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Cyclin-dependent kinases (CDKs) are key players in cell cycle regulation. So far, more than
ten CDKs have been described. Their direct interaction with cyclins allow progression
through G1 phase, transitions to S and G2 phase and finally through mitosis (M). While
CDK activation is important in cell renewal, its aberrant expression can lead to the
development of malignant tumor cells. Dysregulations in CDK pathways are often
encountered in various types of cancer, including all gastrointestinal (GI) tract tumors.
This prompted the development of CDK inhibitors as novel therapies for cancer. Currently,
CDK inhibitors such as CDK4/6 inhibitors are used in pre-clinical studies for cancer
treatment. In this review, we will focus on the therapeutic role of various CDK inhibitors in
colorectal cancer, with a special focus on the CDK4/6 inhibitors.
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CYCLIN-DEPENDENT KINASES AND THEIR ROLE IN CELL CYCLE
PROGRESSION

Cell cycle is defined as the process through which the cell replicates all its genomic material and
divides into two identical cells (Alberts et al., 2002). It consists of four phases: gap 1 (G1), where the
cell grows in size and transcribes the RNA and protein necessary during cell division; synthesis or S
phase, where all chromosomes are being replicated; gap 2 (G2), where cell growth and protein
synthesis continue; and mitosis or M phase, where the cell restructures its membrane and organizes
the newly synthesized chromosomes and then divides into two daughter cells. Before entering cell
cycle, highly proliferative cells such as stem cells and lymphocytes are in a reversible cell cycle arrest,
known as quiescence or gap 0 (G0). However, other cells such as neurons or adipocytes are
irreversibly arrested in G0 phase, a phenomenon often described as cellular senescence. Senescence is
also predominant in highly damaged cells, acting as a protective mechanism during the DNA damage
response (DDR) (Terzi et al., 2016).

Each cell cycle phase, as well as transitions from one phase to the other, are tightly regulated
by interactions between cyclins and cyclin-dependent kinases (CDKs) (Johnson and Walker,
1999). In general, cyclins directly bind CDKs and induce the formation of cyclin—CDK
complexes. This promotes CDK activity and therefore ensures activation of specific
transcriptional programs that allow cell cycle progression. More than ten CDKs are known
to be involved in various events during cell cycle. From these, CDK1, 2, 3, 4, and 6 directly
mediate cell cycle progression.
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Transition from quiescence or G0 phase in G1 phase is
modulated by growth factor signals or mitogenic stimulation.
These result in the upregulation of Cyclin D, which binds to and
activates CDK4 and CDK6 to promote cell commitment to enter
G1 phase (Jinno et al., 1999; Lea et al., 2003). High CDK4/6
expression and activation ensures cell progression through G1
phase (Mende et al., 2015; Topacio et al., 2019).

On the molecular level, CDK4 and 6 phosphorylate
Retinoblastoma (Rb) and promote the accumulation of E2F, a
direct regulator of genes necessary during DNA synthesis.
Furthermore, CDK4 and CDK6 activation initiates cell growth
through activation of mammalian target of rapamycin complex 1
(mTORC1) (Romero-Pozuelo et al., 2020). Besides, CDK4 and 6
are involved in the control of DNA replication mechanisms
(Braden et al., 2008). Along with CDK4/6, CDK2 and CDK3
are also activated during G1 phase. Rb phosphorylation, and
therefore the accumulation of E2F during G1 phase, directly
mediate the upregulation of Cyclin E in late G1 phase, which
binds and activates CDK2. Formation of CDK2/Cyclin E complex
maintains Rb phosphorylated in order to promote G1/S phase
transition (Massague 2004; Horiuchi et al., 2012). However,
CDK3 upregulation during late G1 phase seems to be
independent of Cyclin D, E or A binding (Braun et al., 1998).
Interestingly, the upregulation of CDK2 has been also shown to
be important during the G1/S checkpoint in response to DNA
damage. For example, knocking-down CDK2 in the HCT116
tumor cell line significantly reduced p53 phosphorylation in
response to hydroxyurea (HU) and suppressed G1/S cell cycle
arrest (Bacevic et al., 2017). Some recent studies also described a
role of CDK2 directly after mitosis, as an intermediate level will
remain in the cells that continue proliferating, while those that
lack CDK2 can enter quiescence or so called gap 0 (G0) (Spencer
et al., 2013; Gookin et al., 2017). On the other hand, high levels of
Cyclin C/CDK3 have been reported to directly mediate
quiescence (Ren and Rollins 2004).

The beginning of S phase is marked by increasing levels of
Cyclin A, which binds CDK2. The complex formed by Cyclin
A/CDK2 drives the cells through S phase and promotes DNA
replication. During late S/G2 phase, increased levels of Cyclin A
induce CDK1 activation, which drives entry into mitosis (Gavet
and Pines, 2010; Kalous et al., 2020). Later, the formation of
CDK1/Cyclin B complex triggers progression through M phase.
Along with its important role in successful cell mitosis (Vassilev
et al., 2006), CDK1 can also influence the remodeling of cell
adhesion complexes during G1, S and G2 cell cycle phases (Jones
et al., 2018) and promotes protein synthesis during proliferation
(Haneke et al., 2020). Interestingly, CDK1 is reported to be the
only necessary cyclin-dependent kinase during cell cycle, being
able to bind to all cyclins and drive all events during cell division
(Santamaria et al., 2007).

Several other CDKs are known to be involved in cell cycle
progression as well. CDK7, for example, is an important cell cycle
regulator. Its binding to Cyclin H and mating-type 1 protein
(Mat1) induces the formation of CDK-activating kinase (CAK)
complex. CAK activity is crucial to promote CDK2 and CDK1
binding to cyclins, therefore allowing cell division (Fisher and
Morgan, 1994; Larochelle et al., 2007; Olson et al., 2019). CDK5

upregulation is mostly observed in, but not limited to, neurons,
and is often correlated to cell apoptosis. Nevertheless, it can also
regulate the cell cycle by phosphorylating Rb and interacting with
E2F during G1 phase (Zhang et al., 2010; Chang et al., 2012;
Futatsugi et al., 2012). CDK8 is a partner of Cyclin C and its
expression has been shown to be important in stabilizing Cyclin C
activity during cell cycle (Tassan et al., 1995; Barette et al., 2001).
Interestingly, CDK8 and Cyclin C, as well as CDK19/Cyclin C
complex, are strongly required during p53-dependent p21
transcriptional activation, for cell cycle arrest in response to
DNA damage (Donner et al., 2007; Audetat et al., 2017). Last,
cyclin-dependent kinases such as CDK9 and CDK13 are not
directly controlling cell cycle phase transitions, but are rather
involved in transcription mechanisms, by associating with Cyclin
T or Cyclin K (Garriga et al., 2003; Yu et al., 2010; Greifenberg
et al., 2016).

To summarize, entry into cell cycle depends on mitogenic or
growth factor signals. CDK4/6/Cyclin D complex formation
promotes Rb phosphorylation and accumulation of free E2F,
which ensures progression through G1 phase. CDK5 activity also
increases E2F levels during G1. High levels of E2F during late G1
induce CDK2/Cyclin E complex that in return further
phosphorylates Rb and promotes G1/S transition. At the
beginning of S phase, Cyclin E levels decrease and CDK2
forms a complex with the increasing Cyclin A, which not only
ensures progression through S phase, but also transition into G2
phase. CDK2/Cyclin A complex is especially regulated by the
CDK7/Cyclin H/Mat1 complex, also described as CAK. CAK also
regulates CDK1/Cyclin A complex formation during late G2 and
Cyclin B binding to CDK1 during mitosis. Any disturbances to
the cell cycle machinery will result in cell cycle arrest. CDK2 and
CDK3 are especially important in mediating either quiescence or
senescence. Indirectly, CDK8, 9, 13, and 19 alsomediate cell cycle,
being involved in the transcription machinery, while CDK5 can
directly modulate apoptosis as well. A schematic representation
of the important role of CDKs in cell cycle is shown in Figure 1.
While normal cells are able to activate the necessary mechanisms
for cell cycle arrest when the DNA is damaged, these pathways are
usually suppressed or non-existent in tumor cells, enabling them
to continue progression through cell cycle. The following sections
will address the CDK’s role in the tumor cell division and how
therapies targeting CDKs can modulate CRC development.

CYCLIN-DEPENDENT KINASE
EXPRESSION IN HUMAN COLORECTAL
CANCER
Changes in the regulatory mechanisms that control cell division
are often related to accumulation of mutations and/or epigenetic
dysregulations of cancer related genes and can contribute to the
molecular mechanisms of colorectal cancer (CRC). CRC tissue
often shows changes in genes related to cell cycle arrest (p16 and
p21), apoptosis (p53) or proliferation (PCNA) (Yue et al., 2003;
Kruschewski et al., 2011). Multiple other mutations have also
been described to be involved in CRC development. As a result,
CDKs expression can be changed in tumor cells.
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When looking at the signature of differentially expressed genes
(DEGs) in patients with CRC compared to normal colon tissue,
an upregulation in CDK1 gene expression is often observed (Zhao
et al., 2019; Ding et al., 2020; Li et al., 2020). Interestingly, the
expression of CDK1 in the nucleus and cytoplasm has been used
as a marker to describe patterns in the overall survival of patients
with CRC (Sung et al., 2014). Staining of over 164 cancer samples
from primary CRC revealed that CDK1 is expressed in both cell
nucleus and cytoplasm to a certain degree. The evaluation of
nuclear/cytoplasm (N/C) ratio on these samples showed that high
N/C expression is often found in patients with overall worse
survival and a N/C > 1.5 can be considered a risk factor.
Furthermore, high CDK1 expression is predominant in
patients with resistance to 5-fluorouracil (5-Fu), a common
CRC treatment, and it seems to reduce the effect of
chemotherapy (Zhu et al., 2020). An upregulation of CDK1 in
CRC has been also observed in response to other drugs such as:
betaxol, penbutolol and propofol amongst others
(Mastrogamvraki and Zaravinos, 2020).

CDK2, 4 and 6 levels in CRC are closely related to the Rb protein
hyperphosphorylation, which seems to promote cancer
progression. CDK4/6 is usually amplified in colon tumors
compared to healthy epithelium (Mastrogamvraki and Zaravinos,
2020; Jardim et al., 2021). Abundant levels of CDK4 are especially
observed in CRC patients with enhanced dysplasia and are
correlated to increased tumor cell proliferation (Zhang et al.,
1997; Bartkova et al., 2001). Some CDK2 expression is normally
found in healthy epithelium. However, its upregulation can be
predominantly observed human CRC tissue samples (Yamamoto
et al., 1995). Interestingly, CDK2 overexpression in primary CRC
tumors is also linked to lymph nodes metastasis, but not liver
metastasis (Li et al., 2001; McCurdy et al., 2017). Nevertheless, a

certain CDK2 activity has been reported to improve recurrence-free
survival (RFS) of patients after surgery (Yamamoto et al., 1995). A
similar pattern to CDK2 expression in CRC is observed in CDK3
levels as well. Its overexpression has been linked to metastasis and
tumor cell invasion, where it seems to be promoting epithelial to
mesenchymal transitions (Lu et al., 2016).

CDK5 expression is also reported to be much higher in CRC
cells compared to normal epithelium and it correlates to increased
tumor growth and poor prognosis (Zhuang et al., 2016; de Porras
et al., 2019). Most important, CDK5 is directly involved in the
degradation of the cell cycle inhibitor p21 and can enhance CDK2
activity, which might further promote tumor cell growth (Huang
et al., 2016). Decreased survival rates are also observed in CRC
patients with high CDK9 and CDK13 levels (Kim et al., 2012;
Wang et al., 2019). Interestingly, high CDK9 expression in CRC
tissue was negatively correlated with cytotoxic CD8+ T cell
infiltration. Furthermore, these infiltrated cells showed increased
cell exhaustion in CDK9-high tumors, which might further affect
patient outcome (Wang et al., 2019). Last, CDK8 overexpression in
CRC is also considered as a marker for poor patient prognosis,
being directly linked to β-catenin activation amongst others and
therefore promoting cancer growth (Firestein et al., 2008; Firestein
et al., 2010; Seo et al., 2010). Overall, cyclin-dependent kinase
activation is often observed in colorectal cancer and seems to
promote tumor progression and an overall worse survival of
patients, as summarized in Table 1.

THE FUNCTIONAL ROLE OF CDKS IN CRC

Basic research using murine knockout models or in vitro gene
silencing in tumor colon cancer cell lines also provided some

FIGURE 1 |Cyclins and cyclin-dependent kinase (CDK) role in cell cycle. (A)CDK1, 2, 3, 4/6, and 7 are directly involved in progression through cell cycle phases by
associating themselves with various Cyclins. CDK5 can have a direct impact on E2F accumulation, especially in cancer, while CDK8 activation stabilizes Cyclin C. (B,C)
CDK8, 9, 13, and 19 are not directly involved in cell cycle progression, but are involved in either p53/p21 transcription (CDK8/19) or the DNA transcription machinery
(CDK9/13).
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understanding for the relevance on CDKs in CRC development.
Since CDKs are vital components of the cell cycle, creating
knockout mouse models is usually unsuccessful. This is
because most CDKs (e.g. CDK1, 4, 6, 9, and 13) are critical
during embryonic development, as is summarized in (Campbell
et al., 2020). Similarly, conditional knockout models often show
severe impairments.

Nevertheless, some fundamental research data in regards to
the role of CDKs in colorectal cancer are available. For
example, it is know that CDK4 activation in
CDK4R24C/R24CApc+/min mice leads to significant increased
in tumor vascularity in comparison to CDK4+/+Apc+/min

mice or APC+/min mice (Abedin et al., 2010), while
knocking out CDK4 in APC+/min mice reduces adenoma
development (Karim et al., 2013). CDK5 silencing via
transfection can directly reduce the proliferation of human
HCT116 and SW480 tumor cell lines (Zhuang et al., 2016).
Similarly, knocking down CDK9 in HCT116 and HT29 tumor
cell lines induced their apoptosis by Caspase 7 cleavage
(Rahaman et al., 2019). Furthermore, it reduced Cyclin D1
protein expression, suggesting cell cycle arrest induction in
these cells.

Stable silencing of CDK8 and CDK19 in Colo205 human
colon cancer cells reduced β-catenin/TCF-dependent
transcription (Dale et al., 2015). A direct link between CDK8
and β-catenin regulation in tumor cell proliferation and death has
also been described, where inactivation of CDK8 by siRNA
transfection in HCT116 cells significantly reduced the RNA
and protein levels of β-catenin (He et al., 2011). Generally,
silencing CDK genes in colon cancer cells reduces their
proliferation and induces cell death, which makes them an
attractive target for the development of new inhibitory therapies.

CDK INHIBITORS AS A POTENTIAL CRC
TREATMENT

CDK inhibitors are also often used in basic research to
understand molecular mechanisms of CDK activation in cell
cycle regulation or tumor cell proliferation. This section
describes the current understanding on the potential use of
various CDK inhibitors to mediate colorectal cancer
development.

CDK7-Specific Inhibitors
Samuraciclib and SY-1365 are inhibitors of CDK7 activity.
Interestingly, the colon cell line HCT116 is particulary
sensitive to Samuraciclib, which induces their apoptosis and
cell cycle arrest (Patel et al., 2018). Its mechanism of action is
mostly based on inhibition of phosphorylation of CDK7
substrates like CDK1 and 2. One important advantage of
Samuraciclib is its availability as an oral drug that can
accumulate at the tumor site upon multiple doses, as shown
by the in vivo HCT116 murine tumor xenograf model. CDK7
inhibition was also successful when using SY-1365, in more than
26 types of cancer types, including colon cell lines (Hu et al.,
2019).

CDK1/2-Specific Inhibitors
SU9516 and CVT-313 are known to directly inhibit CDK2
activity. The use of SU9516 for in vitro treatment of HT29,
RKO and SW480 human colon carcinoma cell lines revealed
that it can successfully induce their apoptosis and cell cycle arrest
(Lane et al., 2001; Yu et al., 2002). CDK2 inhibition also
significantly decreases free E2F, but increases E2F/Rb
complexes, therefore arresting the tumor cells. This effect was

TABLE 1 | Effects of increased CDK expression in patients with colorectal cancer.

Gene Expression in CRC Patient outcome References

CDK1 Upregulated in tumor tissue compared to normal tissue Decreased overall patient survival Ding et al. (2020)
Ratio between nuclear and cytoplasmatic expression can be used as
an indicator of patient outcome

Interferes with 5-Fu therapy Sung et al. (2014)

Medication can further upregulate CDK1 in CRC Zhu et al. (2020)
Mastrogamvraki and
Zaravinos (2020)

CDK2 A normal CDK2 expression is also found in healthy colon Increased expression in normal colon tissue after surgery is
correlated to a good prognosis

Yamamoto et al.
(1995)

Upregulated in CRC tissue compared to normal tissue Li et al. (2001)
Overexpression correlated to lymph node metastasis McCurdy et al. (2017)

CDK3 No expression found in normal colonic tissue Not described Lu et al. (2016)
Overexpressed in CRC tissue and metastatic tissue

CDK4/6 Upregulated in CRC samples compared to healthy tissue Poor prognosis in patients with strong CDK4 expression in
tumors

Jardim et al. (2021)
Mastrogamvraki and
Zaravinos (2020)
Zhao et al. (2003)

CDK5 Upregulated in tumor tissue compared to the adjacent healthy tissue Increased tumor growth de Porras et al. (2019)
Can upregulate CDK2 expression as well Poor patient prognosis Zhuang et al. (2016)

Huang et al. (2016)
CDK8 Overexpressed in CRC tissue compared to matched healthy tissue Promotes cancer growth Firestein et al. (2010)

Poor patient prognosis Seo et al. (2010)
CDK9/13 High in CRC tissue Worse overall patient survival Kim et al. (2012)

Wang et al. (2019)
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dependent on the duration of the treatment, since more E3F/Rb
complexes were observed after 48 h than after 24 h in HT29 cell
line. Inhibition of CDK2 in patient-derived human cell lines using
CVT-313 has minimal effect on cell death (Somarelli et al., 2020).
Nevertheless, combined therapy using CDK2 and 9 inhibitors
significantly increased the numbers of cells arrested in G2/M.

RO-3306 is a CDK1-specific inhibitor can be used to induce
apoptosis in a specific type of BRAF-mutated colorectal cancer
cells (Zhang et al., 2018). Interestingly, this inhibitor induced
Caspase 8-regulated cell death when combined with the MEK
inhibitor, cobimetinib, while most CDK inhibitors promote
apoptosis via Caspase 3 cleavage.

CDK5, 8/19, and 9-Specific Inhibitors
CP668863 or 20-223 is a CDK5 inhibitor whose cytotoxic
potential has been evaluated in CRC settings as well (Robb
et al., 2018). Interestingly, 20-223 is 65-fold more potent for
cell growth inhibition than the pan CDK inhibitor AT7519. Its
cytotoxicity has been evaluated on SW620, DLD1 and HT29
tumor cell lines. 20-223 also significantly inhibited tumor growth
in xenograf models and reduced the migration of colon cancer
cells, which shows its potential for CRC therapy.

The development of MSC2530818 was fine tuned to
specifically inhibit CDK8/19 (Czodrowski et al., 2016). This
compound can be orally administered and it is well tolerated
by mice. Treatment with MSC2530818 of mice subjected to an in
vivo xenograft model using SW620 human colon cell line showed
its potential to reduce tumor growth. CDK8/19 inhibition by
MSC2530818 it is known to directly reduce STAT1
phosphorylation, further proving its efficacy.

CDKI-73 is a potent CDK9 inhibitor, which shows increased
cytotoxicity against the HT29 and HCT116 human carcinoma
cell lines (Rahaman et al., 2019). In vitro treatment of these cell
lines revealed that CDKI-73 reduces the expression of survival
genes. Its effect has also been tested in in vivo HT116 xenograf
models. CDKI-73 significantly reduced tumor growth without
being over toxic to the mice.

Purvanalol and Roscovitine
Purvanalol and Roscovitine (Celiciclib or CYC202) are
common CDK inhibitors effective against CDK2, 4, and 5
activity. Purvanalol is known to induce apoptosis and
autophagy of HCT116 colon tumor cells by activating
endoplasmatic reticulum (ER) stress (Coker-Gurkan et al.,
2015). Its effect is nevertheless limited to wildtype HCT116,
while Bax-deficient HCT116 cells are resistant against this
treatment. This effect can be overcome by combining of
Purvanalol with 3-MA, an inhibitor of autophagy, which
promotes Purvanalol-induced apoptosis in Bax−/− HCT116
as well (Coker-Gurkan et al., 2014). Roscovitine has a similar
effect on apoptosis induction in HCT116 tumor cells, but on a
weaker scale than Purvanalol (Gurkan et al., 2013; Coker-
Gurkan et al., 2015). Analysis of Roscovitine-induced
apoptosis using Raman spectroscopy revealed changes in
amide I and III bands, common of protein and DNA
alterations (Akyuz et al., 2011). HCT116 cell death in
presence of Roscovitine has been shown to be enhanced

during polyamine depletion or phosphatase nuclear
targeting subunit (PNUTS) knockdown (De Leon et al.,
2010; Arisan et al., 2012). More important, the effect of
Roscovitine is especially higher in combination to current
chemotherapeutic drugs such as 5-Fu or doxorubicine, as
shown by the experiments done with SW48, SW116 and
SW837 colon cancer cell lines (Abaza et al., 2008).

Wogonin
Wogonin is a flavone isolated from Scutellaria baicalensis known
to inhibit CDK2, 4, 8, and 9. Nevertheless, its effect is not specific
to only CDKs, but it also downregulates activation of PI3K/Akt
and Stat3 signaling pathways (Wang et al., 2014; Tan et al., 2019).
Along with its role in inducing apoptosis and autophagy of
colorectal tumor cells, Wogonin can also induce cell cycle
arrest in both G1 and G2/M cell cycle phases (He et al., 2013;
Tan et al., 2019). Interestingly, Wogonin treatment of wildtype
mice subjected to AOM/DSS tumor model reduces tumor growth
by facilitating nuclear translocation of tumor suppresor p53
(Feng et al., 2018).

Flavopiridol
Flavopiridol or Alvocidib is effective in inhibiting most CDKs:
CDK1, 2, CDK4/6 and 9, by inducing cell cycle arrest and
apoptosis of human colon tumor cell lines (Sausville et al.,
2000; Kim et al., 2003; Okada et al., 2017). Treatment of CRC
cell lines with flavopiridol enhances cell death when used in
combination with chemotherapeutic agent gemcitabine or
γ-radiation (Jung et al., 2001; Jung et al., 2003). Furthermore,
a combination of docetaxal, flavopiridol and 5-Fu is described to
more effective in inhibiting tumor growth and inducing increased
apoptosis in HCT116 tumor cells, than any of the drugs alone
(Guo et al., 2006). Phase I and phase II studies in patients with
untreated advanced colorectal cancer showed little efficacy and
was terminated early (Aklilu et al., 2003). Overall, it appears that
Flavopiridol works best when coupled with other
chemotherapeutic drugs.

Other Pan CDK Inhibitors
Along with Purvanalol, Roscovitine, Wogonin and Flavopiridol,
various other molecules have been described to inhibit multiple
CDKs. For example, AT7519 is able to inhibit CDK1, 2, 4/6, and 9
and therefore induce colon cancer cell death. Its potency has been
observed in xenograf mouse models using HCT116 and HT29,
where tumor regression was observed upon multiple doses
(Squires et al., 2009). Nevertheless, other CDK inhibitors such
as 20-223 seem to be more effective than AT7519 (Robb et al.,
2018). Pan CDK inhibitor AG-012986 has been shown to
significantly reduce the colony formation of HCT116 colon
carcinoma in a concentration-dependent manner, by inducing
arrest into G1 phase (Zhang et al., 2008). Indirubin derivates are
also known to reduce proliferation of DLD1 and HT29 tumor cell
lines (Kim et al., 2009). Last, SNS-032 or BMS-387032, a specific
inhibitor against CDK2, 7, and 9, was used to significantly reduce
the intestinal tumor burden of Ink4/Arf-null Min mice (Boquoi
et al., 2009). All in all, these data provide important insight on the
effectiveness of CDK inhibitors in colorectal cancer therapy.
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CDK4/6 INHIBITORS USE IN CRC

When thinking about preventing cell cycle progression and
proliferation of tumor cells, CDK4/6 inhibitors are very
efficient. The most commonly used are Ribociclib,
Palbociclib, Abemaciclib and Trilaciclib. CDK4/6 inhibitors
are especially effective at treating breast cancer amongst
others, many of them being nowadays tested in phase I and
II clinical trials (Wu et al., 2020). Nevertheless, they are also
being tested as therapy for colorectal cancer. A schematic
representation of the mechanism of action of CDK4/6
inhibitors is shown in Figure 2.

CINK4 and Trilaciclib
Small molecule CINK4 is a triaminopyrimidine derivative
specially designed to inhibit the activity of CDK4 in tumor
cells. In vitro treatment of HCT116 colon tumor cell line with
CINK4 prevented their cell growth by reducing Cyclin D/CDK4
complexes and Rb phosphorylation (Soni et al., 2001).
Furthermore, intraperitoneal injection of CINK4 every 12 h
was successful in reducing tumor growth in an in vivo mouse
xenograf model using HCT116 tumor cells. Trilaciclib
(CoselaTM) is known to directly induce reversible G1 cell
cycle arrest and inhibit the formation of complexes between
CDK4/6 and Cyclin D. As of 2021, Trilaciclib is used in a
multinational trial (ClinicalTrials.gov Identifier: NCT04607668
in United States) in treating microsatelite stable metastatic
CRC, in patients treated with FOLFOXIRI and Bevacizumab
(Dhillon 2021). This clinical study has been recently approved
and is at the moment recruiting participants in USA, Europe
(Hungary, Italy, Poland, Slovakia, Spain, Ukraine,
United Kingdom) and China.

Abemaciclib
Patients with advanced and metastatic breast cancer can be
treated with the CDK4/6 inhibitor Abemaciclib (also known as
LY2835219, Verzenio, Verzenios, Ramiven). This inhibitor is also
involved in various clinical trials for treating other advanced solid
tumors such as melanoma or lung cancer (Shapiro et al., 2013;
Fujiwara et al., 2016). The potential of Abemaciclib to treat
colorectal cancer has been tested in mice with human tumor
xenographs using Colo205 and A375 (Tate et al., 2014). The mice
were treated orally in a concentration-dependent manner. The
authors suggest that a constant level of 200 ng/ml Abemaciclib in
plasma are necessary to arrest the tumor cells in G1 phase, as
shown by Rb phosphorylation data. This shows that treatment
using multiple doses might promote tumor cell cycle arrest in
humans as well. Indeed Abemaciclib therapy in CRC patient
cohort during a clinical trial induced stable disease even in a
patient with KRAS and p53 mutated tumor cells (Patnaik et al.,
2016). At the moment, Abemaciclib, in combination with
LY3214996 (ERK1/2 inhibitor) and Cetuximab (EGFR
inhibitor), is undergoing evaluation in Phase I and Phase II
clinical trials in patients with metastatic CRC (ClinicalTrials.
gov Identifier: NCT04616183). Recruiting phase is set to be
completed in December 2021.

Palbociclib
The efficacy of Palbociclib (PD-0332991) in inhibiting CDK4/6
activity has been assessed in human colon carcinoma cell lines as
well (Li et al., 2014). Palbociclib successfully arrested various
tumor cells (HT29, Colo205 and DLD1 amongst others) in G1
cell cycle phase, by reducing the phosphorylation of Rb.
Interestingly, its therapeutic effect does depend on Rb
presence (Heijink et al., 2011). Nevertheless, in vivo
administration of Palbociclib in ApcMin mice successfully
reduced tumor cell proliferation without affecting normal
epithelial cells. It is very important to remark that Palbociclib
mechanism of action directly targets the transcriptional activity of
p53 after exposure to radiation and therefore, its efficacy might be
limited to p53-expressing CRC tumors (Fernandez-Aroca et al.,
2019). Palbociclib is also involved in a phase II clinical trial
(ClinicalTrials.gov Identifier: NCT03981614), where it is used in
combination with chemotherapeutic drug TAS-102 for KRAS/
NRAS metastatic or unresectable CRC. First phase of the study
has been recently completed (June 2021), but no data are
momentarily available.

Ribociclib
Treatment of HT29 and SW480 colon tumor cell lines with
Ribociclib (or LEE011) significantly decreases their viability
and induces G1 cell cycle arrest in concentration dependent
manner (Lin et al., 2020). Similarly to the other CDK4/6
inhibitors, Ribociclib also reduces the phosphorylation of
Retinoblastoma protein. Furthermore, used in combination
with 5-FU, it increases significantly p53 phosphorylation.
Ribociclib treatment was also used in a study case on a young
female diagnosed with desmoid tumors (DT) (Santti et al., 2019).
She underwent colectomy and various other surgeries to remove
the tumors, as well as irradiation therapy. Unfortunately, the

FIGURE 2 | Mechanism of action of CDK4/6 inhibitors in CRC cells.
Palbociclib, Ademaciclib, Ribociclib, CINK4 and Trilaciclib are able to prevent
the formation of Cyclin D/CDK4/6 complexes, which reduces Retinoblastoma
phosphorylation and induces G1 cell cycle arrest. Palbociclib has been
shown to be effective in promoting p53 transcription after irradiation as well.
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treatment with cytotoxic drugs usually used to treat these cancers
did not reduced the tumors. The addition of Ribociclib, together
with goserelin and letrozole therapy, stabilized temporarily the
tumors and gave symptomatic relief. A Phase I clinical trial for
treating selectedmalignancies, including CRC, using Ribociclib in
combination with TNO155 (SPH2 inhibitor) is currently running
(ClinicalTrials.gov Identifier: NCT04000529). Patients are still
being recruited in this clinical trial.

FUTURE PERSPECTIVES IN CDK4/6
INHIBITOR THERAPY IN CRC

There is no doubt that targeting cell cycle machinery, and
especially cyclin-dependent kinase activity of tumor cells,
offers new opportunities to treat patients with advanced
colorectal cancer. Nevertheless, cancer itself is a multifactorial
disease and therefore the treatment with just one drug is not
always successful.

CDK4/6 inhibitor therapy in particular shows promising
results in the relief and stabilization of the patients, but its
effect is amplified when used in combination with other
treatments. More recent studies have focused on evaluating
therapeutic potential of CDK4/6 inhibitors when coupled with
other drugs in treating CRC. For example, when treating tumors
in patient-derived Rb+ colorectal xenograph models, the authors
found that a combination of MEK inhibitor Trametinib with
Palbociclib significantly reduces tumor volume in comparison to
monotherapy. Furthermore, KRAS-mutated cells were especially
sensitive to this treatment (Lee et al., 2016; Ziemke et al., 2016).
Similiar results were obtained when using a Raf inhibitor
(LY3009120) in combination with Abemaciclib, where Ras-
and Braf-mutated CRC was especially sensitive to this
treatment (Chen et al., 2018). Last, the combination of
checkpoint inhibitors like anti-PD1 therapy (SHR-1210) with
CDK4/6 inhibitor (SHR6390) is currently evaluated in Phase I
and II clinical trial for advanced colorectal cancer (ClinicalTrials.
gov Identifier: NCT03601598), but no data have been
published yet.

Further studies are necessary for understanding the potential
of targeting CDK4/6, together with other genes involved in cell
cycle machinery. For example, tumor cells depend on high
telomerase activity, which enables them to preserve the

telomeres during extensive proliferation. Inducing telomere
dysfunctions in tumor cells, using the telomere-specific
inhibitor 6-thio-dG, potentiates antitumor responses in mice
bearing MC38 tumors (Mender et al., 2020). Therefore,
combining CDK4/6 inhibitors for cell cycle arrest and 6-thio-
dG might provide a more efficient tumor targeted therapy.

One significant challenge raised by the use of CDK4/6
inhibitors is its effect on normal cells, and especially on the
highly proliferating cells, such as activated immune cells found
in the tumor microenvironment. Targeting CDKs might
disrupt the function of upstream genes involved in the cell
cycle, such as sirtuins, in normal cells. Modifications in sirtuin
1 (SIRT1) function are especially important. Even though
SIRT1 is also upregulated in the CRC tissue compared to
the normal one and it has been linked to tumor size and
invasion (Chen et al., 2014; Yu et al., 2016), its function in
haematopoiesis is nevertheless crucial (Rimmele et al., 2012).
Dysfunctions in SIRT1 in normal cells due to CDK4/6
inhibitor use might therefore potentiate cellular senescence
and premature aging in various cellular compartments (Sasaki
et al., 2006).

Overall, CDK inhibitors are efficient in preventing colon
tumor cells from proliferating by inducing cell cycle arrests,
and, in some cases, even apoptosis, making them useful for
developing new potential therapeutic strategies for CRC.
Nevertheless, a comprehensive analysis on how CDK
inhibitors might affect normal cells, as well as the antitumor
response of immune cells to CRC, would enhance our
understanding on this novel therapy.
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