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Abstract

Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic
respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient
airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet.
Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and
investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during
anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation
likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite
reductase (NIR) that reduces nitrite (NO2

2) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a
NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the
anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate
reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data
reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key
player involved in such process.
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Introduction

Pseudomonas aeruginosa propagates as complex, highly organized

communities known as biofilms in the environment and during

various infections [1]. Bacterial biofilms are the most common

causes of chronic P. aeruginosa infection and are difficult to

eradicate. For example, P. aeruginosa in biofilms have been reported

to be more resistant to H2O2 [2], a range of antibiotics [3] and

various heavy metals [4]. Moreover, bacteria grown as biofilms are

more resistant to neutrophil-mediated host defenses than are their

free-living planktonic counterparts [5].

P. aeruginosa can generate sufficient energy even under anaerobic

conditions through respiration using nitrate (NO3
2) or nitrite

(NO2
2) as terminal electron acceptors [6,7]. It was demonstrated

that (i) the oxygen potential of abnormally altered CF airways,

which are highly susceptible to chronic P. aeruginosa infection, is

extremely low [8] and (ii) that nitrate (NO3
2) and nitrite (NO2

2)

are present in large quantities inside patient airways [9,10]. Given

the fact that PAO1, when grown under anaerobic conditions,

becomes more resistant to antibiotic treatment [11], these findings

provided a novel insight that reflects P. aeruginosa infection

dynamics in CF airways and suggested to change the way of

confronting P. aeruginosa airway infection.

Genome-wide microarray analysis revealed that the expression

of a total of 691 genes (12% of the genome) was modulated upon

anaerobic growth demonstrating that P. aeruginosa, as a versatile

organism, can actively adapt itself to growth with alternative

electron acceptors [12]. Cellular events that specifically occur

during anaerobic respiration include decreased production of

pyocyanin [13] and elastase [14], increased levels of alginate

secretion [8], consistent production of sublethal levels of NO

[6,15,16] and enhanced biofilm formation [17,18]. Although the

molecular basis of these anaerobiosis-induced changes is not fully

understood, it is likely that P. aeruginosa may increase its survival

fitness inside the patient airway, especially at the chronic stage, by

reducing the production of virulence factors and increasing the

capability to form biofilm. Consistent with this notion, P. aeruginosa

isolates from chronically infected patients exhibited weaker

elastase activity than those recovered from colonized CF patients

or from pediatric patients without CF [19] and possessed

mutations in lasR gene [20].

Biofilm formation is a developmental process by which bacteria

undergoes significant phenotypic and genetic changes including

the acquisition of antibiotic resistance and modulation of growth

properties [21,22,23]. It is of particular interest that P. aeruginosa

forms more robust biofilm under anaerobic respiration [17],
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because this demonstrates a resistant mode of bacterial prolifer-

ation under a condition that specifically represents the abnormal

CF airway. Among many determinants that contribute to biofilm

maturation, initial surface attachment [17,24] and secretion of

matrix molecules [25] are often considered to be critical. In this

study, a unique morphological change that occurs specifically

under anaerobic growth and thus influences biofilm formation was

observed for the first time in P. aeruginosa. Wild type PAO1 was

highly elongated during anaerobic respiration and an elongation-

defective mutant formed very weak biofilm. Cell elongation was

attributable to the organism’s response to nitric oxide (NO).

Ultimately, this observation may form a basis for deciphering the

mechanisms by which P. aeruginosa modulates its pathogenic

properties under anaerobic growth condition.

Materials and Methods

Bacterial strains and growth conditions
Wild type P. aeruginosa strain PAO1 and mucoid strain FRD1

have been previously described [26]. P. aeruginosa transposon

insertion mutants, DnarG, DnirS, DnorC and Danr mutant strains

were purchased from a P. aeruginosa transposon mutant lib-

rary (http://www.genome.washington.edu/UWGC/pseudomonas)

and sequence verified. L-broth (LB, 10 g tryptone, 10 g NaCl, 5 g

yeast extract per liter) was used to grow bacteria. Anaerobic

bacterial growth was achieved using a GasPak anaerobic system

(Becton, Dickinson and Company, Franklin Lakes, NJ) or in a

Coy anaerobic chamber (Coylab Inc. Grass Lake, MI). The gas

composition inside the anaerobic chamber was a trimix of

nitrogen, hydrogen, and carbon dioxide (90, 5, and 5%,

respectively). Dry anaerobic indicator strip (Becton, Dickinson

and Company) was used to confirm the generation of anaerobic

atmosphere inside the jar. In addition, no detectable growth of

PAO1 in plain LB was confirmed in each anaerobic experiment.

To support anaerobic growth, KNO3 or NaNO2 (Sigma-Aldrich)

was added to the medium. When required, pH of the LB medium

was adjusted to pH 7.8 using 50 mM phosphate.

Scanning Electron Microscope and cell length
measurement

Bacterial cells were visualized by scanning electron microscope

(SEM) and confocal microscope. For the sample preparation of

SEM, bacterial suspension was fixed with PBS containing 2%

glutaraldehyde and 0.1% paraformaldehyde for 2 hrs and stained

with 1% OsO4. Samples were then coated with gold by an ion

sputter (IB-3 Eiko, Japan) and examined with a scanning electron

microscope (FE SEM S-800, Hitachi, Japan) at an acceleration

voltage of 20 kV. Images were processed with ESCAN 4000

software (Bummi Universe Co., LTD, Seoul, Korea). For the cell

length measurement, more than 100 straight-lined cells were

randomly chosen in the digitized SEM images and distance

between two ends was automatically calculated.

Confocal microscopy
Differential Interference Contrast (DIC) images were acquired

using a confocal laser scanning microscope (FV-1000; Olympus

Optical Co. Ltd., Japan) and its operating software, FV10-ASW

(ver. 02.01). Prior to the image analysis, aliquots of bacterial cultures

were washed with PBS and mounted in wells of 8-well Lab-TekTM

chambered coverglass (cat. no. 155411, Nalge Nunc International,

Rochester, NY). After scanning with 488 nm laser at a sampling

speed of 12.5 ms/pixel, a 6406640 pixel, 12-bit image (57.51 mm6
57.51 mm) was acquired. UPLSAPO 100XO (Olympus) objective

lens was used for the bacterial cell image analysis. Images were

saved as a TIF file with embedded 5 mm scale bar.

For the membrane visualization, PAO1 grown in LB plus 0.4%

NO3
2 to the early stationary phase under aerobic or anaerobic

condition was washed with PBS and the cells were resuspended in

200 ml of PBS containing 10 mM of the lipophilic membrane dye

TMA-DPH (Invitrogen Corp. Carlsbad, CA). Again, 8-well Lab-

TekTM chambered coverglass (cat. no. 155411, Nalge Nunc

International) was used to mount samples on the objective lens.

Image acquisition was conducted as described for the DIC image

analysis except that samples were scanned at 405 nm and

emissions were collected at 461 nm.

For the nucleoid staining, Syto 9 green fluorescent dye (Invitrogen

Corp. Carlsbad, CA) was used at 10 mM final concentration. To

capture the green fluorescence, samples were scanned at 488 nm

and emission was detected through a 520 nm band filter. The DIC

and green fluorescence images were collected simultaneously.

Counting the cluster formation in the planktonic culture
of P. aeruginosa strains

To count the number of clusters, 20 ml of each bacterial culture

was pipetted onto the slide glass. A 22640 mm coverslip (Paul

Marienfeld GmbH & Co. KG, Lauda-Koenigshofen, Germany)

was then placed over the rectangular area of the slide glass. Nikon

SE optical microscope (Nikon Vision Co., Ltd) was used to view

and count the number of clusters in the sample. Cluster counting

was performed while the objective lens was manually moved from

the top left to the bottom right region of the coverslip. Aggregates

that consist of more than 10 cells were considered as clusters.

Biofilm assays
The ability of P. aeruginosa to develop biofilm was assessed with a

modified microtiter plate assay as described previously [24].

Briefly, P. aeruginosa aerobic preculture grown in LB was inoculated

(1:100 dilution) into the anaerobic culture media (i.e. LB

containing NO3
2 or NO2

2) in 24-well or 96-well plates and

incubated anaerobically for 18 hrs at 37uC without agitation.

Biofilm formed by P. aeruginosa strains was stained with 0.1%

crystal violet (CV) and the stained CV was dissolved in 95%

ethanol for measurement of the absorbance at 540 nm. Because

the capacity to form biofilm is proportional to the bacterial cell

growth, OD540 nm was normalized with cell mass determined by

measuring OD600 nm. To test the effect of antibiotic treatment on

the biofilm formation, sub-MIC concentrations of carbenicillin,

tobramycin or ciprofloxacin were added to the aerobic PAO1

culture in 96-well plates. The minimal inhibitory concentration

(MIC) of selected antibiotics was determined as described

previously [27].

Quantitative real time-PCR (qRT-PCR) analysis
Aliquots (1.5 ml) of bacterial cell cultures were harvested by

spinning down at 14,000 rpm for 5 min. Pelleted cells were

resuspended with 1 ml of Trizol (Invitrigen) and then 0.2 ml of

chloroform was added. After incubating 5 min at room temper-

ature, Trizol-chloroform mixture was centrifuged for 10 min at

4uC to separate the aqueous phase containing RNA. The rest of

RNA purification steps were carried out using RNeasy kit (Qiagen)

following the manufacturer’s instruction. The extracted RNA

samples were subjected to PCR to verify the absence of

contaminating DNA. The resulting RNA samples were quantified

using a Nanodrop spectrophotometer (model no. ASP2680,

CellTAGen Inc., Seoul Korea). For cDNA synthesis, 2 mg RNA

template was mixed with 1 ml of 100 pmoles/ ml random primer

Effect of Cell Shape Change on Biofilm Formation
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(59-NSNSNSNSNS-39, where N = A,T,C, or G and S = C or G)

and dNTP mix in 15 ml total volume. The mixture was then treated

at 65uC for 5 min, followed by 5 min incubation on ice. Next, one

unit of Primescript reverse transcriptase (Takara Bio Inc., Shiga,

Japan) was added with 1 ml of 5x primescript reaction buffer and

13 ml DEPC-treated water. The mixture was then incubated at

42uC for 1 hr and at 70uC for 15 min. Real time PCR reaction was

monitored using StepOne Real-time PCR system (Applied

Biosystems, Carlsbad, CA). For the reaction, SYBR premix Ex

Taq (Takara) was used following the manufacturer’s instructions.

Primer sets used to amplify cDNA are listed in Table S1. The PCR

cycle was 95uC for 10 min and 40 cycles of 95uC for 20 s and 60uC
for 20 s, followed by 95uC for 15 s and 60uC for 1 min. Transcript

levels of rpoD gene were similar in cells grown by either aerobic or

anaerobic respiration and thus, used for the normalization.

Statistical analysis. Data are expressed as mean 6 SEM

(standard error of mean). An unpaired Student’s t-test was used to

analyze the data. A p-value of ,0.05 was considered statistically

significant. All the experiments were repeated for reproducibility.

Results

Cell elongation occurs in PAO1 grown by anaerobic
respiration using NO3as an alternative electron acceptor

Understanding cell biological features of P. aeruginosa that occur

specifically upon anaerobic respiration would provide a better

insight into the bacterial pathogenic mechanisms under such

condition. To address this important question, we first investigated

cellular morphology of PAO1 grown aerobically or anaerobically

by scanning electron microscope. When grown in LB with

aeration, PAO1 exhibited normal rod shape morphology with a

cell length of ,1.2 mm (Fig. 1A). The addition of 0.4% NO3
2 to

the culture medium did not cause any detectable change in cell

shape (Fig. 1B). In contrast, PAO1 grown by NO3
2 respiration

under anaerobic condition was highly elongated (Fig. 1D)

compared to aerobically grown cells. Software-aided cell length

measurement clearly demonstrated that cells are highly elongated

upon anaerobic NO3
2 respiration (,5.2 mm vs. ,1.2 mm,

Fig. 1E). Cell elongation did not occur in PAO1 incubated

anaerobically for the same period of time in growth medium that

lacked NO3
2 (Fig. 1C). No discernable growth was observed in

this particular culture further proving that the presence of

alternative electron acceptor is crucial for anaerobic growth in

P. aeruginosa (Fig. S1, hatched bar). In addition, no similar

elongation was observed in anaerobic cultures of mutant bacteria

disrupted in nitric oxide (NO) reductase (DnorCB, Fig. 1G) or

ANR, one of the master anaerobic transcriptional regulators (Danr,

Fig. 1H). These two mutant strains were defective in anaerobic

respiration and thus no anaerobic growth was detected in previous

works [6,28]. It was also reported that P. aeruginosa can support, to

a lesser extent, anaerobic growth by arginine fermentation [29]. As

shown in Fig. 1I, no elongation was observed in cells grown by

arginine fermentation. Together, these results suggest that cell

elongation is caused by an active bacterial response to anaerobic

Figure 1. NO3
2 respiration-induced cell elongation of PAO1. (A–D) Scanning electron microscope (SEM) images of PAO1 grown in LB (A and

C) or LB containing 0.4% NO3
2 (B and D) either aerobically (A and B) or anaerobically (C and D). Cells were grown for 15 hours prior to processing

for SEM. The images were acquired at a magnification of 20,000 and scale bar of 1.5 mm is indicated at the bottom right. (E) Cell length was
determined with software-aided distance measurement as described in experimental procedures. For statistical significance, more than 100 cells were
selected for measurement in each image and mean 6 SEM (standard error of mean) was presented. *p,0.001 vs. cells shown in the other three
images. (F–H) DIC images of PAO1 (F), DnorC (G) and Danr (H) grown in LB+0.4% NO3

2 under anaerobic environment. (I) DIC image of PAO1 grown
in LB +30 mM arginine under anaerobic environment. Acquisition of DIC images was conducted as described in materials and methods.
doi:10.1371/journal.pone.0016105.g001
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respiration and not a consequence of bacterial exposure to

anaerobic environments and arginine fermentation.

Cell elongation is likely caused by defective cell division
Fig. 1D revealed that most of elongated cells are free of

invaginated cell wall pattern, which may indicate that the

formation of septal peptidoglycan [30] is suppressed in PAO1

grown by anaerobic respiration. To gain a better idea of the

membrane structure of elongated cells, we visualized bacterial cells

stained with TMA-DPH, a lipophilic dye that specifically binds to

cell membrane and thus outlines the cell periphery [31]. As shown

in Fig. 2B, PAO1 grown by anaerobic respiration was highly

elongated compared with that grown by aerobic respiration

(Fig. 2A) further validating the results described in Fig. 1. It is of

interest that continuous staining throughout the entire cell

envelope was observed in elongated bacteria as indicated with

red arrows (Fig. 2B). Moreover, no clear pattern of cleavage

furrow formation was detected in the same cell images. This result

strongly suggests that normal cellular machinery for the cell

division is affected in these anaerobically grown bacteria.

It was reported that inhibition of chromosomal DNA replication

by UV irradiation caused a cell elongation phenotype in E. coli

[32]. Therefore, we sought to examine whether or not the

replication of chromosomal DNA occurred normally in such

elongated cells. To address this issue, we stained the cells with syto

9, a cell-permeant green fluorescence dye that specifically stains

nucleic acid. In aerobically grown and thus rod-shaped cells,

fluorescent signal was detected in the entire area of cell further

suggesting that bacterial genome is not limited within a

membrane-enclosed suborganelle (Fig. 3A, O2). Interestingly,

multiple segregating nucleoids were observed in most of elongated

cells (Fig. 3B, 2O2). When we compared identical fields of images

acquired by DIC or syto 9 staining side by side, distinctly

segregated nucleoids were detected in elongated cells (red arrows

in Fig. 3B). Together, these image analyses strongly suggest that

cell elongation is due not to defects in DNA replication or

chromosome segregation, but to the incomplete septum formation.

Next, we compared the transcript levels of representative genes

involved in cell division and cell wall synthesis by quantitative real

time PCR (qRT-PCR). We first analyzed zipA (PA1528), ftsZ

(PA4407) and ftsA (PA4408), because formation of Z-ring, which

requires the cooperative assembly of FtsZ, FtsA and ZipA at the

mid-cell region is essential for the initiation of cell division process

[33]. Transcript level of rpoD gene, which exhibited almost

identical level of expression under aerobic or anaerobic growth,

was used as a normalization control. As shown in Fig. 4,

expression of zipA gene was ,3-fold lower in PAO1 grown by

anaerobic respiration than in aerobically grown PAO1. A more

than 10-fold decrease was observed in transcript levels of both ftsZ

and ftsA during anaerobic vs. aerobic respiration. We then

examined transcript levels of murD (PA4414) and murF (PA4416)

genes encoding UDP-N-acetylmuramoylalanine-D-glutamate li-

gase and UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diamino-

pimelate-D-alanyl-D-alanyl ligase, two important enzymes in-

volved in peptidoglycan synthesis. Likewise, transcript levels of

these two genes in PAO1 grown by anaerobic respiration were

only ,13% of those achieved in cells grown by aerobic

respiration. This result suggests that expression of genes involved

in Z-ring formation and peptidoglycan synthesis, two critical steps

for the optimal cell division, is significantly reduced during the

anaerobic growth in P. aeruginosa.

Functional nitrite reductase (NIR) is required for
anaerobiosis-triggered cell elongation

Anaerobic respiration in P. aeruginosa involves a sequential

reduction of nitrate (NO3
2) or nitrite (NO2

2) to N2 [6]. Higher

cell yield was obtained in PAO1 growth using NO3
2 as an

electron acceptor than NO2
2-supported anaerobic growth (Fig.

S1), suggesting that NO3
2 reduction is the major step that is

coupled to ATP synthesis in wild type P. aeruginosa. Since cell

elongation only occurred in anaerobically respiring P. aeruginosa,

the anaerobic respiration pathway was further dissected to uncover

the crucial step that is responsible for cell elongation. To address

this issue, cell elongation phenotypes of DnarG and DnirS mutant,

which became defective in NAR or NIR, respectively, were tested

(Fig. 5A). Consistent with findings described in Fig. 1, wild type

strain PAO1 and two mutant strains grown by aerobic respiration

maintained their regular rod-shape morphology even in the

presence of 15 mM NO3
2 (Fig. 5B, E and H). PAO1

anaerobically grown on NO3
2 (Fig. 5C) or NO2

2 (Fig. 5D) was

invariably elongated compared to its aerobically grown counter-

part (Fig. 5B). This suggests that anaerobic growth supported by

either electron acceptor can trigger cell elongation in P. aeruginosa.

To minimize the growth-inhibitory effect of NO2
2 on bacterial

growth [26], the pH of the culture medium was adjusted to 7.8,

when NO2
2 is used as an electron acceptor. It was important to

note that the DnarG and DnirS mutants did not grow on NO3
2 or

NO2
2, respectively, due to the lack of the enzyme that can reduce

the corresponding electron acceptor (Fig. S1) and thus, no cell

Figure 2. Confocal microscopic image analysis of cell mem-
brane of elongated P. aeruginosa. PAO1 grown in LB+0.4% NO3

2

either aerobically (A) or anaerobically (B) was stained with 10 mM TMA-
DPH for the visualization of cell membrane. Three different images per
sample are displayed. 5 mm scale bars were incorporated to clearly
compare the cell length between two cultures. Red arrows indicate
highly elongated cells. Image analysis was performed as described in
materials and methods.
doi:10.1371/journal.pone.0016105.g002
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elongation was observed in each of these two anaerobic cultures

(Fig. 5F and J, * denotes no growth). This result further validates

that active respiratory growth is the prerequisite for the cell

elongation during anaerobic growth. Importantly, DnarG mutant

bacteria grown by NO2
2 respiration were as elongated as its

parental strain, PAO1 (Fig. 5G), whereas DnirS mutant cells were

not elongated upon anaerobic growth on NO3
2 (Fig. 5I). Final cell

density in these two cultures was comparable to each other (Fig.

S1), suggesting that the formation of these two contrasting cell

shapes (Fig. 5G vs. 3I) was not caused by the differential bacterial

cell growth.

Moreover, mucoid P. aeruginosa, FRD1, determined to possess

undetectable NIR activity [26], was not elongated under the same

NO3
2 respiring condition (Fig. S2). Together, these results suggest

that NIR-mediated reduction of NO2
2 to NO is the critical step

that triggers anaerobiosis-induced cell elongation in P. aeruginosa.

Biofilm formation of the non-elongated DnirS mutant
was significantly reduced under the NO3

2 respiring
condition

It has been previously shown that during anaerobic respiration,

P. aeruginosa formed significantly more robust biofilm compared to

when bacteria grow aerobically [17,18]. This finding was

successfully reproduced in our crystal violet biofilm staining assay

as shown in Fig. 6A. Since elongated cell morphology was only

observed under anaerobic respiration condition, we sought to

examine if this enhanced biofilm formation is caused by a modified

cell biological feature associated with cell elongation. To address

this question, the biofilm formation of DnarG and DnirS mutants

that showed distinct cell elongation phenotypes were compared

(Fig. 5G and I). pH-buffered L-Broth media was used to maximize

bacterial growth by NO2
2 respiration. Wild type PAO1 formed

very robust biofilm in both NO3
2 and NO2

2-stimulated

anaerobic growth (Fig. 6B). Quantification analysis of biofilm

formation by measuring OD540 nm/OD600 nm, however, indicated

that denser biofilm was formed under the condition of NO3
2

respiration than NO2
2 respiration (Fig. 6C). This was likely due to

greater bacterial growth by NO3
2 respiration (Fig. S1). It is

important to note that the DnarG mutant, which was elongated

during anaerobic growth using NO2
2 as an electron acceptor

(Fig. 5G), formed biofilm that was almost as robust as the PAO1

biofilm under the same growth conditions (Fig. 6B). In contrast,

biofilm formation was completely abrogated in the non-elongated

DnirS mutant upon NO3
2 respiration (Fig. 6B). Again, this distinct

Figure 3. Elongated cells contain multiple nucleoids. PAO1 grown in LB+0.4% NO3
2 either aerobically (A) or anaerobically (B) was stained with

10 mM Syto9, a green fluorescent dye that specifically binds to nucleic acid. Stained cells were analyzed by confocal microscopy as described in
materials and methods. Simultaneously collected DIC images were shown together side by side to display the identical field of cells. Red arrows
indicate the same location in a pair of cells in DIC and Syto 9 green fluorescent images.
doi:10.1371/journal.pone.0016105.g003
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biofilm formation was not due to the differential growth of these

two anaerobic cultures, because cell growth of the DnirS mutant on

NO3
2 was slightly greater than the DnarG mutant in NO2

2 (Fig.

S1). As expected, anaerobic cell growth of DnarG on NO3
2 or

DnirS on NO2
2 was minimal and thus, no biofilm was formed in

each of these two cultures. These results suggest that anaerobiosis-

induced cell elongation, which is dependent on the presence of

NIR activity, plays a critical role in robust biofilm formation under

these conditions.

Cell elongation and biofilm formation were both
suppressed in the presence of Carboxy-PTIO, a
stoichiometric scavenger in PAO1

Although nitric oxide (NO), the product of NIR, is further

reduced to N2O, steady-state level of nitric oxide (NO) is

maintained during anaerobiosis [16,34]. Since (i) NIR activity,

which generates NO as its product, is required for cell elongation

as shown in Fig. 5, and (ii) the enzymatic action of NIR is the only

source of NO production under anaerobic growth conditions [6],

it was postulated that production of intracellular NO may account

for the anaerobiosis-induced cell elongation. To address this

notion, the cell elongation phenotype of PAO1 grown in the

presence of 2 mM carboxy-PTIO, a stoichiometric NO scavenger

was tested. In our previous work, carboxy-PTIO, which penetrates

the periplasm and scavenges NO before it escapes to the cytoplasm

or is reduced by NOR, successfully protected P. aeruginosa strains

from NO-mediated intoxication [17]. As shown in Fig. 7A and B,

cell elongation was suppressed in the presence of carboxy-PTIO

(4.8761.89 mm vs. 2.3560.54 mm).

Results described in Fig. 6 indicate that cell elongation is an

important cellular event that contributes to the biofilm formation

under the condition of anaerobic respiration. To further prove the

effect of cell elongation on biofilm formation, biofilm formation in

a condition where cell elongation was hindered by the addition of

carboxy-PTIO was examined. As shown in Fig. 7C, a dose-

dependent decrease in biofilm formation was detected in the

presence of increasing amount of carboxy-PTIO. Upon growth

with 2 mM carboxy-PTIO, biofilm robustness was ,47% of that

of the control anaerobic biofilm suggesting that the perturbation of

cell elongation exerted an adverse effect on biofilm formation. No

adverse effect of added carboxy-PTIO on cell viability was

observed up to 2 mM concentration (data not shown).

Clump formation was induced during anaerobic growth
Importantly, we often observed highly cohesive cell clusters in

the elongated P. aeruginosa. Fig. 8A shows a representative image of

clusters formed by PAO1 during an anaerobic planktonic culture.

When we attempted to quantify the cluster formation in anaerobic

vs. aerobic cultures of PAO1, ,30 (614) clusters per 20 ml of

overnight culture that was mounted on the slide glass were

identified in our microscopic analysis. Similar clusters were

detected neither in the aerobic P. aeruginosa cultures nor anaerobic

DnirS mutant culture (data not shown). This data strongly suggest

that cell elongation that specifically occurs during anaerobic

respiration is involved in the cohesive clump formation that

eventually leads to the robust biofilm formation.

Two distinct genetic loci, pel and psl produce carbohydrate-rich

biofilm matrix that can hold bacterial cells together [35,36,37].

Therefore, it is of interest to examine whether Pel and/or Psl

polysaccharide matrix could contribute to the anaerobiosis-

induced clump formation. As a way to address this issue, we

performed qRT-PCR on pelE and pslB, genes representing each of

these two clusters. Shown in Fig. 8B is the transcriptional

modulation of these two genes under aerobic vs. anaerobic growth

conditions. Transcription of pelE gene was not changed upon

anaerobic growth, while the transcript level of pslB gene was

decreased to ,20% of what was observed in cells grown

aerobically. This result suggested that levels of Pel and/or Psl

polysaccharides produced during anaerobic respiration would not

be higher than those produced during aerobic growth and thus,

anaerobiosis-induced enhancement of clump formation is not

likely to be associated with altered production of extracellular

polysaccharides.

Biofilm formation was promoted in the presence of
carbenicillin that induced cell filamentation

Our results suggest that robust anaerobic biofilm formation is

likely mediated by modified cellular features associated with

anaerobiosis-specific cell elongation in P. aeruginosa. To provide

further evidence that supports the correlation between cell

elongation and biofilm formation in P. aeruginosa, we tested if

biofilm formation can also be promoted by other stimulus that

causes cell elongation. Because cell elongation occurs upon

treatment with carbenicillin in P. aeruginosa [38,39,40], we

compared biofilm formation of PAO1 treated with carbenicillin

versus ciprofloxacin and tobramycin. As shown in Fig. 9, biofilm

formation of PAO1 was significantly increased in the presence of

sublethal doses of carbenicillin. In our microscopic analysis, a high

degree of cell filamentation was also observed confirming results

from aforementioned referenced studies (data not shown). It is of

note that PAO1 was highly resistant to carbenicillin and MIC was

determined to be 750 mg/ml, a value consistent with previous

findings [40,41]. In contrast, only a mild increase in biofilm

Figure 4. Quantitative RT-PCR analysis of genes involved in cell
division and peptidoglycan synthesis. qRT-PCR was conducted on
cDNA synthesized from 2 mg total RNA extracted from PAO1 grown
either aerobically (black bars) or anaerobically (gray bars). Transcript
levels of 5 genes indicated on top of each graph were normalized with
levels of the rpoD transcript. Three independent experiments were
performed and values of mean 6 SEM are displayed in each bar.
doi:10.1371/journal.pone.0016105.g004
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formation was observed in PAO1 treated with tobramycin or

ciprofloxacin (Fig. 9). No cell shape change was observed in

aerobic growth with each of these two antibiotics (data not shown).

This result demonstrated that treatment with an antibiotic that

specifically induced cell elongation also promoted biofilm

formation further suggesting the positive influence of cell

elongation on biofilm formation in P. aeruginosa.

Discussion

Biofilm is a microbial community grown as an aggregate or on a

surface with distinct architecture [23]. Biofilm research using P.

aeruginosa as a model organism has been performed using in vitro

biofilm grown under aerobic respiration. Although the presence of

local regions with reduced oxygen potential has been proposed to

exist inside bacterial biofilm [42,43], previous works showed that

anaerobically growing P. aeruginosa formed significantly robust

biofilm compared with bacteria growing by aerobic respiration

[17,18]. This observation is of clinical importance because the

airway of chronic CF patients was suggested to be anaerobic due

to the accumulation of abnormally thickened and viscous mucus

on top of the airway epithelium [8]. In addition, anaerobically

growing P. aeruginosa exhibited higher resistance to a range of

currently used antibiotics than their aerobically grown counter-

parts [11], further suggesting that P. aeruginosa proliferates inside

the patient airway by employing two different modes of antibiotic-

resistant growth, i.e. biofilm and anaerobiosis.

The molecular mechanisms behind the enhanced biofilm

formation under anaerobic growth conditions are not clearly

defined. Here, a unique morphological feature of P. aeruginosa

grown by anaerobic respiration was identified for the first time and

its effect on biofilm formation was investigated. Our results

revealed that anaerobic growth of P. aeruginosa is concurrently

accompanied by abnormally altered cell division. PAO1 grown

during anaerobic respiration was ,5-fold more elongated than

aerobically grown cells by a mechanism associated with defective

cell division. In P. aeruginosa, cell elongation was reported to be

caused by nutrient deprivation [44]. It was postulated that bacteria

elongate to increase their nutrient uptake as a part of their

adaptation process for starvation. However, it seems unlikely that

anaerobiosis-induced cell elongation occurred for a similar reason

since (i) the cells were grown in rich media (i.e. L-Broth) and (ii) the

density at which the culture was harvested for the microscopic

image was as low as OD600 of ,0.5. In addition, NO3
2-supported

anaerobic growth is considerably luxuriant and thus the final

density of an anaerobic culture of wild type PAO1 supplemented

with 100 mM NO3
2 was almost comparable with that of aerobic

culture (data not shown).

Cell elongation (or filamentation) was also reported to take place

under nonpermissive conditions, such as high growth temperature

[45], the treatment with certain antibiotics [46] and the UV

irradiation [32]. But, bacterial growth under these highly stressful

conditions was completely ceased and furthermore, the level of cell

elongation appeared to be significantly greater than what was

Figure 5. Cell elongation phenotypes of P. aeruginosa mutant strains under aerobic and anaerobic growth conditions. (A) Anaerobic
respiratory (denitrification) pathway. Enzymes involved in each reduction step are termed nitrate reductase (NAR), nitrite reductase (NIR), nitric oxide
reductase (NOR), and nitrous oxide reductase (NOS), respectively. (B–J) DIC images of PAO1 (B, C, and D), DnarG (E, F, and G), DnirS (H, I, and J).
Bacterial strains were grown for 18 hours in LB +15 mM NO3

2 aerobically (B, E, and H), anaerobically (C, F, and I), and anaerobically in LB (pH 7.8)
+15 mM NO2

2 (D, G, and J). A scale bar of 5 mm is indicated in the bottom left of each panel. * No discernible growth was observed in these two
cultures and thus, cells were concentrated for image acquisition.
doi:10.1371/journal.pone.0016105.g005
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observed in the present study. This suggests that although P.

aeruginosa favors the utilization of oxygen to generate energy and

can grow faster aerobically, cells are not placed under any stress

condition in the absence of oxygen and thus, the anaerobiosis-

induced cell elongation occurs within a range that is permissive for

cell growth.

Our subsequent experiments uncovered the fact that cell

elongation was mediated by NO, produced consistently as a

spontaneous intermediate of anaerobic respiration [16,17]. Our

previous work [6] and a work by Cork and Poole using E. coli as a

test organism [47] indicated that NIR activity was necessary to

produce NO under anaerobic conditions. Consistent with this

Figure 6. Biofilm formation of the DnarG and DnirS mutants during anaerobic respiration using NO3
2 or NO2

2 as electron acceptors.
(A) Crystal violet (CV) staining of biofilms formed by PAO1 under aerobic and anaerobic respiration conditions. (B) CV staining of biofilms formed by
P. aeruginosa strains, PAO1, DnarG, and DnirS. Strains were grown for 18 hours prior to staining in pH-adjusted LB media containing either 15 mM
NO3

2 (top row) or NO2
2 (bottom row). CV staining was performed as described in materials and methods. *No discernible growth was observed in

these two cultures. (C) Quantification of the CV staining. OD540 nm values were normalized with cell mass measured by OD600 nm. *p,0.001 vs.
biofilms formed by the DnirS mutant.
doi:10.1371/journal.pone.0016105.g006

Figure 7. Effects of exogenously amended carboxy-PTIO on cell elongation and anaerobic biofilm formation in PAO1. DIC images of
PAO1 grown without (A) or with (B) 2 mM carboxy-PTIO. Cells were grown in LB containing 0.4% NO3

2 under the anaerobic condition. Images were
acquired and processed as described in Fig. 1 and 5. (C) The effect of carboxy-PTIO on the anaerobic biofilm formation. PAO1 was grown in the
absence or presence of increasing concentrations of carboxy-PTIO for 18 hours and biofilm formed in each culture was stained with CV. *p,0.001 vs.
biofilms formed in the presence of 2 mM or 1 mM carboxy-PTIO.
doi:10.1371/journal.pone.0016105.g007
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finding, the DnirS mutant that was devoid of NIR activity was not

elongated under NO3
2 respiration conditions (Fig. 5). These

findings were further proven by the observation that NO-triggered

cell elongation was suppressed by the addition of membrane-

penetrable carboxy-PTIO (Fig. 7).

During airway infection, P. aeruginosa encounters significant level

of neutrophils infiltrated into the airway mucus. Along with

macrophages and airway epithelial cells, neutrophils produce NO

as an important defense molecule [48]. Because our results suggest

that elongated cells form more robust biofilm, an interesting

hypothesis would be whether P. aeruginosa responds to host-derived

NO during the infectious process in order to change its cell shape.

To test this idea, we have attempted to see the effect of exogenously

added NO via acidified NO2
2 [26] on the cell shape change in

PAO1 under aerobic growth condition, but no morphological

change in response to NO was observed (data not shown). This may

suggest that NO-triggered cell elongation only occurs under

anaerobic respiration condition using endogenously produced

metabolic NO. More experiments are necessary to precisely

determine the effect of NO on the bacterial cell shape change.

Our results also demonstrated that the elongated cells are

inclined to form highly cohesive clumps, which we believe

Figure 8. Bacterial clump formation during anaerobic growth and qRT-PCR analysis of genes involved in polysaccharide
biosynthesis. (A) A DIC image of clumps observed in a planktonic anaerobic culture of PAO1. A scale bar of 5 mm is shown. (B) qRT-PCR was
conducted on cDNA synthesized from 2 mg total RNA extracted from PAO1 grown either aerobically (black bars) or anaerobically (gray bars). Assay
conditions were identical as described in Fig. 4. Three independent experiments were performed and values of mean 6 SEM are displayed in each
bar.
doi:10.1371/journal.pone.0016105.g008

Figure 9. Effects of carbenicillin-induced cell elongation on the biofilm formation in PAO1. Quantification of CV staining of PAO1 biofilms
grown with increasing concentrations of carbenicillin, tobramycin or ciprofloxacin (indicated at the bottom). PAO1 was inoculated in antibiotic-
containing LB media placed in 96-well plates and grown for 18 hrs aerobically. C: LB only control. *p,0.001 vs. biofilms formed by PAO1 in the
presence of tobramycin or ciprofloxacin.
doi:10.1371/journal.pone.0016105.g009
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accounts for the robust biofilm formation under anaerobic

condition (Fig. 8). Because clump formation was not observed in

non-elongated mutant strains (DnirS mutant) and aerobically

grown P. aeruginosa, this finding suggests that anaerobiosis-induced

cell elongation likely caused changes in membrane properties that

result in the clump formation. Potential questions to be addressed

in the future include; (i) how different the cell wall composition of

elongated cells is from rod-shaped P. aeruginosa and (ii) how the

endogenously produced NO can signal a mechanism by which

cells undergo elongation.

The discovery of anaerobiosis-induced morphological change

inspired the present study to test its effect on biofilm formation.

Since (i) cell-to-cell contact, which is an important determinant for

biofilm formation, can be facilitated by an enlarged cell surface

and (ii) highly cohesive autoaggregates were only detected in

elongated cells, it was hypothesized that the robust anaerobic

biofilm formation might result from the elongated cell shape. To

address this important question, the elongation-defective mutant(s)

were subjected to isolation. However, a genome-wide mutant

library screen to isolate such mutants was not feasible, due to the

lack of an efficient assay system that would allow us to isolate the

defective mutants. Alternatively, the effect of the disruption of

genes involved in the anaerobic respiration pathway on the

elongation phenotype was examined since cell elongation occurred

as a consequence of anaerobic respiration in wild type PAO1

(Fig. 1). The results described in Fig. 5 demonstrated that the DnirS

mutant remained rod-shaped, while the DnarG mutant was

elongated as PAO1 under anaerobic growth. This finding

provided us with an opportunity to compare the biofilm forming

capability of the mutants that were in marked contrast to each

other in their cell morphology.

NIR was also reported to be required for the type III secretion

system and virulence towards human monocyte cell line THP-1

and Caenorhabditis elegans even in conditions where oxygen is

present [7,49]. This suggests that NIR is likely important in P.

aeruginosa pathogenesis irrespective of the environmental oxygen

concentration. Results presented in the current study, however,

clearly demonstrated the role of NIR in anaerobiosis-specific

condition. Our conclusion that enhanced biofilm formation

occurred under anaerobic condition was due, at least in part, to

the NIR-mediated cell elongation and was based on the following

results; (i) the non-elongated DnirS mutant did not form biofilm

under NO3
2 respiration conditions (Fig. 6), (ii) the DnarG mutant

grown by NO2
2 respiration was highly elongated and formed very

robust biofilm (Fig. 6), and (iii) biofilm formation was decreased by

the addition of carboxy-PTIO that inhibited cell elongation

(Fig. 7).

In summary, this report provides initial insights into the cell

shape-dependent biofilm-forming characteristics of P. aeruginosa.

Anaerobic biofilm formation that represents a persistent bacterial

survival mechanism inside the patient airway requires the activity

of NIR. Therefore, it is suggested that this key player could serve

as a target, inhibition of which can be beneficial as novel anti-

pseudomonas therapeutic interventions are further developed.
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Figure S1 Final cell density of anaerobic cultures of three P.

aeruginosa strains. Bacterial strains were grown for 18 hours in LB

+15 mM NO3
2 (black bars) or NO2

2 (gray bars) anaerobically.

For a negative control, PAO1 was grown in plan LB. * p,0.01 vs.

growth with NO3
2.
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