SH-SY5Y cells should 
either refrain from complete serum deprivation 24 h before 
experimentation, or include appropriate controls, e.g. cells 
which were not serum deprived, to confirm serum depriva-
tion had no confounding effects on outcome measures.
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