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Abstract: Acetylcholinesterase (AChE) inhibition is a key element in enhancing cholinergic trans-
mission and subsequently relieving major symptoms of several neurological and neuromuscular
disorders. Here, the inhibitory potential of geraniol and its mechanism of inhibition against AChE
were elucidated in vitro and validated via an in silico study. Our in vitro enzyme inhibition kinetics
results show that at increasing concentrations of geraniol and substrate, Vmax did not change sig-
nificantly, but Km increased, which indicates that geraniol is a competitive inhibitor against AChE
with an IC5p value 98.06 &= 3.92 uM. All the parameters of the ADME study revealed that geran-
iol is an acceptable drug candidate. A docking study showed that the binding energy of geraniol
(—5.6 kcal mol 1) was lower than that of acetylcholine (—4.1 kcal mol 1) with AChE, which exhibited
around a 12.58-fold higher binding affinity of geraniol. Furthermore, molecular dynamics simulation
revealed that the RMSD of AChE alone or in complex with geraniol fluctuated within acceptable
limits throughout the simulation. The mean RMSF value of the complex ensures that the overall
conformation of the protein remains conserved. The average values of Rg, MolSA, SASA, and PSA
of the complex were 3.16 A,204.78,9.13, and 51.58 A2, respectively. We found that the total SSE of
AChE in the complex was 38.84% (o-helix: 26.57% and (-sheets: 12.27%) and remained consistent
throughout the simulation. These findings suggest that geraniol remained inside the binding cavity
of AChE in a stable conformation. Further in vivo investigation is required to fully characterize the
pharmacokinetic properties, optimization of dose administration, and efficacy of this plant-based
natural compound.

Keywords: neurological disorders; acetylcholinesterase; geraniol; enzyme inhibition kinetics; molec-
ular docking; molecular dynamics simulation
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1. Introduction

The cholinergic network affects various cellular functions through neurotransmission
via acetylcholine (ACh), a neurotransmitter released from presynaptic neurons into the
synaptic cleft, which binds to acetylcholine receptors (AChR) on the post-synaptic mem-
brane, relaying the signal from the nerve or hydrolyzed by acetylcholinesterase (AChE) [1].
A significant deficit in cholinergic transmission may result in various illnesses such as
cognitive decline through deterioration of cholinergic neuron-rich regions and decrease
in the ACh level, which is believed to be associated with memory loss, agitation, and
apathy in Alzheimer disease (AD) [2]; gait dysfunction, mainly because of an imbalance
between striatal ACh and dopamine as in Parkinson disease (PD) [3]; and fatigable muscle
weakness due to antibody-mediated blockade of AChR at the neuromuscular junction,
which abolishes the naturally occurring ‘safety factor” of synaptic transmission during
myasthenia gravis (MG) [4].

Moreover, cholinesterase enzymes such as AChE further decreased the concentration
of ACh by hydrolyzing it [1]. Therefore, cholinesterase inhibitors are used to maintain
acetylcholine levels in synapses and enhance cholinergic transmission [1,5]. This excess of
acetylcholine in synapses leads to increased stimulation of muscarinic and nicotinic recep-
tors, which provide therapeutic relief for memory deficits in AD [6,7], muscle weakness in
MG [8,9], and gait dysfunction in PD [10].

The approved medications (cholinesterase inhibitors) for neurodegenerative disorders
have several side effects such as nausea, vomiting, loss of appetite, headache, constipation,
confusion, and dizziness [11,12]. Subsequently, there is significant interest in the improve-
ment of effective treatment to reduce the symptoms of disease and stop the degeneration
of neurons that cause the disease.

Most natural products are promising for the effective treatment of various ailments,
and our team previously reported their antioxidant, anti-inflammatory, antidiabetic, hy-
polipidemic, and neuroprotective properties by inhibiting key regulatory enzyme activ-
ity [13-22]. In this regard, the focus was on natural compounds. Since nature has an endless
resource of bioactive compounds, it could be economical and safe to obtain bioactive moi-
eties to produce novel agents against cholinesterase activity [15,21,23,24].

Moreover, essential oils of plant extracts are a good source of bioactive compounds
such as geraniol (3,7-dimethylocta-trans-2,6-dien-1-ol), which has the chemical formula
C10H180 and is well known for its antioxidative [25-27], anti-inflammatory, and neuro-
protective properties [27-30]. Oral administration of geraniol can also mitigate oxidative
stress and neurotoxicity [31], and the products containing this compound were analyzed
as an inhibitors of key enzymes linked to neurological activity [32-35]. Geraniol was also
reported to inhibit the growth of several human lung and skin cancer cells and was found
to be safe up to 1000 mg/kg body weight in a toxicity study [36].

It was well established that cheminformatics and in vitro enzyme inhibition assays
are the initial approaches for the binding pattern elucidation and optimization of bioactive
compounds against target-based drug discovery [16,18,37-40]. Based on the above infor-
mation, it was hypothesized that the beneficial effect of geraniol compound extended to
cholinesterase inhibition through a complete set of approaches including in vitro enzyme
inhibition assay, enzyme kinetics studies, molecular docking, and molecular dynamic (MD)
simulation studies.

2. Materials and Methods
2.1. Chemicals

Chemicals such as DTNB (5,5-dithio-bis-(2-nitrobenzoic acid), acetylcholine iodide
(Achl), 9-Amino-1,2,3 4-tetrahydroacridine hydrochloride (tacrine hydrochloride) and the
lyophilized form of AChE from Electrophorus electricus (electric eel) were procured from
Sigma-Aldrich, USA. Geraniol was also purchased from Sigma-Aldrich, UK. All chemicals
were of analytical grade.
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2.2. Hardware and Software Used

The three-dimensional co-ordinates of the target enzyme (AChE) were downloaded
from the PDB database (http:/ /www.rcsb.org, accessed on 3 October 2021). Molecular dock-
ing was performed through PyRx-Python prescription 0.8 [41] using Autodock-Vina [42]
with the genetic algorithm (Lamarckian) as a scoring function. Molecular interactions for
the best scoring ligand were individually explored using the Discovery Studio 2020 [43]
(BIOVIA, Dassault Systemes) software package. Molecular dynamics was performed on an
Intel Xenon workstation E3-1245-8C, 3.50 GHz processor with 28 GB RAM. The workstation
was powered by an NVIDIA Quadro P5000 GPU card. Desmond (Shchrodinger-2020, LLC,
New York, NY, USA) was employed to conduct molecular dynamics simulation.

2.3. Ligand Preparation

The ligands geraniol (ID: 637566) and acetylcholine (ID: 187) (substrate as reference)
were downloaded from the server of the PubChem database in sdf format (Figure 1) and
converted to Autodock suitable pdbqt format along with density function theory (DFT)
optimization of minimum energy conformer using the built-in function in PyRx. The
energies of both the ligands were minimized in PyRx using universal force field (UFF).

H oy (B) () H

Figure 1. Two-dimensional structure of geraniol (A), acetylcholine (B), and tacrine (C).

2.4. Protein Target Preparation

The crystal structure of native acetylcholinesterase (AChE) derived from Torpedo
californica (PDB Id: 1ACJ) was downloaded from the PDB database (https:/ /www.rcsb.org,
accessed on 3 October 2021) [44]. The target protein was prepared for molecular docking by
removing hetero atoms such as water molecules and native ligand, adding polar hydrogens,
and calculating the Gasteiger charges to the protein structure and then the pdb file of protein
was converted to docking suitable pdbqt format. The built-in tool in PyRx was used for
geometry optimization and energy minimization of the protein structure. Consequently,
the targeted protein was exploited for the binding pockets from the crystal structure and
was further assessed using UniProt.

2.5. Acetylcholinesterase Inhibition Assay

A colorimetric assay for AChE enzyme was performed as described by Ellman et al. [45]
with some modifications [21]. In brief, 1 milliliter of reaction mixture was prepared by mix-
ing, 100 pL of 10 mM DTNB (1 mM/reaction), 100 uL of 15 mM AChI (1.5 mM/reaction),
700 uL of 50 mM Tris HC1 (pH 8.0) (35 mM/reaction), and 100 pL of varied concentra-
tions of inhibitor such as geraniol and tacrine (25-200 pg/mL), which was equivalent to
2.5-20 pg/reaction (16.2, 32.4, 64.8, 97.2, and 129.7 uM of geraniol, whereas 12.6, 25.2, 50.4,
75.65, 100.8 uM of tacrine), into a 2 mL cuvette. Acetylcholine iodide (AChI) was used
as substrate of AChE enzyme. The cuvette that consists of DTNB, buffer, and substrate
was used as a ‘blank’, while another cuvette containing 25 pL of AChE enzyme solution
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0.28 UmL~! by substituting the equal volume of buffer was used for the analysis of product
(nitro benzoate) formation. We used the standard drug tacrine for the comparative analysis
(Figure 1). At a wavelength of 405 nm, this reaction was observed for 20 min after every
1 min interval in an Eppendorf BioSpectrometer (equipped with thermostatically controlled
cell holder). During the reaction, AChE hydrolyses the acetylcholine to produce thiocholine
and acetate. The resulting thiocholine, in turn reduces the dithiobis-nitrobenzoic acid
(DTNB), liberating nitro benzoate (yellow), which gets absorbed at 405 nm [45]. The activ-
ity of AChE enzyme in the presence and absence of inhibitors was analyzed by measuring
the product (nitro benzoate), which was formed after the reduction of DTNB by thiocholine.
The amount of thiocholine produced in the reaction has nothing to do with the enzymatic
active pocket once it is released from the same. Thus, the liberated thiocholine cannot
interfere with further enzymatic activity, and the color produced after the reaction between
thiocholine and DTNB is thought to be the direct indication of the enzymatic activity. AChE
activity is expressed in micromolar of AChI hydrolyzed per minute (U/min). The values
that used for the calculation were the average of three replicates.
The percentage inhibition was calculated as described below:

% Inhibition = (A Absorbance control) — (A Absorbance drug) x 100/(A Absorbance control)

Furthermore, the ICs) value represents the minimum concentration of the inhibitor
that inhibits the 50% of AChE activity and was calculated using non-linear regression
analysis interpolation through the GraphPad tool using the following model (equation):

Fifty = (Top + Baseline)/2

Y = Bottom + (Top-Bottom) /(1 + 10*((LogAbsoluteIC50-X)* HillSlope + log((Top-Bottom)/ (Fifty-Bottom) — 1)))

2.6. Spectrometric Study of the Enzyme Kinetic Assay

The varied concentrations of substrate, acetylcholine-iodide or AChI (i.e., 0.1875, 0.375,
0.75, and 1.5 mM), were used for the analysis of kinetic study of AChE activity and its
inhibition by varied concentration (2.5-20 pug/mL of reaction) of tacrine as reference drug
(12.6, 25.2, 50.4, 75.65, 100.8 uM) and geraniol (16.2, 32.4, 64.8, 97.2, and 129.7 uM) at
room temperature. Kinetic analysis of acetylcholine iodide hydrolyzed by AChE in the
absence and presence of inhibitors was observed spectrophotometrically at a wavelength
of 405 nm for a total of 20 min, and the absorbance values were recorded at 1 min intervals.
Lineweaver Burk and Dixon plots were used to determine the kinetic parameters, such as
Ki, Vmax, and Km values [46,47].

2.7. Calculation of Physicochemical, Drug-Likeness, and Pharmacokinetics Properties

Geraniol and tacrine were assessed for their physicochemical properties, drug-likeness,
and pharmacokinetics using the SwissADME web-based tool (http:/ /www.swissadme.ch,
accessed on 8 July2021). The tool was used to assess the molecular mass, number of hydro-
gen bond acceptors and donors, number of rotatable bonds, value of cLogP, topological
polar surface area (TPSA), violation of Lipinski’s rule, human gastrointestinal absorption
(HIA), blood-brain barrier (BBB) permeation, and fraction of sp® carbon atoms (Fsp?), a
key factor for drug-likeness [48].

2.8. Molecular Docking

Molecular docking was performed using the PyRx-Python 0.8 virtual screening tool
coupled with AutoDock 4.2, employing the Lamarckian genetic algorithm method [41,42].
All the ligands were docked with the target enzyme at the two binding sites—namely, the
catalytic active site (CAS) and the peripheral anionic site (PAS). The grid dimensions for
AChE enzyme were selected by locating the residue involved in CAS (Ser200, Glu327, and
His440) and PAS (Tyr70, Asp72, Tyr121, Trp279, and Tyr334) using the PyRx-Python 0.8 tool,
and set to 16.957 x 21.127 x 21.685 A centered at 25.140 x 19.074 x 13.699 A for CAS and
22.391 x 19.559 x 21.291 A centered at 36.658 x 23.342 x 11.229 A for PAS [49,50]. The
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results were clustered according to the root-mean-square deviation (RMSD) criterion. The
docking was performed with the ‘exhaustiveness’ set to 8. All other docking parameters
were set to the default values of the software. The binding affinity (Kd) of ligands for
the target enzyme was calculated from the binding energy (AG) using the following
relation [51]:

AG = —RT InKy

where R and T were the universal gas constant and temperature, respectively.

Ligands with minimum binding energy were selected for further analysis. The best
pose of each ‘protein-ligand complex’ was generated and analyzed using Discovery Studio
2020 (BIOVIA).

2.9. Molecular Dynamics (MD) Simulation

MD simulation of AChE and geraniol complex was performed using Desmond
(Schrodinger-2020, LLC, NY, USA), as described earlier [38,52]. Briefly, the protein-ligand
complex was placed at the center of an orthorhombic box, maintaining a distance of at least
10 A from the sides of the box. TIP3P water molecules were added to solvate the simulation
box, and proper counterions were added to neutralize the system. The physiological condi-
tions were mimicked by the addition of 150 mM NaCl. The energy of the whole system
was minimized with 2000 iterations and convergence criteria of 1 kcal/mol/A, using the
OPLS3e forcefield. The production MD simulation run was performed for 100 ns employ-
ing NPT ensemble at 298 K and 1 bar. Temperature and pressure were maintained with the
help of Nose-Hoover chain thermostat and Matrtyna—Tobias—Klein barostat [53,54]. A 2 fs
time step was fixed and at every 10 ps, and energies and structures were documented in
the trajectory. Parameters such as root-mean-square deviation (RMSD), root-mean-square
fluctuation (RMSF), radius of gyration (Rg), molecular surface area (MolSA), solvent ac-
cessible surface area (SASA), polar surface area (PSA), secondary structure analysis, total
number of contacts formed between protein and ligand, and protein-ligand interactions
were analyzed to establish the stability of the protein-ligand complexes.

3. Results and Discussion
3.1. Acetylcholinesterase Enzyme Inhibition Activity

In this study, the AChE inhibitory activity of the tacrine and geraniol, expressed as
ICsq values, calculated from the non-linear regression equations obtained from the activity
of samples at different concentrations, was found to increase in a dose-dependent manner
(Figure 2).

(A) Tacrine—AChE (B) Geraniol-AChE

04 0.4 Absolute ICsp = 98.06 uM

Absolute ICs = 30.84 uM (95% CI = 94.72 to 103.81 pM)
(95% Cl = 25.72 to 35.66 uM) Log Absolute ICgo = 1.992
Log Absolute IC59 = 1.489

0.3 R%=0.9925

o
w

R? = 0.9801

0.2

Absorbance
Absorbance
o
N

o
-

0.1

o
=)

0.0
0.0 0.5 1.0 1.5 2.0 2.5
Log [Tacrine]

0.0 0.5 1.0 1.5 2.0 25
Log [Geraniol]

Figure 2. Influence of the (A) tacrine and (B) geraniol concentrations on acetylcholinesterase inhibition.

Our results show the inhibitory potential of tacrine and geraniol in terms of ICsy value
30.84 £ 1.6 uM and 98.06 £ 3.9 uM of reaction mixture, respectively. Our results for geran-
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iol are in contradiction with previous reports such as Lopez and Pascual-Villalobos [24],
who reported that in the presence of low concentrations of geraniol there is a moderate
increase in AChE activity but a notable decrease at higher concentrations, and geraniol
showed an ICs value: 15.0 Mm. However, our results show dose-dependent inhibition
of AChE enzyme activity with a lower ICsg value. This contradiction with Lopez and
Pascual-Villalobos [24] may be because they dissolved the selected monoterpenoids in
absolute C;HsOH (purity = 100%) for the assessment of their in vitro AChE inhibitory
activity and used 1000 pL of monoterpenoids (dissolved in 100% ethanol) against a com-
paratively very smaller volume (100 pL) of enzyme (AChE). Based on previous knowledge
regarding the deleterious impact of C;HsOH on the 3D conformation as well as functioning,
exposure of AChE in their study to absolute ethanol might have resulted in complete loss
of AChE 3D conformation as well as functionality. Under such circumstances, the effect of
monoterpenoids including geraniol on AChE activity could be a false observation, as there
is a great possibility of denaturation of AChE when exposed to absolute ethanol.

It is worth mentioning that tacrine in 1993 received FDA approval as the first approved
drug for Alzheimer’s disease and acts as an AChE inhibitor; however, due to its various
side effects, such as hepatotoxicity, it was discontinued in 2013 for disease treatment [55,56].
Similarly, the other approved medications have several side effects, and due to economic
and safety of natural products, there is a continuous need to search for bioactive potential
of the natural products or compounds derived from them. Prasad and Muralidhara [57]
found that co-administration of geraniol with curcumin has an inhibitory effect on AChE
activity. Previous reports suggested that natural plant-based products, such as essential oils
containing geraniol, showed neuroprotective effects through the inhibition of AChE [24,32].
With regard to these earlier reports and our enzyme inhibition results, which suggest the
bioactive potential of geraniol, we further investigated the mode of inhibition of AChE
by geraniol.

3.2. Enzyme Inhibition Kinetics

Our enzyme kinetics results were analyzed through a Lineweaver-Burk double recip-
rocal plot thatis 1/V vs. 1/[S], where “V” is denoted as the velocity (change in absorbance),
which represents the enzyme activity, and “[S]” is denoted for substate concentration
(Figure 3A). This linear regression curve plot gives the idea for the variations in Km
(Michaelis constant) and Vmax (maximum enzyme activity). All trendlines of different
concentrations of geraniol at various concentrations of the substrate intersect at the same lo-
cation on the Y-axis (Y-intercept = 1/Vmax), which showed a similar Vmax but intersected
at different locations on the X-axis (X-intercept = —1/Km) of the plot, showing different
Km values. We further investigated the Ki (inhibition constant) through a Dixon plot
(Figure 3B) and obtained the value of Ki = 54 uM. The calculated values of Km and Vmax
are shown in Figure 3C, and it is evident that in the presence of different concentrations of
geraniol, Km increased significantly (R? = 0.92) with increasing concentrations of geraniol,
and Vmax did not change significantly (R? = 0.42), which explained that geraniol is a
competitive inhibitor of AChE and binds to the active site of the enzyme. Similar findings
were reported earlier by Lopez and Pascual-Villalobos [24], who found that geraniol acts
as a reversible competitive inhibitor of AChE mostly at the hydrophobic active site of the
enzyme. Another study in 2013 showed the inhibition of AChE by 10 natural compounds,
including geraniol, through in vitro and in silico models, in which they only represented
the ICs( values of compounds and molecular docking analysis [33].

Moreover, we also investigated the AChE enzyme inhibition kinetics of tacrine through
a Lineweaver-Burk plot and found that all the trendlines of different concentrations of
tacrine at various concentrations of the substrate intersected at different locations on the Y-
axis (Y-intercept = 1/Vmax), which showed the varying Vmax, but intersected at the same
locations on the X-axis (X-intercept = —1/Km) of the plot, showing similar Km (Figure 4A).
We further investigated the Ki (inhibition constant) through a Dixon plot (Figure 4B) and
obtained the value of Ki = 22.5 uM. The calculated values of Km and Vmax are shown in
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Figure 4C, and it is evident that in the presence of different concentrations of tacrine, Km
did not change significantly (R? = 0.22) with an increase in the concentrations of tacrine, and
Vmax decreased significantly (R? = 0.81), which indicated that tacrine is a non-competitive
inhibitor of AChE and binds to the non-catalytic site of the enzyme. Our results are in
agreement with a previous report where tacrine (9-amino-1,2,3,4-tetrahydroacridine) was
reported as a reversible non-competitive inhibitor against AChE enzyme [58,59], which
was also reported as mixed type inhibitor with a strong non-competitive component [60]
and contradicted Berman and Leonard [61], who reported that tacrine causes linear mixed
inhibition of AChE hydrolysis of acetylthiocholine, a cationic substrate.

(A) LINEWEAVER BURK PLOT (GERANIOL)
70
#No inhibitor ;
60 162 M e E
32,4 uvl -
64.8 M -
=0 w872
- - ®1297uM - _—k
= » -

(B) DIXON PLOT - GERANIOL

70

-

#1/[S1]= 0.067 mM-1

H

60
B 1/[S2)=0.133 mM-1
50

A1/[53)= 0533 mM-1 T
40 -
> i
k4
— 30 i
20 B
—— L I
10 . L]
T 2,_i7_4_7ﬂ_ I
80 60 40 20 0 20 40 &0 80 i00 20 40
-10
[ITum
(C) Km & Vmax - GERANIOL
45
. + Km v=00216x +10274 3
® Vmax R?=0.9204 _—
] —F
£ 2 3

y=-0.0002x + 0.3819
R?=0.4241
a = RE— ] B —n

0 10 20 30 40 S0 60 70 80 90 100 110 120 130
Il um

Figure 3. Kinetic analysis results for target molecule geraniol. (A) Lineweaver-Burk plots for the
inhibition of AChE in the presence of compound geraniol at varying concentrations (0, 16.2, 32.4,
64.8,97.2, and 129.7 uM, respectively) and substrate at varying concentrations (0.187, 0.375, 0.75, and
1.5 mM, respectively); (B) Dixon plot; and (C) variations in Km and Vmax at different concentrations
of geraniol.



Cells 2021, 10, 3533

8 of 18

LINEWEAVER BURK PLOT (TACRINE)

1/5] mm1

DIXON PLOT-TACRINE

+1/[51]=0.67 mM-1

a0 /15

1/[s
1/(53]=5

(C) Km & Vmax-TACRINE

VALUES

(1] um

Figure 4. Kinetic analysis results for reference molecule tacrine. (A) Lineweaver-Burk plots for the
inhibition of AChE in the presence of compound tacrine; concentrations of tacrine were 0, 2.5, 5,
10, and 20 pg/mL. Substrate (acetylcholine) concentrations were 0.187, 0.375, 0.75, and 1.5 mM;
(B) Dixon plot; and (C) variations in Km and Vmax at different concentrations of tacrine.

3.3. Physicochemical Properties, Drug-Likeness, and Pharmacokinetics Prediction of Geraniol

Physicochemical properties, drug-likeness, and pharmacokinetics of geraniol and
tacrine were evaluated using the SwissADME tool [62]. Both ligands were found to be
suitable for blood-brain barrier (BBB) permeation, exhibited less than 500 g/mol molecular
mass, showed high gastrointestinal absorption, and showed zero violation of Lipinski’s
rule. The results show that geraniol has an acceptable range of physicochemical properties,
drug-likeness, and pharmacokinetics (Table 1), which confirmed its suitability as a drug
candidate, and it was selected for molecular docking and molecular dynamics simulation
analysis. A comparison was also made between the natural compounds geraniol and
tacrine, which showed that geraniol almost follows the ADME rules, as does tacrine. The
potency of a molecule that penetrates the BBB and can easily act on receptors in the central
nervous system is commonly evaluated through the topological polar surface area (TPSA).
An acceptable PSA value to pass the BBB is less than 90 A squared [63]. Our results show
that geraniol had a lower TPSA (20.23 A?) than tacrine (38.91 A2) and that both can easily
cross the BBB.
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Table 1. SwissADME analysis report for geraniol and tacrine.

ADME Study of Molecule Geraniol Tacrine
Canonical SMILES 8(%%:)% cec= CNCEEZCCCCCZ“CM
Formula C10H180 C13H14N2
MW 154.25 198.26
#Heavy atoms 11 15
#Aromatic heavy atoms 0 10
Physico-chemical Fraction Csp3 0.6 0.31
properties #Rotatable bonds 4 0
#H-bond acceptors 1 1
#H-bond donors 1 1
Molar Refractivity 50.4 63.58
TPSA 20.23 38.91
iLOGP 2.52 2.09
XLOGP3 3.56 2.71
Lipophilicity WLOGP 2.67 2.7
MLOGP 2.59 2.33
Silicos-IT Log P 2.35 3.12
Consensus Log P 2.74 2.59
ESOL Class Soluble Soluble
Water Solubility Ali Class Soluble Soluble
Silicos-IT class Soluble Moderately soluble
GI absorption High High
BBB permeant Yes Yes
Pgp substrate No Yes
CYP1A2 inhibitor No Yes
Pharmacokinetics  CYP2C19 inhibitor No No
CYP2C9 inhibitor No No
CYP2D6 inhibitor No No
CYP3A4 inhibitor No Yes
log Kp (cm/s) —4.71 —-5.59
Lipinski #violations 0 0
Ghose #violations 1 0
Veber #violations 0 0
Drug-likeness Egan #violations 0 0
Muegge #violations 2 1
Bioavailability Score 0.55 0.55
PAINS #alerts 0 0
?ﬁiﬁ;ﬁ; Brenk #alerts 1 0
Leadlikeness 5 1
#violations
Synthetic Accessibility ~ 2.58 2.08

# is denoted for number of.
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3.4. Molecular Docking Study Confirms AChE Inhibition through Geraniol

In the present study, based on our in vitro results, it is well established that tacrine
behaves as a non-competitive inhibitor and that geraniol showed competitive inhibition
against AChE and binds to the catalytic site residues, which are mainly used for binding
of the substrate (acetylcholine). Therefore, an analysis of molecular docking between
AChE-geraniol and AChE-acetylcholine was performed, which revealed that both ligands
were bound to the central active site cavity of AChE (Figure 5). AChE inhibitors bind
to its catalytic active site (CAS), characterized by the presence of a long, narrow, and
hydrophobic gorge, harboring a catalytic triad of Ser200, Glu327, and His440 [49]. Trp84
and Phe330 play a significant role in stabilizing the transition state during the catalytic
reaction. Furthermore, it has been recently demonstrated that a secondary noncholinergic
function of AChE, associated with the peripheral anionic site (PAS), is involved in the
pathogenesis of AD. PAS is formed by aromatic amino acid residues such as Tyr70, Asp72,
Tyr121, Trp279, and Tyr334 lining the rim of the gorge [50]. Through PAS, AChE co-localizes
with A peptide deposits in patients with AD and forms a stable A—AChE complex, which
in turn promotes fibrillogenesis and aggregation [64,65]. Thus, these observations suggest
that both CAS and PAS of AChE can be targeted as therapeutic interventions for AD.

(A) (B) s
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Figure 5. Interaction of target protein, AChE with geraniol and their respective control ligand. (A) Su-
perimposed image of geraniol and acetylcholine in CAS and PAS locations of AChE; (B) interactions
between CAS residues of AChE and acetylcholine; (C) interactions between CAS residues of AChE
and geraniol; (D) interactions between PAS residues of AChE and geraniol.

The binding pose of geraniol at the active site of AChE was further compared with the
binding mode of a control ligand, that is acetylcholine (Table 2). It was observed that both
geraniol and acetylcholine occupied the same site located in the CAS cavity of AChE, with
an RMSD of 0.063 A, and only geraniol bound in the PAS cavity (Figure 5A). Conversely,
at the catalytic active site (CAS), the AChE and acetylcholine complex was stabilized
by an attractive charge between Lig:N-Glul99:0E1 and four carbon hydrogen bonds
between His440:CD2-Lig:O, Lig:C-Glu199:0E1, Lig:C-Glu199:0E1 and Lig:C-Ser200:0G
atoms. Moreover, five hydrophobic interactions were observed. Two Pi-Sigma interactions
between Lig:C-Trp84, one Pi-Sigma interaction between Lig:C-Phe330, and two Pi-Cation
interactions between Lig:N-Trp84 were observed (Figure 5B). In addition, several amino
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acid residues, such as Gly117, Gly118, Tyr130, Ile439, Gly441, and Tyr442 formed van der
Waals’ interactions. No binding of acetylcholine was observed at the PAS. The AChE-
geraniol complex at CAS was stabilized by two conventional hydrogen bonds between
His440:CD2-Lig:O and Lig:C-His440:0 atoms. Eight hydrophobic interactions were also
observed. One Pi-Sigma interaction between Lig:C-Phe330, two Pi-alkyl interactions
between Trp84 and Lig:C, two Pi-alkyl interactions between Phe330-Lig:C, two Pi-alkyl
interactions between Phe331 and Lig:C, and one Pi-alkyl interaction between His440 and
Lig:C, and seven van der Waals’ interactions (Gly118, Tyr121, Glul99, Ser200, Phe290,
Gly441, Tyr442, and Ile444) further stabilized the AChE-geraniol complex (Figure 5C). The
AChE-geraniol complex in PAS was stabilized by eight hydrophobic Pi-alkyl interactions.
One interaction between Tyr70-Lig:C, two between Tyr121-Lig:C, four between Trp279-
Lig:C, and one between Phe290-Lig:C was observed. Four van der Waals’ interactions
(I1e275, Asp276, Val277, and Ser291) further stabilized the AChE-geraniol complex at the
peripheral active site (Figure 5D).

Table 2. Molecular docking parameters for the interaction of acetylcholinesterase (AChE) with geraniol and its respective

control ligand (acetylcholine) at the catalytic active site (CAS) and peripheral anionic site (PAS).

Donor-Acceptor Pair ~ Distance (A) ?;tt:f;?i’o(;f Type of Interaction Dolilc(:;llgngilff &Y Aff]il:td; Illg[—l
Acetylcholine at catalytic active site (CAS) *
LIG:N-GLU199:0E1 4.09 Electrostatic Attractive Charge
HIS440:CD2-LIG:O 3.77 Hydrogen Bond Carbon Hydrogen Bond
LIG:C-GLU199:0E1 3.62 Hydrogen Bond Carbon Hydrogen Bond
LIG:C-GLU199:0OE1 3.67 Hydrogen Bond Carbon Hydrogen Bond
LIG:C-SER200:0G 3.65 Hydrogen Bond Carbon Hydrogen Bond
LIG:N-TRP84 4.88 Electrostatic Pi-Cation 4l 102107
LIG:N-TRP84 4.24 Electrostatic Pi-Cation
LIG:C-TRP84 3.8 Hydrophobic Pi-Sigma
LIG:C-TRP84 3.81 Hydrophobic Pi-Sigma
LIG:C-PHE330 3.58 Hydrophobic Pi-Sigma
Geraniol at catalytic active site (CAS)
HIS440:CD2-LIG:O 3.54 Hydrogen Bond Carbon Hydrogen Bond
LIG:C-HIS440:0 3.44 Hydrogen Bond Carbon Hydrogen Bond
LIG:C-PHE330 3.93 Hydrophobic Pi-Sigma
TRP84-LIG:C 4.05 Hydrophobic Pi-Alkyl
TRP84-LIG:C 4.66 Hydrophobic Pi-Alkyl
PHE330-LIG:C 5.23 Hydrophobic Pi-Alkyl >0 128 x 107
PHE330-LIG:C 5.39 Hydrophobic Pi-Alkyl
PHE331-LIG:C 4.77 Hydrophobic Pi-Alkyl
PHE331-LIG:C 4.65 Hydrophobic Pi-Alkyl

HIS440-LIG:C

512 Hydrophobic Pi-Alkyl
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Table 2. Cont.

Donor-Acceptor Pair  Distance (A) ?;::faocl’?i,o(: Type of Interaction Doli(:?lgng?flr 8y A ff]?rl:td); 1;\%71
Geraniol at peripheral anionic site (PAS)

TYR70-LIG:C 4.1 Hydrophobic Pi-Alkyl

TYR121-LIG:C 4.01 Hydrophobic Pi-Alkyl

TYR121-LIG:C 4.63 Hydrophobic Pi-Alkyl

TRP279-LIG:C 4.99 Hydrophobic Pi-Alkyl

TRP279-LIG:C 5.03 Hydrophobic Pi-Alkyl 08 9.72 X 10°
TRP279-LIG:C 4.52 Hydrophobic Pi-Alkyl

TRP279-LIG:C 4.56 Hydrophobic Pi-Alkyl

PHE290-LIG:C 5.05 Hydrophobic Pi-Alkyl

* No binding of acetylcholine was observed at the peripheral anionic site (PAS).

Interestingly, the amino acid residues of AChE commonly engaged in the interaction
with geraniol as well as acetylcholine in the CAS cavity including Trp84, Gly118, Glu199,
Ser200, Phe330, His440, Gly441, and Tyr442, which show that geraniol interacted with all
the specific residues of acetylcholine, except Tyr130 and Ile439 and that geraniol interacted
with four more residues: Tyr121, Phe290, Phe331, and Ile444. Our molecular docking results
confirmed that geraniol is a competitive inhibitor of the AChE enzyme. Moreover, the
docking energy and the corresponding binding affinity were estimated to be —4.1 kcal mol
and 1.02 x 103 M1, respectively, for the AChE-acetylcholine interaction,—5.6 kcal mol~1
and 1.28 x 10* M~!, respectively, for the AChE-geraniol interaction at CAS cavity, and
—6.8 kcal mol ! and 9.72 x 10* M1, respectively, for the AChE-geraniol interaction at the
PAS cavity. We found that the binding affinity of geraniol for AChE was around 12.58-fold
higher than that of the control ligand, acetylcholine, in the CAS cavity.

Our results are in agreement with a previous report [33], where geraniol exhibited
a binding energy of —5.22 kcal mol~!, indicating that most of the terpenoids have high
affinity for catalytic site residues, such as Asp74, Trp86, Gly120, Gly121, Ser125, Ser203,
Phe295, Phe297, Tyr337, Phe338, His447, and Gly448. However, the report did not explain
the residues that specifically interacted with geraniol. Moreover, we also analyzed the
binding of non-hydrolysable structural analogues (4,4-Dihydroxy-N,N,N-trimethylpentan-
l-aminium, and N,N,N-trimethyl-4-oxopentan-1-aminium) in the active site of AChE at the
catalytic site and at the peripheral anionic site, as previously reported by Colletier et al. [66],
and the results are presented in Supplementary Materials (Figures S1 and S2 and Table S1).

3.5. Analysis of Molecular Dynamics Simulation
3.5.1. Root-Mean-Square Deviation (RMSD) Analysis

The dynamic nature of the interaction and the stability of the AChE and geraniol
complex was assessed by molecular dynamics simulation under physiological conditions.
The initial frame of the AChE-geraniol complex was subjected to molecular dynamics for
100 ns, and the results are presented in Figure 6A. The root-mean-square deviation (RMSD)
of a protein is a measure of its deviation from the initial structure and thus accounts for
the stability of the protein structure during simulation. The RMSD of AChE alone or
in complex with geraniol fluctuated within acceptable limits throughout the simulation.
The mean RMSD values of AChE alone or in complex with geraniol were estimated to
be 1.66 A and 1.62 A, respectively. It should be noted that none of the fluctuations in
RMSD were more than the acceptable limit of 2.0 A, suggesting the formation of a stable
AChE-geraniol complex.
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Figure 6. (A) Behavior of root-mean-square deviation (RMSD) of AChE, the target protein, in presence
(complex) and absence of geraniol; (B) average root-mean-square fluctuation (RMSF) values of AChE,
in the presence of geraniol; (C) the variation in Rg of complex of geraniol bound with AChE protein
(D) MolSA, SASA, and PSA of complex of target protein AChE bound to geraniol.

3.5.2. Root-Mean-Square Fluctuation (RMSF) Analysis

The root-mean-square fluctuation (RMSF) of a protein provides insight into the local
conformational changes in the side chains of a protein during simulation. Figure 6B depicts
the variation in the RMSF of geraniol bound with AChE and compared with the experi-
mentally determined B-factor during X-ray crystallography. The residues showing higher
peaks correspond to loop regions or N- and C-terminal zones. The mean RMSF value of
AChE-geraniol complex was determined to be 1.28 A, which is much lower than the accept-
able limit. It is evident that the RMSF of AChE did not deviate significantly in the presence
of geraniol, assuring that the overall conformation of the protein remained conserved.

3.5.3. Analysis of Radius of Gyration (Rg) and Different Surface Areas

The dependency of radius of gyration (Rg) and surface area, such as molecular surface
area (MolSA), solvent accessible surface area (SASA), and polar surface area (PSA) of a
ligand on simulation time, provide information about the behavior of the ligand inside
binding pocket of the enzyme. The Rg may also indicate whether the complex remains
folded during MD simulation. The variation in Rg of geraniol bound to AChE as a function
of simulation time is presented in Figure 6C. The results show that the Rg of AChE-
geraniol systems fluctuated within the acceptable limit throughout the simulation, with an
average value of 3.16 A. The MoISA, SASA, and PSA of geraniol bound to AChE varied
insignificantly throughout the simulation (Figure 6D). The average values of MolSA, SASA,
and PSA of the AChE-geraniol complex were 204.78, 9.13, and 51.58 A?, respectively
(Figure 6D). These results suggest that geraniol remained inside the binding cavity of
AChE in a stable conformation.
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3.5.4. Total Contacts Formed between Protein and Ligand

The formation of a stable protein and ligand complex was established by determining
the total number of contacts formed between them during the simulation (Figure 7A). It is
clear that during the simulation, the total number of contacts between geraniol and AChE
varied between 0 and 10, with an average of 5 contacts between them.

.
3]
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~ 45
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0 20 40 60 80 100
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Figure 7. (A) Total number of contacts formed between geraniol and AChE; (B) total secondary
structural elements (SSE) of AChE in combination with geraniol.

3.5.5. Secondary Structure Analysis

The interaction between a ligand and protein often leads to changes in the protein’s
secondary structural elements (SSE). Thus, a check on the variation in SSE during simu-
lation is critical to provide an overview the establishment of a stable complex between
geraniol and AChE. The variation in the total SSE (x-helix + 3-sheet) of AChE bound with
geraniol during simulation is presented in Figure 7B. We found that the total SSE of AChE
in complex with geraniol was 38.84% (c-helix: 26.57% and [3-sheets: 12.27%). It should be
noted that the SSE of AChE in combination with geraniol remained consistent throughout
the simulation, suggesting a stable interaction between proteins and ligand.

3.5.6. Protein-Ligand Interaction Analysis

An analysis of the interaction between AChE and geraniol during the molecular
dynamics simulation is presented in Figure 8. It is clear from our results that hydrogen
bonds and hydrophobic interactions play an essential role in stabilizing the AChE-geraniol
complex. In addition, water bridges are critical for the formation of stable protein-ligand
complex. The amino acid residues Trp84, Tyr121, Phe330, Phe331, and His440 were the
most important in the formation of hydrogen bonds and hydrophobic interactions between
AChE and geraniol. The limitation of the present study is that our findings are only based
on the in silico, and in vitro approaches, which need to be further confirmed via in vivo

animal study.
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Figure 8. Interactions between AChE and geraniol.

4. Conclusions

Neuromuscular and neurodegenerative disorders are generally treated by inhibiting
acetylcholinesterase (AChE) enzyme to increase the level of acetylcholine in synapses.
Through our in silico and in vitro findings, it has been concluded that geraniol inhibits
AChE in a concentration-dependent manner and that it bound more effectively (ICsq:
98.06 £ 3.9 uM) in the catalytic active site. Geraniol also exhibited the finest drug-likeness,
pharmacokinetics, and physiological properties that can cross the BBB, as well as high
absorption through the GI tract, suggesting that it can be a potential drug candidate
for neurological disorders. The in vitro results were validated through in silico study
and found that geraniol bound to most of the residues of the catalytic active site with a
12.40-fold higher binding affinity and lower binding energy (—5.6 kcal mol~!) than the
substrate binding energy (—4.1 kcal mol~!). Moreover, molecular dynamics simulation
study concluded that complex (AChE-geraniol) RMSD fluctuated within acceptable limits,
and the overall conformation of the protein remained conserved and remained consistent
throughout the simulation. These findings suggest that geraniol remained inside the
binding cavity of AChE in a stable conformation. Further in vivo investigation is required
to fully characterize the pharmacokinetic properties, optimization of dose administration,
and efficacy of this plant-based natural compound.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/cells10123533/s1, Figure S1: Interaction of target protein AChE with non-hydrolysable
structural analogs peripheral anionic site (PAS); (A) superimposed image of non-hydrolysable
structural analogs in PAS locations of AChE; (B and C) interactions between PAS residues of AChE
and non-hydrolysable structural analogs. (No binding of acetylcholine was observed at the peripheral
anionic site (PAS).), Figure S2: Interaction of target protein AChE with non-hydrolysable structural
analogs and acetylcholine at catalytic active site (CAS); (A) superimposed image of non-hydrolysable
structural analogs and acetylcholine in CAS locations of AChE; (B and C) interactions between
CAS residues of AChE and non-hydrolysable structural analogs; (D) interactions between CAS
residues of AChE and acetylcholine, Table S1: Molecular docking parameters for the interaction of
acetylcholinesterase (AChE) with some non-hydrolysable structural analogs at catalytic active site
(CAS) and peripheral anionic site (PAS).
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