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We present a study on the emergence of a variety of spatio temporal patterns among

neurons that are connected in a multiplex framework, with neurons on two layers with

different functional couplings. With the Hindmarsh-Rose model for the dynamics of single

neurons, we analyze the possible patterns of dynamics in each layer separately and

report emergent patterns of activity like in-phase synchronized oscillations and amplitude

death (AD) for excitatory coupling and anti-phase mixed-mode oscillations (MMO) in

multi-clusters with phase regularities when the connections are inhibitory. When they

are multiplexed, with neurons of one layer coupled with excitatory synaptic coupling and

neurons of the other layer coupled with inhibitory synaptic coupling, we observe the

transfer or selection of interesting patterns of collective behavior between the layers.

While the revival of oscillations occurs in the layer with excitatory coupling, the transition

from anti-phase to in-phase and vice versa is observed in the other layer with inhibitory

synaptic coupling. We also discuss how the selection of these spatio temporal patterns

can be controlled by tuning the intralayer or interlayer coupling strengths or increasing

the range of non-local coupling. With one layer having electrical coupling while the other

synaptic coupling of excitatory(inhibitory)type, we find in-phase(anti-phase) synchronized

patterns of activity among neurons in both layers.

Keywords: multiplex network, neuronal network, synchronization, multi-cluster synchronization, mixed-mode

oscillations

1. INTRODUCTION

The complexity underlying the patterns of dynamical behavior in the brain is a fascinating and
challenging research area in recent times (Sporns, 2013). The complexity arises not only from
a large number of neurons involved but also from the variety and plasticity of connections or
interactions among them during any type of neuronal or cognitive activity (Pereda, 2014; Ashwin
et al., 2016). The interactions can be electrical via gap junction and excitatory or inhibitory
interaction via chemical synapses. The collective behavior or synchronization among a large
number of neurons is essential for various neurobiological processes, which mostly appear due
to the inter neuronal synaptic interactions (Pikovsky et al., 2001). Also, various brain disorders,
such as Alzheimer’s disease, schizophrenia, Parkinson’s disease, and epilepsy, have been linked to
the abnormal patterns of synchronization among the neurons (Uhlhaas and Singer, 2006; Jalili
et al., 2007; Knyazeva et al., 2010). The nature of the collective dynamics can have different
forms of oscillatory patterns that include in-phase oscillations, anti-phase oscillations, multi-cluster
oscillations, etc. (Jalan and Singh, 2016; Pournaki et al., 2019). In addition, coupled neurons also
show quiescent states due to suppression of activity or amplitude death (AD) (Saxena et al., 2021).
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We find the multiplex framework is ideal for describing
the collective dynamics of neurons since an assembly of
neurons can have excitatory or inhibitory types of electrical or
chemical synaptic interactions (Boccaletti et al., 2014; Verma
and Ambika, 2021). Then, analysis can be done with the
same set of neurons distributed in different layers, based on
the nature of interactions among them. In the present study,
we consider the framework of multiplex networks to study
the activity patterns that can emerge or get selected when
neurons in one layer interact with each other through excitatory
synaptic couplings and neurons in the other layer interact
with each other through inhibitory synaptic couplings. Equally
interesting and realistic is the case where one layer of neurons
interact electrically while in the other layer, the interaction
is synaptic or chemical of excitatory or inhibitory type. We
begin by studying the patterns of collective dynamics in each
layer separately and observe how excitatory synaptic coupling
induces completely synchronized oscillations and AD, while
inhibitory synaptic coupling induces anti-phase synchronized
oscillations for local connections and multi-cluster oscillations
with relative phase ordering for non-local connections. In this
context, we note that anti-phase synchronization is observed in
neuronal networks in human and animal brains (de la Iglesia
et al., 2000; Ueda et al., 2002; Ohta et al., 2005), climactic
networks (Hinnov et al., 2002; Saenko et al., 2002), food
web (Vandermeer, 2004), and lasers (Wiesenfeld et al., 1990).
We note in multiplex neuronal networks with attractive and
repulsive interactions, anti-phase synchronization is reported
recently (Chowdhury et al., 2021) and chimera states are found
to occur in multilayer networks of neurons (Majhi et al., 2016,
2017, 2019).

When both layers are multiplexed, we find transfer or
selection of activity patterns across the layers, with the revival of
oscillations from AD state in the first layer and a transition from
anti-phase to in-phase in the second layer. Depending on the
strength of intralayer coupling, activity patterns corresponding
to the stronger interaction get selected and stabilized across
the neurons in both layers. When one layer has electrical
coupling and the other layer with synaptic coupling, in-phase
or anti-phase oscillations are induced depending on whether
synaptic coupling is excitatory or inhibitory. These activity
patterns have rhythmic dynamics with mixed-mode oscillations
(MMO), which are complex periodic forms of activity. We
note such MMOs are experimentally observed and analyzed in
neurophysiological studies (Del Negro et al., 2002; Desroches
et al., 2013; Ghosh et al., 2020). We study the transitions between
such patterns of activity and how the relevant parameters
can be tuned for a specific pattern to get selected across
the layers.

2. MULTIPLEX NEURONAL NETWORKS

We consider a multiplex network of neurons with two layers,
each of them consisting of an ensemble of N Hindmarsh-
Rose (HR) neurons coupled on a regular ring network. We
take the neurons in the first layer (L1) to be interacting with

each other with excitatory synaptic coupling and those in the
second layer (L2) interacting through an inhibitory synaptic
coupling. The neurons in L1 interact with neurons in L2 with
multiplex like i to i coupling via feedback. The dynamics of
the multiplex network of neurons is thus modeled as shown in
Equation (1)

ẋi,1 = Bi,1 +
λ1

2p1
(Vs − xi,1)

i+p1∑

k=i−p1

Ŵ(xk,1)+ ǫxi,2

ẏi,1 = (a+ α)x2i,1 − yi,1

żi,1 = c(bxi,1 − zi,1 + e)

ẋi,2 = Bi,2 −
λ2

2p2
(Vs − xi,2)

i+p2∑

k=i−p2

Ŵ(xk,2)+ ǫxi,1

ẏi,2 = (a+ α)x2i,2 − yi,2

żi,2 = c(bxi,2 − zi,2 + e) (1)

where Bi,j = ax2i,j−x3i,j−yi,j−zi,j, i = 1, 2, ...,N and j = 1, 2 (Majhi

et al., 2016). The variable xi,j represents the action potential, and
the variables yi,j and zi,j represent the transport of ions across
the membrane through fast and slow channels, respectively. The
function Ŵ(xi,j) = 1/{1 + exp[−β(xi,j − φs)]} is the sigmoidal
chemical synaptic coupling function withVs as reversal potential.
Here, we take the reversal potential Vs = 2 such that Vs > xi(t)
can be satisfied. We choose the synaptic threshold φs = −0.25
and β = 10 in the sigmoidal function. Also, p1 and p2 take care
of the range of interactions, whether it is local or non-local, with
p1,2 = 1 being local. The other system parameters are a = 2.8,
α = 1.6, b = 9, c = 0.001, and e = 5 such that the individual
HR neurons show regular square-wave bursting dynamics.
In the present work, the emergent dynamics of Hindmarsh-
Rose (HR)neurons are studied by solving Equation (1), using
fourth-order Runge-Kutta method, with initial conditions are
chosen randomly between −1 and 1, for various cases as
presented below.

2.1. Spatio Temporal Patterns on a Single
Layer
We begin by considering the emergent dynamics or patterns
of activity that can develop in each layer in the absence of
multiplexing with ǫ = 0 and number of neurons N = 50 in
Equation (1).

In layer L1 with excitatory synaptic coupling among neurons,
we observe that, for sufficient strength of synaptic coupling,
they settle to a completely synchronized oscillatory state, which
is shown in Figure 1A at λ1 = 1.5. However, the nature of
oscillations is changed from intrinsic bursts to varied forms
like bursts of decreasing amplitudes and broad spikes as λ1 is
increased. With stronger coupling, at λ1 = 2.9, these spikes are
suppressed, and the layer goes to AD. We note AD phenomenon
has been reported earlier in globally coupled HR neurons (Prasad
et al., 2010). Here, we find that AD can occur for all values of p1,
local, non-local, and global, with sufficient strength of coupling.
To detect the transition to AD, we compute the average amplitude
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FIGURE 1 | (A) Time series showing synchronized bursts of action potentials from all the neurons on layer L1, coupled with excitatory synaptic coupling for coupling

strength λ1 = 1.5, (B) Average amplitude of oscillations for increasing coupling strength λ1. The transition from oscillatory state to amplitude death (AD) state occurs

at λ1 = 2.9. Here, p1 = 1, ǫ = 0, and N = 50.

of the spikes of all the neurons using Equation (2) (Verma et al.,
2017).

< A >= (

N∑

i=1

〈xi,max〉t)/N (2)

This is plotted in Figure 1B for p1 = 1 with increasing λ1. We
find that the average amplitude increases with λ1 initially, reaches
a maximum, and then decreases. At λ1 = 2.9, there is a sudden
transition to AD. The nature of the burst patterns in these regions
differs as spikes of decreasing amplitude in each burst that change
to square bursts before reaching AD. We repeat the study by
increasing N to 100 and 500 and find qualitatively similar results.

For the dynamics on the second layer L2 with inhibitory
synaptic coupling among neurons, we first study the case when
p2 = 1, i.e., the system has only local interactions. We
find that the emergent dynamics in this case shows anti-phase
synchronized oscillations, which is clear from the time series,
and spatio-temporal plots shown for coupling strength, λ2 =

1, in Figures 2a,b. First, we note that the nature of dynamics
is changed from intrinsic bursts, in this case also, revealing
MMO. Moreover, we find the neurons in one cluster, say at
all even number sites, are all synchronized completely but are
in anti-phase with those in the other cluster, at odd number
sites. This is made more explicit by plotting the time series
of all odd number of neurons and even number of neurons
separately in Figures 2c,d, that display the pattern of anti-phase
synchronized oscillations among the adjacent neurons.We also
show the time series of the other two variables yi and zi in
Figures 2e,f, respectively.

For a detailed characterization of the observed phase order in
temporal dynamics, we calculate the phase of each neuron from
its time series, xi. We note the time Ti

k
, (k = 1, 2, ...) at which

xi crosses the chosen threshold value, and then, we calculate the
phase of the ith neuron using the following equation (Pikovsky
et al., 2001):

φi(t) = 2π
t − Ti

k

Ti
k+1

− Ti
k

, Ti
k ≤ t ≤ Ti

k+1, (3)

where i = 1, 2, ...,N. In Figure 3A, the phase of each neuron
calculated relative to that of the first neuron is plotted. It is
clear that every odd neuron is in anti-phase with every even
neuron. The snapshot of xi at a given time τ is shown in
Figure 3B, which further confirms the anti-phase pattern of the
mixed mode oscillations. This is induced by the range (nearest
neighbor) and the nature (inhibitory) of the coupling chosen in
this context. Thus, the neurons in effect form two clusters such
that synchronized oscillations in one cluster are anti-phase with
that in the other cluster. Further, we calculate the spike frequency
of the large amplitude oscillations of ith neuron as shown in
Equation (4) (Mozumdar and Ambika, 2019):

fi =
2π

Ki

Ki∑

k=1

1

ti
k+1

− ti
k

, (4)

where Ki refers to the number of spikes for the ith neuron in
each burst and ti

k
corresponds to time of the maximum of the

kth spike. Then, the average frequency obtained from this, is
plotted in Figure 3C with increasing coupling strength λ2. Here,
we can see that the average frequency increases with increasing
λ2. We also show how the average amplitude < A > of coupled
neurons increases with λ2, for the range considered as shown
in Figure 3D. Both the frequency and amplitude calculated
here relate to the large amplitude spikes of the mixed-mode
oscillatory states of the neurons. We note such activity patterns
of synchronized oscillations with amplification are reported in
multiplex networks in a different context (Njougouo et al., 2020).

As the range of coupling increases or the coupling becomes
non-local, we observe traveling wave-like patterns. In Figure 4A,
we plot the time series of the action potential from node 1
and node 2 and in Figure 4B from node 1 and node 4. It is
clear that nodes 1 and 4 are almost synchronized but with a
small phase shift. We find this shift in the phase depends on
the coupling strength and the range of coupling. The spatio-
temporal plot, in this case, shows traveling wave like patterns, as
shown in Figures 4C,D, for p2 = 2 and p2 = 5, and λ2 = 3.
For larger sizes of networks also, we find qualitatively similar
emergent dynamics.
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FIGURE 2 | (a) Mixed-mode oscillations (MMO) of action potentials and (b) spatio temporal plot of neurons coupled with inhibitory synaptic coupling on layer L2 at

coupling strength λ2 = 1. (c) Time series of all the odd number nodes x2i−1, showing complete synchronized oscillations, for i = 1; 2 : : : n/2 and (d) time series of all

the even number nodes x2i , where i = 1;2 : : : n/2 that indicate completely synchronized oscillations among them. Time series of the other variables yi and zi are

plotted in (e,f), respectively. Here, other parameters are kept as p2 = 1, ǫ = 0, and N = 50. The anti-phase nature of the oscillations in adjacent nodes and in-phase

nature in alternate nodes separates the network into two clusters. The color bar in (b) (also in spatio-temporal plots in later figures) indicates the values of action

potential xi .

FIGURE 3 | (A) Phase of each neuron in layer L2, coupled with inhibitory synaptic coupling calculated relative to that of its first neuron for coupling strength λ2 = 1

and p2 = 1. (B) Snapshot of xi at a given time τ , shows that every odd neuron is in anti-phase with every even neuron. (C) Average frequency and (D) average

amplitude of the large amplitude oscillations of the MMO for increasing coupling strength λ2.

2.2. Dynamics of the Multiplex Network of
Neurons With Excitatory and Inhibitory
Synaptic Couplings
With the two layers of neurons multiplexed, we study how
different emergent activity patterns of dynamics get selected
across the layers as parameters are varied. We first consider the

case where neurons of layer L1 are uncoupled, while those of layer
L2 are coupled with inhibitory synaptic coupling and both layers

are coupled to each other via i to i connections with feedback

coupling of strength ǫ as given in Equation (1). In this case, with

p2 = 1, λ2 = 6 for L2, ǫ = 1, the patterns of synchronized

oscillations that are anti-phase for adjacent nodes on second layer
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FIGURE 4 | Time series of action potentials from (A) nodes 1 and 2 and (B) nodes 1 and 4 in layer L2 coupled with inhibitory synaptic coupling for p2 = 2. We find

nodes i and i + 3 show inphase synchronized oscillations with small phase shift. The spatio-temporal plot of neurons showing traveling wave like patterns (C) for

p2 = 2 (D) for p2 = 5. Here λ = 3 and N = 50.

L2, get selected as such in the first layer L1 also. This is clear from
Figures 5A1–B2, where the time series and spatio-temporal plots
of both layers are given. Also for p2 = 2 and λ2 = 10, both layers
show traveling wave-like oscillations (Figures 5C1–D2). Thus,
the emergent dynamics and the corresponding activity patterns
get transferred from one layer to other layer when the layers
are multiplexed.

Next, we consider the neurons of first layer L1 coupled with
excitatory synaptic coupling, with neurons of L2 still coupled
with inhibitory synaptic coupling, both with local couplings as
p1 = 1, and p2 = 1. With the interlayer coupling strength at
ǫ = 1, for λ1 = 0.1, and λ2 = 4, we observe that both layers
L1 and L2 exhibit anti-phase synchronized oscillations, with
phase ordering which is shown in Figures 6A1,B1, respectively.
When we set λ1 = 3.0 and λ2 = 0.1, we observe in-
phase synchronized oscillations in both layers, which is shown
in Figures 6A2,B2, respectively. Thus, we see that for strong
inhibitory synaptic coupling strength, both layers show anti-
phase synchronized oscillations in adjacent nodes, while for
strong excitatory synaptic coupling, both layers show in-phase
synchronized oscillations.

Also, as couplings become non-local, with p2 = 2 and 3,
both layers show phase shifted oscillations and spatio-temporal
dynamics that are transferred from L2 to L1 for larger λ2. We
also observe that these states are selected by layer 1 for all
values of p1 up to p1 = 10, λ1 = 0.1. The spatio-temporal
plots for p2 = 2, and λ2 = 6, shown in Figures 7A1,B1,
and for p2 = 3 and λ2 = 10, in Figures 7A2,B2, indicate
the transfer of dynamical patterns across the layers. However,
the nature of spikes and bursts in layers L1 and L2 differs
due to difference in the parameter chosen. So, the selection
of the specific activity patterns on both layers depends on the
relative intra-layer coupling strengths and follows the spatio-
temporal dynamics of the layer with larger intra-layer coupling

strength. This is further illustrated for other types of emergent
dynamics below.

As reported earlier, when ǫ = 0, both L1 and L2 function
as independent layers, and for higher synaptic coupling strength
λ1 = 3, layer L1 goes to AD and at λ2 = 0.3, layer
L2 shows anti-phase synchronized oscillations in two clusters
(Figures 8A1,B1). But when both layers aremultiplexed with ǫ =

1, we observe a revival of oscillations from death state on layer L1
and in-phase oscillation on layer L2, as shown in Figures 8A2,B2,
respectively. Further, we observe that the activity pattern in L2
undergoes a transition from in-phase to anti-phase as λ2 is tuned.
This transition from in-phase to anti-phase with an increase in
λ2 in layer L2 is shown in Figure 9A, where the average phase
difference is calculated as < φ >= 1

N

∑N
i=1(φi − φi+1), with

φi obtained for each neuron from Equation (3). The inhibitory
synaptic coupling in one layer can revive the oscillations from
the suppressed state on the other layer. The variety of interesting
activity patterns of spatio-temporal dynamics and their selection
across layers happens at low to moderate values of interlayer
coupling strengths. When the interlayer coupling strength ǫ

is increased, to say ǫ = 10, both layers settle to AD states
(Figures 9B,C), and the time series near the transition point is
as shown in Figure 9D. Thus, the selection of activity patterns
in both layers due to multiplexing depends on the nature and
strengths of intralayer and interlayer couplings, and therefore, the
coupling strengths and range of couplings can be tuned to select
any desired pattern of activity.

2.3. Dynamics of the Multiplex Network of
Neurons With Electrical and Synaptic
Coupling
Now, we consider the case where neurons in the first layer (L1)
interact with each other with electrical coupling and those in
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FIGURE 5 | Transfer of dynamical patterns from L2 to L1, in the 2-layer multiplex network with neurons on L2 coupled with inhibitory synaptic coupling and neurons in

L1 uncoupled. Time Series of action potential and spatio-temporal plot are shown for different values of p2 and λ2: (A1,B1) first layer and (A2,B2) second layer with

p2 = 1 and λ2 = 6. (C1,D1) first layer and (C2,D2) second layer, with p2 = 2 and λ2 = 10. Here λ1 = 0, ǫ = 2, and N = 50.

FIGURE 6 | Time series of the action potentials of multiplex HR neurons for both layers L1 (left panel) and L2 (right panel) for different values of λ1 and λ2: (A1,B1)

λ1 = 0.1 and λ2 = 1.0, show anti-phase synchronized oscillations in two clusters, and (A2,B2) λ1 = 3 and λ2 = 0.1, show in-phase synchronized oscillations. Here

ǫ = 1, p1 = 1, p2 = 1, and N = 50. The pattern of the dynamics on the layer of larger intralayer coupling strength is selected across both layers.
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FIGURE 7 | Spatio-temporal plots of multiplex HR neurons for layer L1 (left panel) and L2 (right panel) for different values of p2, andλ2: (A1,B1) p2 = 2 and λ2 = 6,

(A2,B2) p2 = 3, and λ2 = 10. Here, λ1 = 0.1, ǫ = 1, p1 = 10, and N = 50. The spatio-temporal dynamics of the layer with larger coupling strength gets selected in

both the layers. However, the nature of spikes and bursts are different in L1 and L2 due to difference in intralayer parameters.

FIGURE 8 | Revival of activity in layer L1 due to multiplexing with L2 and transition from in phase to anti-phase in L2 as parameters are tuned. Time series of action

potentials for multiplex HR neurons in layer L1 (left panel) and L2 (right panel) are plotted for different values of λ1 and λ2: (A1) at λ1 = 3, ǫ = 0 neurons in layer L1

exhibit AD, (B1) at λ2 = 0.3, and ǫ = 0: neurons in layer L2 show anti-phase oscillations in two clusters: (A2,B2) λ2 = 0.3 and ǫ = 1: observed revival of oscillations in

L1 and transition from anti-phase to in-phase in L2. Here, λ1 = 3, p1 = 1, p2 = 1, and N = 50.

the second layer (L2) interact through synaptic coupling. The
dynamics of the multiplex network of neurons thus modeled is
given as follows,

ẋi,1 = Bi,1 +
λ1

2p1

i+p1∑

k=i−p1

(xk,1 − xi,1)+ ǫxi,2

ẏi,1 = (a+ α)x2i,1 − yi,1

żi,1 = c(bxi,1 − zi,1 + e)

ẋi,2 = Bi,2 + E
λ2

2p2
(Vs − xi,2)

i+p2∑

k=i−p2

Ŵ(xk,2)+ ǫxi,1
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FIGURE 9 | (A) Transition from in-phase to anti-phase for synchronized activity in L2. Here, average phase of neurons on the second layer for varying coupling

strength λ2, is shown with neurons in L1 coupled locally with p1 = 1 and λ1 = 3. Suppression of activity on increasing the interlayer coupling strength. Average

amplitudes of neurons on (B) L1 and (C) L2 are shown with varying interlayer coupling strength ǫ. The nature of spikes and bursts near the transition for ǫ = 8.1 is

shown in (D). Here, λ1 = 1, λ2 = 1.0, p1 = 1, p2 = 1, and N = 50.

ẏi,2 = (a+ α)x2i,2 − yi,2

żi,2 = c(bxi,2 − zi,2 + e), (5)

Here, we define a parameter E whose sign decides the nature of
synaptic coupling, for E = 1 neurons in L2 are coupled with
excitatory synaptic coupling, and for E = −1, second layer are
coupled with inhibitory synaptic coupling.

With E = 1, and the excitatory coupling strength at
λ2 = 5, we observe that the coupled system shows in-

phase synchronized oscillations, in both layers L1 and L2,

as shown in Figures 10A1,B1, respectively. Next, with E

= −1, the coupled system shows anti-phase synchronized

oscillations in both layers L1 and L2 (Figures 10A2,B2).

Further, we also observe that along with the transfer of the

emergent phenomena from one layer to another, the node
of layer L1 shows in-phase synchronization with the same
node of layer L2. To indicate this, we show the time series
of the 5th node of both layers L1 and L2, where layer
L1 coupled with electrical coupling and L2 coupled with
excitatory coupling in Figure 11A and L2 coupled inhibitory
synaptic coupling in Figure 11B, respectively. Also, for strong
electrical coupling strength (λ1) and weak synaptic coupling (λ2)
(inhibitory or excitatory), we observe traveling wave patterns on
both layers.

3. CONCLUSION

In this study, we report the selection of various activity patterns as
the emergent spatio-temporal dynamics on a multiplex neuronal
network of HR neurons where the nature of interaction in
each layer can be different. This framework can thus model the
plasticity and variability of connections among neurons which
can exist as synaptic or electrical in nature with excitatory or
inhibitory connections. By tuning the strengths of connections
in each layer and across layers, the network can select various
activity patterns and induce the pattern from one layer to
the other.

We first present the pattern of dynamics on the first layer
L1, where neurons are coupled through excitatory synaptic
couplings. By tuning the synaptic coupling strength, the coupled
neurons can be in completely synchronized oscillations, while for
strong synaptic coupling strength, the oscillations are suppressed
to the state of AD. The phenomenon of AD is observed for all
values of p1, corresponding to the local, non-local, and global
types of couplings. The second layer of neurons, coupled with
inhibitory synaptic coupling, shows anti-phase synchronized
oscillations with amplification when the neurons are locally
coupled, i.e., p2 = 1. The anti-phase synchronized oscillations
are interesting in two aspects. First, the nature of oscillations
are MMO with enhanced frequency and amplitude with large
amplitude spikes, and second, the phase relationship among
them occurs in an orderly way, with alternate neurons being in
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FIGURE 10 | Time series of action potentials for multiplex HR neurons from layer L1 (left panel) to L2 (right panel): (A1,B1) in-phase patterns for neurons of L1 coupled

with electrical coupling and that of L2 coupled with excitatory synaptic coupling. (A2,B2) Anti-phase activity for neurons on L1 coupled with electrical coupling and

that on L2 coupled with inhibitory synaptic coupling. The dynamics of L2 are transferred to L1 in both cases. λ1 = 0.5, λ2 = 5, p1 = 1, p2 = 1, and N = 50.

FIGURE 11 | In-phase synchronized dynamics between similar nodes on layers L1 and L2. Time series of node 5 from both layers L1 and L2 are plotted with (A)

neurons of L1 coupled with electrical coupling and that of L2 coupled with excitatory synaptic coupling; (B) neurons of L1 coupled with electrical coupling and that of

L2 coupled with inhibitory synaptic coupling. The other parameters are λ1 = 0.5, λ2 = 5, p1 = 1, p2 = 1, and N = 50.

phase and neighboring ones being in anti-phase. Thus, the whole
network splits into two clusters, every odd node belonging to one
cluster and every even node to the other cluster. For p2 = 2 and
3, we get traveling wave type of oscillations over the network.

When the two layers are multiplexed, for sufficient inhibitory
coupling strength, we observe mixed-mode synchronized
oscillations that are phase-shifted get selected on both layers.
In general, the selection of the specific pattern of activity on
both layers can be controlled by tuning the relative intra-layer
coupling strengths.

Also, multiplexing can revive the oscillations from the
AD state on the first layer by changing the inhibitory

coupling strength on the second layer. We also report
the transition from anti-phase to the in-phase type of
MMO, and vice versa that get selected as the excitatory
and inhibitory coupling strengths are tuned to specific
values. We repeat the study by increasing the size of the
networks in both layers to 100 and 500 and find qualitatively
similar results.

With the nature of coupling among neurons in one layer L1
electrical, while the other layer L2 has neurons with synaptic
connections, we observe in-phase synchronized activity in both
layers when L2 has excitatory connections and anti-phase activity
when it has inhibitory connections. We also find neurons
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at similar nodes in both layers are synchronous with in-
phase oscillations.

We note the variety of activity patterns presented here
that occur for a collection of neurons forming a multiplex
network, corresponding to experimentally observed patterns of
activity reported recently (Crofts et al., 2016). Also, modulation
of neuronal oscillation frequency is reported to occur during
sensory information processing (Lee et al., 2018). Thus, the study
provides a better understanding of the mechanism underlying
such patterns known to occur in brain networks that incorporate
multiplex network architecture naturally (Frolov et al., 2020).
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