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Abstract: The micronutrients vitamins B9 and B12 act as methyl donors in the one-carbon metabolism
involved in transmethylation reactions which critically influence epigenetic mechanisms and gene
expression. Both vitamins are essential for proper development, and their deficiency during pregnancy
has been associated with a wide range of disorders, including persisting growth retardation. Energy
homeostasis and feeding are centrally regulated by the hypothalamus which integrates peripheral
signals and acts through several orexigenic and anorexigenic mediators. We studied this regulating
system in a rat model of methyl donor deficiency during gestation and lactation. At weaning,
a predominance of the anorexigenic pathway was observed in deficient pups, with increased plasma
peptide YY and increased hypothalamic pro-opiomelanocortin (POMC) mRNA, in line with abnormal
leptin, ghrelin, and insulin secretion and/or signaling during critical periods of fetal and/or postnatal
development of the hypothalamus. These results suggest that early methyl donor deficiency can affect
the development and function of energy balance circuits, resulting in growth and weight deficits.
Maternal administration of folic acid (3 mg/kg/day) during the perinatal period tended to rectify
peripheral metabolic signaling and central neuropeptide and receptor expression, leading to reduced
growth retardation.

Keywords: development; growth; hypothalamus; energy homeostasis; orexigenic and anorexigenic
pathways; gestational deficiency; folate; vitamin B12; folate supplementation

1. Introduction

The nutritional methyl donors folate (vitamin B9) and vitamin B12 are cofactors in the one-carbon
metabolism that plays a critical role in transmethylation reactions [1,2], and are key regulators
of the concentration of homocysteine which, if present in excess, can exert adverse effects such
as DNA breakage, oxidative stress, endoplasmic reticulum stress, protein homocysteinylation,
and apoptosis [3–6]. Both vitamins are essential for normal development, and their insufficiency
constitutes a risk factor for various developmental disorders, particularly neural tube defects [7–9].
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By using a validated rat model of methyl donor deficiency during the gestational and lactating periods,
previous studies in our laboratory have shown that folate and vitamin B12 deprivation was associated
in the offspring with persisting global growth retardation, brain atrophy, and morphological and
functional defects [10–12]. Whereas the stomach size in deficient pups was found to be much smaller
than in control animals at the same age, concomitantly with severe gastritis, a dysfunction of the
ghrelin system was also demonstrated [13]. This gastrointestinal hormone plays a significant role in
growth through its dual role as a growth hormone-releasing factor and as an appetite-stimulating
peptide through hypothalamic actions [14]. The hypothalamus is composed of several nuclei that
produce neuropeptides involved in key physiological functions. Feeding behavior is finely tuned by
the interactions of circulating hormones with peripheral peptidergic and aminergic projections that
arise from the brainstem and midbrain to the hypothalamus, and ghrelin could inhibit hypothalamic
serotonin release [15,16]. The arcuate nucleus plays a role in food intake and energy homoeostasis
regulation. It integrates peripheral signals such as circulating hormones (e.g., ghrelin, leptin, insulin,
peptide YY) and nutrients, and contains two types of neurons. One type co-expresses neuropeptide Y
(NPY) and agouti-related protein (AgRP) that stimulate food intake, while the other set of neurons
co-expresses pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript
(CART), which reduce food intake. Both populations project to the paraventricular nucleus and other
areas important in the regulation of appetite [17–20]. Leptin and insulin act on their respective receptors,
Ob-Rb and insulin receptor, to reduce the expression and release of hypothalamic orexigenic peptides
and stimulate anorexigenic peptides. Recently, we showed in our experimental model that methyl
donor deficiency disrupts brain Stat3 signaling pathway [11], which is required for hypothalamic
regulation of energy balance by leptin through its receptor [21].

Given our previous observations and according to the concept stating that an adverse perinatal
environment programs the development of several tissues, with long-term consequences on physiology
and health [22,23], we hypothesized that exposure to methyl donor deficiency during the fetal period
and in early life may alter the normal development and function of the hypothalamus, resulting in
energy balance dysfunction and reduced growth. We therefore studied the hypothalamic expression
profiles of neuropeptides and some related receptors in our rat model of methyl donor deficiency as
well as in two hypothalamic cell lines deprived in B9: one mouse cell line (mHypoE46) expressing
NPY, AgRP, leptin receptor, insulin receptor and insulin growth factor receptor 1 (Igf1R), and one rat
cell line (rHypo-E11) expressing ghrelin, neuropeptide Y receptor 1 (NPY1R), leptin receptor, insulin
receptor and Igf1R. The mouse cell line therefore displays the characteristics of NPY/AgRP neuronal
cells of the arcuate nucleus, whereas the rat cell line mimics the ghrelin-containing regulating cells [24].

In addition, we investigated whether a perinatal supplementation with folic acid is able to reduce
growth retardation in deprived rats and its influence on neuropeptide expression.

Taken together, our data showed that in utero and early postnatal deficiency in folate and
vitamin B12 was associated with growth retardation, in line with misexpression of hypothalamic
neuropeptides and related receptors regulating energy homeostasis, suggesting impaired development
of hypothalamic networks. Importantly, perinatal and postnatal supplementation with folic acid
helped restore mRNA levels and could be an effective strategy to reduce deficiency-related defects.

2. Results

2.1. Effects of Methyl Donor Deficiency on the Expression of Neuropeptides and Receptors in Mouse and Rat
Embryonic Hypothalamic Cell Lines

The profiles of expression changes in response to B9 deprivation reflect the specificities of mouse
and rat cell lines (Figures 1 and 2).
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Figure 1. Effects of methyl donor deficiency on mRNA expression of neuropeptides and receptors
in the mouse cell line (mHypoE46) at 24 and 48 h of growth. Data are means ± SD from 6 ≤ n ≤ 8
samples and are reported in arbitrary units. Statistically significant differences between control (C)
and B9 deficient (D) cells: * p < 0.05 and ** p < 0.01. (a) Neuropeptide Y (NPY); (b) Insulin receptor
(InsR); (c) Agouti-related protein (AgRP); (d) Leptin receptor (LepR); (e) Insulin growth factor receptor
1 (Igf1R).

RT-qPCR experiments led to two striking observations: the expression patterns of neuropeptides
and receptors differed between the two cell lines on the one hand, and on the other, they varied as
a function of time in a given cell line. We observed that the rat cell line is a hypothalamic cell line
secreting ghrelin and expressing receptors for NPY, insulin and leptin whereas the mouse cell line is
an NPY/AgRP-secreting cell line. After 24 h of B9 deficiency, the expression of the AgRP gene was
increased in the mouse cell line while the expression of NPY and of the various receptors was decreased.
In the rat cell line, a 24 h B9 deficiency induced an overexpression of the genes encoding ghrelin
and the different receptors. These results reflect the direct effect of B9 deficiency on hypothalamic
neuropeptides and receptors’ gene expression and show that receptor expression varied depending on
the neuropeptide secretion by the cells.
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Figure 2. Effects of methyl donor deficiency on mRNA expression of neuropeptides and receptors in
the rat cell line (rHypoE11) at 24 and 48 h of growth. Data are means ± SD from 6 ≤ n ≤ 8 samples and
are reported in arbitrary units. Statistically significant differences between control (C) and B9 deficient
(D) cells: * p < 0.05 and ** p < 0.01. (a) Neuropeptide Y receptor 1 (NPY1R); (b) insulin receptor (InsR);
(c) ghrelin (Ghrl); (d) leptin receptor (LepR); (e) insulin growth factor receptor 1 (Igf1R).

2.2. Plasma Concentrations of Folate, Vitamin B12 and Homocysteine, and Growth Status of Weaned Rat Pups

As previously documented, nutritional methyl donor deficiency starting 1 month prior to mating
affected female ability to conceive. Globally, 45.7% gave birth to pups (vs. 84% in controls). The number
of live fetuses per litter was consistently reduced (6.7 vs. 11.2) [25]. In addition to spontaneous
abortions, maternal pup-killing behavior and cannibalism were more frequently observed in deficient
dams, as previously documented for thiamine deficiency [26]. Maternal supplementation with folic
acid by itself had no significant effects on the same parameters.

In response to maternal deficiency during gestation and lactation, plasma levels of folate
and vitamin B12 were dramatically reduced in the rat progeny at weaning (postnatal day 21).
In parallel, homocysteinemia was significantly augmented (p < 0.01). Table 1 shows that folic acid
supplementation restored folate concentration without affecting vitamin B12 status, and significantly
reduced hyperhomocysteinemia in deficient pups.

In rat pups born to deficient dams, body weight was decreased by 55% as compared to controls
at 21 days of age, whereas brain weight was concomitantly reduced by 30%. Growth was noticeably
ameliorated by maternal supplementation with folic acid (Table 1).
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Table 1. Effects of the maternal dietary regimen on plasma concentrations of folate, vitamin B12,
homocysteine, body weight and brain weight in 21-day-old rat pups.

Plasma Folate
(nmol/L)

Plasma Vitamin B12
(pmol/L)

Plasma Homocysteine
(µmol/L)

Body Weight
(g)

Brain Weight
(g)

21-d Control-vehicle 53.1 ± 7.5 876.6 ± 94.1 6.7 ± 1.8 48.6 ± 3.2 1.43 ± 0.20

21-d MDD-vehicle 23.8 ± 7.6 ** 249.4 ± 211.6 ** 23.3 ± 7.1 ** 22.1 ± 2.0 ** 1.01 ± 0.29 **

21-d Control + B9 103.2 ± 42.7 ** 899.3 ± 134.6 4.2 ± 2.4 48.4 ± 3.7 1.51 ± 0.11

21-d MDD + B9 94.1 ± 46. 4 **/◦◦ 249.7 ± 102.2 ** 4.5 ± 3.7 **/◦◦ 27.2 ± 3.1 **/◦◦ 1.32 ± 0.36 **/◦◦

Data are means ± SD and were obtained from 15 ≤ n ≤ 40 individuals. Statistically significant differences: ** p < 0.01,
with respective control; ◦◦ p < 0.01, between MDD and MDD + B9 (MDD = methyl donor deficiency).

2.3. Plasma Concentrations of Peripheral Hormones

Figure 3 shows plasma levels of peripheral hormones playing a role in appetite control, i.e., ghrelin,
leptin and peptide YY (peptide tyrosine tyrosine). The concentration of the anorexigenic peptide
YY was dramatically increased in the plasma of deficient pups (Figure 3a), suggesting satiety and
decreased food intake. By contrast, plasma levels of leptin and ghrelin were decreased, reflecting
a dysregulation of the hormone tandem. In all cases, maternal folate supplementation tended to
remediate the situation.

Figure 3. Effects of methyl donor deficiency on plasma concentrations of peripheral hormones rat pups
at 21 days of age, and effects of folate supplementation. (a) Peptide YY (PYY); (b) leptin; (c) ghrelin.
Data are means ± SD from six individuals per group. Statistically significant differences between the
different animal groups: * p < 0.05 and ** p < 0.01.

2.4. Effects of Methyl Donor Deficiency on the Expression of Neuropeptides and Receptors in the Hypothalamus
of Rat Pups—Consequences of Maternal Folate Supplementation

As shown in Figure 4, the expression of all genes studied was enhanced following exposure to
methyl donor deficiency, except for insulin growth factor receptor 1 (Igf1R), which remained unaffected
(Figure 4f).

Interestingly, maternal supplementation with folic acid restored mRNA expression levels which
were affected by methyl donor deficiency in the hypothalamus of rat pups (Figure 5), except for the
ghrelin gene that remained significantly more elevated than control (Figure 5c).

Figure 4. Cont.
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Figure 4. Effects of methyl donor deficiency on mRNA expression of neuropeptides and receptors in
the hypothalamus of rat pups at 21 days of age. Data are means ± SD from 6 ≤ n ≤ 8 individuals and are
reported in arbitrary units. Statistically significant differences between control (C) and deficient (MDD)
rats: * p < 0.05 and ** p < 0.01. (a) Neuropeptide Y (NPY); (b) pro-opiomelanocortin (POMC), (c) ghrelin
(Ghrl); (d) leptin receptor (LepR); (e) insulin receptor (InsR); (f) insulin growth factor receptor 1 (Igf1R).

Figure 5. Effects of folate supplementation on mRNA expression of neuropeptides and receptors in the
hypothalamus of rat pups at 21 days of age. Data are means ± SD from 6 ≤ n ≤ 8 individuals and are
reported in arbitrary units. Statistically significant differences between control (C-B9) and deficient
(MDD-B9) rats: ** p < 0.01. (a) Neuropeptide Y (NPY); (b) pro-opiomelanocortin (POMC); (c) ghrelin
(Ghrl); (d) leptin receptor (LepR); (e) insulin receptor (InsR); (f) insulin growth factor receptor 1 (Igf1R).
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Figure 6 illustrates the expression of NPY and ghrelin in the arcuate nucleus in the various
experimental conditions. The punctuate labeling of NPY expression reflects its high localization in
axonal projections. The observation contrasts with methyl donor deficiency-associated NPY mRNA
levels, suggesting a post-transcriptional regulation.

Figure 6. Effects of methyl donor deficiency and folate supplementation on the immunohistochemical
expression of neuropeptide Y and ghrelin in the arcuate nucleus of the hypothalamus of control and
deficient (MDD) rat pups at 21 days. (a) Neuropeptide Y (NPY); (b) ghrelin (Ghrl). Cell nuclei are
counterstained by DAPI.

3. Discussion

In our animal model, maternal exposure to methyl donor deficiency is associated with a global
growth retardation and brain atrophy in the offspring. In a previous study using the same experimental
conditions, we mentioned that femur length, reflecting pre- and postnatal growth, was reduced by 21%
at 21 days of age [27]. While normalizing the one-carbon metabolism, the return to a normal diet after
weaning remained associated with growth and weight deficits [10,13]. Furthermore, we previously
showed that the perinatal deficiency in methyl donors led to an increase of gastric ghrelin mRNA
expression but also to a defect of the protein secretion, inducing a reduction of plasma ghrelin
concentration in the deficient pups [13]. The central systems regulating energy homeostasis contain a
regionalized and interconnected neural network, and most of the neuronal projections and synaptic
connections between the hypothalamic nuclei develop within the first weeks after birth [28]. During
this period, the integration of peripheral metabolic signals (e.g., ghrelin, leptin, insulin, peptide YY),
especially to the arcuate nucleus, is essential for the harmonious and functional organization of the
hypothalamus [29]. Moreover, the development of axonal projections from the arcuate nucleus to
the paraventricular nucleus of the hypothalamus is highly sensitive to changes in the nutritional
environment [18,30,31]. In the rat, plasma leptin is detectable at embryonic day 19 and plasma ghrelin
at embryonic day 17 [32–34]. Thus, if during the perinatal period the integration of these signals to the
arcuate neurons is disrupted, it will disturb the production of the neuropeptides, respectively POMC
(which will produce by cleavage the anorexigenic α-Msh peptide), and the orexigenic neuropeptides
NPY and AgRP [35]. This signaling defect will permanently affect the neuronal projections from
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the arcuate nucleus to the various functional hypothalamic areas possessing receptors for these
neuropeptides (Y1R, MC4R, etc.), as observed in leptin-deficient mice (Ob/Ob) [36,37]. The capacity
of nutritional status to alter the developing hypothalamus has been demonstrated in rodent models
of maternal obesity or of protein starvation [23]. For example, maternal high-fat feeding increases
hypothalamic cell proliferation in rat embryos, resulting in higher numbers of neurons containing
orexigenic neuropeptides in the paraventricular nucleus and the lateral hypothalamic area [30], whereas
gestational low-protein diet produces hypoleptinemia, increased hypothalamic gene expression of the
orexigenic neuropeptides NPY and AgRP, and decreased expression of the anorexigenic neuropeptides
POMC and CART [35]. These results suggest that the early nutritional environment can affect the
development of energy balance circuits, and these effects appear to be mediated, to some extent, by
abnormal leptin, ghrelin, and insulin secretion and/or signaling during critical periods of fetal and/or
postnatal development.

The present study showed that methyl donor deficiency leads to an increase of ghrelin mRNA
and protein expression in the hypothalamus, as previously shown in the stomach [13]. However, since
the gastric gland is the major site of ghrelin production, plasma ghrelin is dramatically reduced due to
altered secretion of the protein. We previously showed that methyl donor deficiency is accompanied
by a 50% reduction of global DNA methylation in 20-day-old rat embryos [25]. The observed increased
mRNA expression of ghrelin can be due to the demethylation condition but, to our knowledge, there is
no available data demonstrating that the promoter of the ghrelin gene is regulated by methylation. We
report for the first time that perinatal methyl donor deficiency also affects other peripheral metabolic
signals, leading to increased plasma concentration of the anorexigenic peptide YY and decreased
plasma concentration of leptin. In our model, plasma insulin was also reduced but presented a large
variability between pups (data not shown).

The induction of vitamin B9 deficiency in rat and mouse embryonic cell lines, respectively
corresponding to hypothalamic ghrelin cells and NPY cells, allowed us to depict the specific effect of
folate deficit on gene expression without interference or regulation by other neurons or peripheral
signals. The observed folate-related effects would mainly reflect epigenetic regulations such as promoter
or histone methylation or post-transcriptional regulation by microRNA, as previously documented
by our laboratory [11,25,38]. In these cell models, we observed specific effects of folate deficiency on
mRNA expression depending on the neuropeptide secreted by the cells. Specifically, folate deficiency
led to decreased NPY expression and to overexpression of AgRP mRNA, along with reduced expression
of the leptin and insulin receptors, whereas ghrelin overexpression was associated with reduced
expression of these receptors.

In vivo data in 21-day-old deficient pups differed from those obtained in vitro due to the presence
of cell–cell regulations and peripheral metabolic signaling. Surprisingly in the hypothalamus of
deficient pups, both orexigenic (ghrelin/NPY mRNA) and anorexigenic pathways (POMC mRNA)
appeared to be stimulated. However, immunohistochemical analyses of the arcuate nucleus revealed
that NPY mRNA in excess was not translated, since the protein labelling was lower than control.
This could be the result of specific microRNA regulation as documented in the literature [39,40].
Recently, Yang and colleagues showed that an excess intake (10-fold) of folic acid during gestation is
linked to increased food intake and obesity in male rat offspring post-weaning [41]. In their model, high
gestational folic acid levels increased the number of mature NPY-positive neurons in the hypothalamus
of the male offspring, which can contribute to increased food intake and higher body weight later in life.
Accordingly, we observed the contrary in our model of gestational B9/B12 restriction, since the results
showed a predominance of the anorexigenic pathway, with increased plasma peptide YY, increased
hypothalamic POMC, and, as previously shown [10,13], definitive growth and weight deficits in spite
of the return to a normal diet at weaning.

The hypothalamus develops early during gestation and continues during the postnatal
period [42]. These developmental windows represent important periods of vulnerability during which
environmental alterations may lead to abnormal hypothalamic development. We recently reported
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that an adapted maternal folate supplementation from the beginning of the third week of gestation
till weaning alleviates methyl donor deficiency-associated birth defects in the rat progeny [25,27].
This perinatal period corresponds to a peak of brain maturation with the occurrence of numerous
neuronal adaptative changes, like synaptogenesis, circuit refinement and plasticity. In the present
study, we observed that maternal administration of folic acid tended to rectify peripheral metabolic
signaling and central neuropeptide and receptor expression, leading to reduced growth retardation,
weight deficit and brain atrophy. This suggests that perinatal folate supplementation may beneficially
influence the developmental plasticity and epigenetic programming of the hypothalamic circuits.

4. Materials and Methods

4.1. Cell Cultures

mHypoE46 (mouse) et rHypoE11 (rat) neuronal cell lines purchased from American Type Culture
Collection (ATCC) were conditionally immortalized by transfer of a temperature-sensitive simian
virus 40 large tumor (SV40 T) antigen to primary hypothalamic neuronal cell cultures obtained from
fetal mice on embryonic days E15, E17 and E18, and from E18 fetal rats [43]. Cells were cultivated
in 1× Dulbecco’s modified Eagle’s medium (DMEM, D5796, Sigma-Aldrich, Saint-Quentin Fallavier,
France) with 10% fetal bovine serum (CVFSVF0001, lot: S52751-2262, Eurobio, Courtaboeuf, France), 1%
penicillin/streptomycin (P4333, Sigma-Aldrich) and maintained at 37 ◦C with 5% CO2. For homogeneity,
the same lot of serum was used throughout all experiments. The cells grew to form a monolayer
culture, attached to the culture plate and were split when they reached 70–90% confluence, with a
plate ratio of 1:5. Because standard DMEM does not contain vitamin B12, methyl donor deficiency was
induced by using a poor medium (DMEM D2429, Sigma-Aldrich) lacking B9 (folic acid), with addition
of 2 mM glutamine (G7513, Sigma-Aldrich), 3.7% sodium bicarbonate (S8761, Sigma-Aldrich), 0.35%
glucose (G8769, Sigma-Aldrich), 10% fetal bovine serum and 1% penicillin/streptomycin. Cells were
kept in B9-free conditions for 24 or 48 h before subsequent analyses.

4.2. Animals and Tissue Collection

Animal experiments were conducted by using a validated rat model of early methyl donor
deficiency, as previously described [10,44]. They were performed according to the European guidelines
(2010-63-UE), and were approved by the local University Research Ethics Board (CELMEA, approval
APAFIS#5509-2016053112249550, March 31, 2017). Wistar rats (Charles River, l’Arbresle, France) were
maintained in an accredited facility according on a 12-h light/dark cycle with access to food and water
ad libitum. One month prior to mating, females (n = 5 per experimental group matched to one male
for two females for mating) were fed either a standard diet (Maintenance diet M20, Scientific Animal
Food and Engineering, Villemoisson-sur-Orge, France) or a diet deficient in folate and vitamin B12
and lowered in choline (Special Diet Service, Saint-Gratien, France). Methionine content (~0.4%)
was similar in both diets. For maternal supplementation, folic acid (the synthetic form of folate,
Sigma-Aldrich) diluted in condensed milk was given per os. at the dose of 3 mg/kg per day in
a final volume of 1 mL to dams from embryonic day 13 to postnatal day 21 (weaning). Matched
control dams received the same volume of vehicle (i.e., 1 mL condensed milk) over the same period,
as previously described [25] (refer to Figure S1 for the experimental design). Whatever the maternal
diet, all pups of both sexes (15 ≤ n ≤ 40 issued from at least three different litters per experimental
group) were euthanized between 8:00 and 10:00 by excess isoflurane at 21 days of age and blood
was withdrawn for subsequent plasma measurements. Individuals were weighed and evaluated
morphologically. The brains were rapidly collected, weighed, and the hypothalamus was carefully
dissected before freezing in liquid nitrogen and storage at –80 ◦C. For immunochemistry, brains were
fixed with 4%-paraformaldehyde 4% (24–48 h) at 4 ◦C, dehydrated and included in paraffin. Sagittal
brain sections (12 µm) were generated at the level of hypothalamus by means of a microtome. They
were then mounted onto glass slides and stored at ambient temperature.
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4.3. Plasma Assays

Plasma concentrations of vitamins B9 and B12 were determined using a radioisotope dilution assay
(simulTRACSNB; ICN Pharmaceuticals, Versailles, France) as previously reported [45]. Concentrations
of homocysteine were measured by high-performance liquid chromatography (Waters, St. Quentin,
France) coupled with mass spectrometry (Api 4000 Qtrap; Applied Biosystems, Courtaboeuf,
France) [46].

Plasma levels of total ghrelin was measured in duplicate after appropriate dilution by specific
radioimmunoassays using commercial kits (RK-031-31; Phoenix Europe GmbH, Karlsruhe, Germany,),
as previously described [13]. Leptin, peptide YY and insulin were measured using the MILLIPLEX Rat
Metabolic Hormone Panel (RMHMAG-84K, Millipore, Fontenay-sous-Bois, France).

4.4. RNA Extraction and Quantitative RT-PCR

RNA was purified from cell cultures by using a commercial kit (NucleoSpin® RNA Plus,
Macherey Nagel, Düren, Germany). In the case of rat hypothalamus tissues, RNA extraction
was performed with TRIzol® (Invitrogen, Cergy-Pontoise, France) according to the manufacturer’s
instructions. The concentration and purity of RNA were determined at 260/280 nm by using a nanodrop
spectrophotometer Multiskan GO (Thermo Scientific, Fisher, Illkirch, France).

RNA (300 ng) was then subjected to a two-step RT-qPCR using the PrimeScript™ RT Master Mix
and SYBR® Premix Ex Taq® (Takara, Ozyme, Saint-Cyr-l’Ecole, France) following the manufacturer’s
instructions. Primers are detailed in Table 2 and were purchased from Eurogentec (Liège, Belgium).
The products of amplification were analyzed by agarose gel electrophoresis to confirm amplicon size
and primer specificity (a single band at the expected size). Cycle threshold (Ct) was determined from
each sample and real-time PCR amplification efficiencies were expressed by calculating the ratio of
crossing points of amplification curves. The expression of genes of interest was normalized to those of
GAPDH/RPS29 for the rat species and Pol2/RPS29 for the mouse species using the 2−∆∆Ct method.

Table 2. Sequences of primers used for quantitative PCR.

Gene Forward Reverse Species

Neuropeptide Y AGATCCAGCCCTGAGACACT TTCAAGCCTTGTTCTGGGGG Rat
Neuropeptide Y receptor 1 TGC-TAC-TTC-AAG-ATA-TAC-GTT-CGC ACG-ATG-GAG-AGC-AGC-ATG-AC Rat

Insulin receptor GGA-CCA-GGC-ATC-CTG-TGA-AA ATC-CTG-CCC-GTC-AAA-CTC-TG Rat
Leptin receptor CCC-CCA-CTG-AAA-GAC-AGC-TT GGC-TTC-ACA-ACA-AGC-ATG-GG Rat

Pro-opiomelanocortin CGA-CGG-AGG-AGA-AAA-GAG-GTT CTG-AGG-CTC-TGT-CGC-GGA-A Rat
Insulin growth factor receptor 1 AAG-GCC-AGA-GGT-GGA-GAA-TAA TAC-CAT-GCA-GTT-CCG-AGC-AG Rat

Ghrelin CCA-AGA-AGC-CAC-CAG-CTA-AA CTG-ATT-TCC-AGC-TCC-TCC-TC Rat

Neuropeptide Y receptor 1 Reference: qMmuCIP0029884 (BioRad,
Marnes-la-Coquette, France) Mouse

Leptin receptor Reference: qMmuCID0015266 (BioRad) Mouse
Agouti-related protein CGG-AGG-TGC-TAG-ATC-CAC-AGA AGG-ACT-CGT-GCA-GCC-TTA-CAC Mouse

Insulin growth factor receptor 1 GCA-CCA-ATG-CTT-CAG-TCC-CT TTG-GAG-CAG-TAG-TTG-TGC-CG Mouse
Insulin receptor AGA-TGT-CCC-ATC-AAA-TAT-TGC-CA CAT-CCG-GCT-GCC-TCT-TTC-TC Mouse

4.5. Immunohistochemistry

Immunohistological analyses were performed on brain sections at the level of the arcuate
nucleus of the hypothalamus according to the Paxinos and Watson rat brain atlas [47]. Nonspecific
binding sites were blocked in phosphate-buffered saline containing 1% bovine serum albumin (BSA)
and incubation was performed overnight with an antibody against one of the following proteins:
NPY (rabbit polyclonal, 1/200, Cell Signaling Technology, Ozyme, Saint-Cyr-l’Ecole, France), ghrelin
(rabbit polyclonal, 1/200, Millipore, Fontenay-sous-Bois, France). Cell nuclei were counterstained
with the DNA fluorochrome 4,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich). After a washing
step, immunoreactivity was assessed by incubation in the presence of an appropriate secondary
anti-IgG antibody conjugated to AlexaFluor for 1 h at 25 ◦C (1/1000, Life Technologies, Saint-Aubin,
France). Control experiments were conducted by omitting the primary antibody. Immunofluorescence
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visualization and image acquisition (×20 and ×60 magnification) were performed with a confocal
microscope (Nikon Instruments, Champigny sur Marne, France) and analyzed by Cell® software
(version 3.1, Olympus, Rungis, France).

4.6. Statistical Analysis

Data were analyzed with StatView 5 software for Windows (version 5.0, SAS Institute, Berkley,
CA, USA). They were compared by using one-way analysis of variance (ANOVA) with Fisher’s test.
A p-value < 0.05 was considered to indicate significance.

5. Conclusions

The results of the present study suggest that early methyl donor deficiency can impair the
hypothalamus development, with altered expression of neuropeptides and related receptors regulating
eating behavior and energy homeostasis, leading to growth retardation. If maternal supplementation
with folic acid during the perinatal period could not fully reverse the deleterious consequences of
deficiency, it was shown to exert beneficial effects.
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