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ABSTRACT 
Cornus hongkongensis Hemsl. 1888, native to Hong Kong, belongs to the subgenus Syncarpea within 
the Cornus genus of the Cornaceae family. The complete chloroplast genome of C. hongkongensis spans 
156,954 bp, comprising four subregions: a large single-copy region (86,290 bp), a small single-copy 
region (18,394 bp), and a pair of inverted repeats (26,135 bp). Within the chloroplast genome of C. hon
gkongensis, we identified 113 unique genes, including 80 protein-encoding genes, four ribosomal RNA 
(rRNA) genes, and 30 transfer RNA (tRNA) genes. Phylogenetic analysis based on the complete chloro
plast genome of 30 related taxa of the Cornus genus indicates that C. hongkongensis has not formed a 
monophyletic lineage. Analyses of sequence divergence found three intergenic regions including rps19- 
rpl22, ccsA-ndhD, and atpH-atpI, exhibiting a high degree of variations. The first chloroplast genome of 
C. hongkongensis was reported in this work contributes to the enrichment of genomic data for the 
genus Cornus.
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Introduction

Cornus hongkongensis Hemsl. 1888, a member of the sub
genus Syncarpea within the Cornus genus of the Cornaceae 
family, is a small evergreen tree or shrub with distinctive 
four-flowered flowers native to regions including Hong Kong, 
Jiangxi, Fujian, and Zhejiang, typically thriving at altitudes 
ranging from 250 to 1200 m (Jijun et al. 2017). Renowned for 
its ecological and economic significance, this species is a 
visually captivating tree, harmoniously combining colorful 
flowers, leaves, and fruits, enhancing its ornamental appeal 
(Jijun et al. 2017). The fruit of C. hongkongensis is not only 
nutritionally rich and sweet but also suitable for winemaking. 
Moreover, its medicinal properties include promoting of men
strual regularity, enhancing of blood circulation, and anti- 
inflammatory effects. These attributes establish it as a rare 
and valuable wild fruit tree germplasm resource (Yu-Hong 
et al. 2003). Furthermore, its hardwood and robust root sys
tem make it an exceptional choice for specialized timber 
applications, soil stabilization, and water retention. 
Consequently, it plays a pivotal role in afforestation, land
scape beautification, and soil fertility restoration (Kaveriappa 
et al. 1997).

As a result, the demand for C. hongkongensis in ornamental 
gardens has steadily increased (Dan-Qi and Cheng-Xiang 

2008). Notably, C. hongkongensis, a species within this category 
found in Hong Kong, lacks a publicly available chloroplast 
genome, hindering a precise phylogenetic understanding. To 
address this knowledge gap, our study aims to construct a 
high-quality assembled chloroplast genome, offering deeper 
molecular insights into germplasm relationships, genetic diver
sity, and phylogeny within this botanical context.

Materials and methods

Fresh leaves of C. hongkongensis (Figure 1) were collected 
with permission from the Guidong Botanical Garden, located 
in Chenzhou City, Hunan Province, China (latitude 24.98N, 
longitude 112.89E). The specimen was deposited at the 
Institute of Medicinal Plant Development, Chinese Academy 
of Medical Sciences, Peking Union Medical College, Beijing 
(contact person: Haimei Chen, hmchen@implad.ac.cn) under 
the voucher number Implad20230711004. Subsequently, the 
sequencing library with 200–400 bp insert sizes was con
structed and sequenced on the DNBSEQ-T7RS platform (MGI) 
at Grandomics (Beijing, China). This process yielded a total of 
10.8 Gb of raw data. The raw reads were then filtered using 
Trimmomatic (Bolger et al. 2014) to remove adaptors and 
low-quality sequences. As a result, a total of 10.6 GB of 
paired-end data were retrieved. The clean data were 
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employed to de novo assemble the plastid genome using 
GetOrganelle (Jin et al. 2020) with default parameters. To 
assess the quality of the assembly, the clean data were 

mapped onto the assembly result using minimap2 (Li 2018). 
The aligned reads were extracted, and the depth and 
coverage were calculated using Samtools (v1.12; Danecek 
et al. 2021). The annotations for the plastid genome of 
C. Hongkongensis were generated by CPGAVAS2 (Shi et al. 
2019) with the reference annotation of Cornus capitata 
(NC_060994.1) and adjusted manually using Apollo (Misra 
and Harris 2005). The map of the plastid genome, cis-spliced 
genes, and trans-spliced genes of C. hongkongensis was 
drawn by CPGview (Liu et al. 2023). The phylogenetic rela
tionships among C. hongkongensis and 29 other Cornus spe
cies were analyzed based on the complete plastome 
sequences. Two Alangium species, namely, Alangium alpinum 
(MG525003.1) and Alangium chinense subsp. strigosum 
(OR197702.1) were chosen as outgroups. The complete plas
tomes of 32 species were aligned by MAFFT (Katoh and 
Standley 2013) with default parameters. The poorly aligned 
positions and divergent regions of the alignment were elimi
nated using Gblocks (v0.91b; Talavera and Castresana 2007). 
The maximum-likelihood (ML) tree was constructed in IQtree 
(v2.1.2 (Minh et al. 2020)) with ultrafast bootstrap (1000 repli
cates) and best-fit model TVM þ F þ R3. The intergenic spa
cer (IGS) regions of 25 Cornus cp genomes were extracted 
with our custom script. Then, Distmat program that was 
implemented in EMBOSS (v6.3.1) (Rice et al. 2000) was used 
to determine the pairwise distance of the intergenic regions 
with the Kimura 2-parameters (K2p) evolution model.

Results

A total of 751,194 paired reads were assembled to the com
plete plastid genome of C. hongkongensis, revealing a median 
depth of 1413, with a minimum depth of 540 and a max 
depth of 2213 (Figure S1). The assembled plastid genome 
has been deposited to the NCBI (National Center for 
Biotechnology Information, https://www.ncbi.nlm.nih.gov/) 
under the accession number OR545260. The plastome exhib
its a quadripartite structure with 156,954 bp in length, con
sisting of a pair of inverted repeats (IRs, 26,135 bp), a large 
single-copy (LSC, 86,290 bp) region, and a small single-copy 
(SSC, 18,394 bp) (Figure 2). The overall GC content of C. hon
gkongensis plastome was 38%, with the LSC, SSC, and IRs 
regions exhibiting GC contents of 36%, 32%, and 43%, 
respectively. A total of 132 genes (114 unique genes) were 
annotated, including 85 protein-coding genes (PCGs, 80 are 
unique), 37 transfer RNA genes (tRNAs, 30 are unique), eight 
ribosomal RNA genes (rRNAs, four are unique). Among them, 
a total of 15 unique genes (including rps16, atpF, rpoC1, petB, 
petD, rpl16, rpl2, ndhB, ndhA, trnK-UUU, trnG-UCC, trnL-UAA, 
trnV-UAC, trnI-GAU, and trnA-UGC) containing one intron and 
two unique genes containing two introns (including ycf3 and 
clpP) (Figure S2). The rps12 is a trans-spliced gene as shown 
in Figure S3. Sixteen genes were duplicated in IR regions, 
including seven PCGs (rpl2, rpl23, ycf15, ycf2, ndhB, rps7, and 
rps12), six tRNA genes (trnN-GUU, trnR-ACG, trnA-UGC, trnI- 
GAU, trnV-GAC, and trnL-CAA), and four rRNA genes (rrn16, 
rrn23, rrn4.5, and rrn5).

Figure 1. Photograph of C. hongkongensis leaf, flower, and fruit. (A) Leaf. This 
image was taken by Lichai Yuan at Guidong Botanical Garden, Chenzhou city, 
Hunan province, China. The leaf blade displays an elliptic, oblong-elliptic, or 
obovate-oblong shape with a thinly to thickly leathery. The leaf base is cuneate 
or broadly cuneate to rounded, and the apex is shortly acuminate to caudate. 
Typically, there are 3 or 4 (or occasionally 5) veins that ascend in a curved pat
tern. (B) Flower. This image was taken by Jun Liu at Hangzhou City, Zhejiang 
Province, China. Capitate cymes are globose, and the bracts are yellowish or 
white, broadly elliptic, broadly ovate, or orbicular to obovate. (C) Fruit. This 
image was taken by Yan Liu. The compound fruit, which is globose in shape, 
turns red or yellowish-red at maturity.
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A ML phylogenetic analysis based on the complete chloro
plast genome of 25 related taxa of the Cornus genus showed 
that the genus Cornus forms four major clades: the big- 
bracted (BB) group, the dwarf dogwoods (DW), the cornelian 
cherries (CC), and the blue- or white-fruited group (BW) 
(Figure 3). Subgenus Syncarpea, encompassing C. hongkon
gensis, constitutes a monophyletic group. C. hongkongensis 
(OR545260) forms a distinct cluster alongside subsp. elegans, 
subsp. gigantea, and subsp. tonkinensis, exhibiting a robust 
statistical support value of 88%. While C. hongkongensis 
subsp. ferruginea clusters with Cornus kousa and C. hongkon
gensis subsp. melanotricha clusters with Cornus sunhangii.

The pairwise comparison of IGS regions was conducted 
among the 25 Cornus species to identify hypervariable 
regions using the K2p model. The K2p distance, spanning 
from 0.00 to 44.46, was observed among the 124 IGSs of the 

25 Cornus species (Table S1). Among them, the IGS regions 
rps19-rpl22, ccsA-ndhD, and atpH-atpI showed average distan
ces of 11.88, 11.25, and 9.85, respectively, among the 25 
Cornus species (Figure 4). These specific IGS regions present 
potential utility as molecular markers for discerning plant 
phylogeny at lower taxonomic levels and for DNA barcoding 
within Cornus species.

Discussion and conclusions

Cornus encompasses approximately 58 species, primarily 
comprising hermaphroditic shrubs and small trees. These 
Cornus species widely distribute in the temperate and sub
tropical regions of the Northern Hemisphere, with rare occur
rences in tropical areas. The taxonomic composition, ranking, 
and relationships of subgroups within the genus have been 

Figure 2. The complete plastome map of C. hongkongensis, which was generated by CPGview. LSC, SSC, and IRs (IRa and IRb) with their length are represented on 
the first circle. The second circle showed the GC ratio in dark gray. The outermost circle indicates gene name color-coded by their functional classification. The tran
scription directions for the inner and outer genes are clockwise and anticlockwise, respectively. The functional classification of the genes is shown in the left bottom 
corner. The optional codon usage bias is displayed in the parenthesis after the gene name.
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Figure 3. A maximum-likelihood (ML) based phylogenetic tree of C. hongkongensis and related Cornus species. The cladogram was shown in the lower left corner. The 
scale bar represents the number of nucleotide substitutions per site. The numbers on each node indicated the ML bootstrap support with 1000 replicates. The subgenus 
is labeled next to the species name. The bold font indicates that genus Cornus was classified into four major clades: the big-bracted (BB) group, the dwarf dogwoods 
(DW), the cornelian cherries (CC), and the blue- or white-fruited group (BW). The following sequences were used: Alangium alpinum (MG525003.1) (Fu et al. 2017), 
Alangium chinense subsp. strigosum (OR197702.1) (Yang et al. 2022), Cornus peruviana (NC_044825.1) (Fu et al. 2019), Cornus oblonga (NC_044811.1) (Fu et al. 2019), 
Cornus alternifolia (NC_044812.1) (Fu et al. 2019), Cornus controversa (NC_030260.1), Cornus wilsoniana (NC_063837.1), Cornus bretschneideri (NC_060800.1) (Li et al. 
2020), Cornus walteri (NC_058318.1), Cornus sanguinea (NC_044817.1) (Fu et al. 2019), Cornus alba (NC_059720.1) (Yuan et al. 2021), Cornus macrophylla (NC_044810.1) 
(Fu et al. 2019), Cornus sessilis (NC_044814.1) (Fu et al. 2019), Cornus chinensis (NC_044815.1) (Fu et al. 2019), Cornus eydeana (NC_044816.1) (Fu et al. 2019), Cornus offi
cinalis (NC_042746.1), Cornus suecica (NC_044823.1) (Fu et al. 2019), Cornus unalaschkensis (NC_044824.1) (Fu et al. 2019), Cornus canadensis (NC_044822.1) (Fu et al. 
2019), Cornus disciflora (NC_044819.1) (Fu et al. 2019), Cornus florida (NC_044820.1) (Fu et al. 2019), Cornus florida var. urbiniana (MN380671.1) (Fu et al. 2019), Cornus 
sunhangii (NC_060994.1) (Lv et al. 2019), Cornus capitata (MG524998.1) (Fu et al. 2017), Cornus hongkongensis (OR545260.1), Cornus elliptica (NC_056267.1) (Lu et al. 
2021), Cornus kousa (NC_044818.1) (Fu et al. 2019), Cornus hongkongensis subsp. Gigantea (OR597583.1), Cornus hongkongensis subsp. Tonkinensis (OR597581.1), Cornus 
hongkongensis subsp. Elegans (OR597582.1), Cornus hongkongensis subsp. Ferruginea (OR597579.1), and Cornus hongkongensis subsp. Melanotricha (OR597580.1).

Figure 4. Results of genetic distance analysis of intergenic spacer regions in Cornus species. The top 30 IGS of K2p distances are shown. The X-axis indicates the 
name of IGS regions. And the Y-axis shows the range of K2p distances between different pairs of species. The diamond shows the average K2p distance.
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subjects of contention for nearly a century. The phylogenetic 
analysis utilizing complete plastome sequences in this study 
supported the monophyly of most subgenera, except subg. 
Kraniopsis and subg. Cornus. C. peruviana belonging to 
Subg. Kraniopsis was clustered with C. oblonga belonging to 
Subg. Yinquania. Additionally, subg. Sinocornus were nested 
within subg. Cornus. This finding is consistent with previous 
studies, which integrated morphology, matK, ITS, and previously 
published rbcL and 26S rDNA sequences (Xiang et al. 2006).

Xiang (1987) recognized six subspecies within C. hongkon
gensis, including subsp. gigantea, subsp. tonkinensis, subsp. ele
gans, subsp. ferruginea, subsp. melanotricha, and subsp. 
hongkongensis based on their habits and buds. Subsp. C. hon
gkongensis is much controversial owing to the diversity of 
evaluation of characters. Our phylogenetic analysis based on 
the whole cp genomes showed that six subspecies within C. 
hongkongensis were not clustered together. As a result, a rea
sonable system reflecting the infra-subspecies relationships is 
still lacking and further data will be needed to reevaluate the 
relationship of subspecies within C. hongkongensis. The result 
enriches the genomic data for the genus Cornus, which will 
contribute to phylogenetic and evolutionary studies in the 
future. In this study, we found that the K2p values were par
ticularly high for the three IGS regions: rps19-rpl22, ccsA- 
ndhD, and atpH-atpI. These IGS regions can be used to distin
guish Cornus species.
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