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Abstract Seismic nowcasting uses counts of small earthquakes as proxy data to estimate the current
dynamical state of an earthquake fault system. The result is an earthquake potential score that
characterizes the current state of progress of a defined geographic region through its nominal earthquake
“cycle.” The count of small earthquakes since the last large earthquake is the natural time that has elapsed
since the last large earthquake (Varotsos et al., 2006, https://doi.org/10.1103/PhysRevE.74.021123). In
addition to natural time, earthquake sequences can also be analyzed using Shannon information entropy
(“information”), an idea that was pioneered by Shannon (1948, https://doi.org/10.1002/j.1538-7305.1948.
tb01338.x). As a first step to add seismic information entropy into the nowcasting method, we incorporate
magnitude information into the natural time counts by using event self-information. We find in this first
application of seismic information entropy that the earthquake potential score values are similar to the values
using only natural time. However, other characteristics of earthquake sequences, including the interevent
time intervals, or the departure of higher magnitude events from the magnitude-frequency scaling line, may
contain additional information.

Plain Language Summary Earthquake nowcasting has been developed to determine the current
level of earthquake risk for seismically active areas. Historically, statistical communication theory has been
developed to analyze the information content of signals involved in telecommunications and computer
systems. We combine these techniques to analyze the information contained in earthquake magnitudes for
great earthquakes and mega-tsunamis.

1. Introduction

The determination of earthquake risk for geographic regions is an old problem that has been associated with
the development of methods for forecasting and prediction (Holliday et al., 2016; Scholz, 2002; WGCEP
[http://www.wgcep.org/overview]). In many ways, the problem of earthquake forecasting bears similarities
to the problem of forecasting in weather and economic systems (Jolliffe & Stephenson, 2003; OECD [http://
www.oecd.org/economy/oecd-forecasts-during-and-after-the-financial-crisis-a-post-mortem.htm]). In all
these cases, probabilities of future activity are calculated using physical or statistical models and then
validated by backtesting and prospective testing.

An associated question is the degree to which past and present conditions convey information about future
conditions. For the case of weather forecasting, the continual improvement of forecasting methods is
evidence that there is considerable information contained in past data and that the improvement of data
acquisition via satellite observations maps into better probabilities of future activity (Marshall et al., 2006).

An important goal is therefore to quantify the amount of information that is contained in past activity. In
order to address this question, we begin with the simpler idea of nowcasting and apply ideas from the field
of statistical communication theory (Shannon information entropy). Nowcasting is a simpler form of risk esti-
mation than forecasting and is therefore readily amenable to analysis of information content.

2. Nowcasting

Nowcasting refers to the use of proxy data to estimate the current dynamical state of a driven complex sys-
tem such as earthquakes, neural networks, or the financial markets (Rundle et al., 2016). In previous papers
(Rundle et al., 2016; Rundle et al., 2018), a method to nowcast earthquakes has been presented based on
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the natural time count of small earthquakes after the last large earthquake in a defined, seismically active
geographic region. Natural time has been discussed extensively in Varotsos et al. (2004, 2005, 2006), Sarlis
et al. (2011, 2018), Vallianatos et al. (2012), and Holliday et al. (2006).

The basic idea is that the recurring pattern, or cycle, of “large earthquake-quiescence-large earthquake” is
characterized by an “earthquake clock” that in some way quantitatively describes the region (e.g., Hill &
Prejean, 2007; Rogerson, 2018). Nowcasting is a method that can be used to statistically define the current
state of this earthquake clock.

In the nowcastingmethod, a “large” seismically active geographic region is identified in which a “local” region
of interest is embedded. The primary assumption in the method is that the frequency-magnitude statistics of
the large region are the same as the those of the local region. From a practical standpoint, this implies that
the Gutenberg-Richter b-value is assumed to be the same in both regions.

Applications of the clock metaphor have led to a series of papers discussing the idea of earthquake trigger-
ing. “Clock advance” is the idea that a previous large earthquake will advance the earthquake clock of the
local region so that a future large earthquake would occur sooner than it otherwise would (e.g., Gomberg
et al., 1998; Rogerson, 2018; Savage & Marone, 2008). For these applications, it is important to understand
the current state of the earthquake clock, since a clock advance early in the earthquake cycle may not be
as important as a clock advance late in the earthquake cycle from a hazard perspective. Nowcasting provides
an answer to the uncertain current state of the earthquake clock.

3. Data

The nowcasting technique relies on seismic catalogs that are complete, in the sense that all events whose
magnitude is larger than a completeness threshold have been detected. In the large geographic region,
many large earthquakes are required to define the interevent statistics of the small earthquakes in
natural time.

As an example, this paper considers the “large” geographic region to be the entire Earth, and the “small”
regions to be polygonal source regions for great earthquakes. More specifically, we consider “large” earth-
quakes of magnitude M ≥ 7.9, and “small” earthquakes of magnitude 6 ≤ M < 7.9. An example is shown in
Figure 1, which displays all earthquakes of magnitude M ≥ 7.9 occurring since 1900, together with 14 polygo-
nal source regions. Data are from the USGS online catalog (https://earthquake.usgs.gov/earthquakes/search/).
While the exact choice of the source regions is arbitrary, they nevertheless encompass earthquake fault
segments upon which historic earthquakes are known to have occurred. These polygons were chosen using
methods analogous to those used to define seismic gap segments in previous studies (Kelleher et al., 1973;
Nishenko, 1991; Scholz, 2002).

Figure 1. Mapwith polygons used to define source regions of great earthquakes used in the analysis. Of interest here is the
source polygon for the M9.0 Kamchatka earthquake on 4 November 1952. The great earthquakes havingM ≥ 7.9 are shown
as red circles. These are used to define the histogram of small earthquakes used to compute the earthquake potential score.
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We then construct a histogram for the number of small earthquakes
between the large earthquakes in the large geographic regions.
Focusing next on the local polygon, we count the number of small
earthquakes that have occurred since the last large earthquake.
Comparing this natural time count (Holliday et al., 2006; Varotsos
et al., 2006) to the histogram in the large region determines the earth-
quake potential score (EPS) from the cumulative distribution function
(CDF) constructed from the natural time histogram.

An example of the EPS score is shown in Figure 2 for the Kamchatka
source polygon. The M9.0 Kamchatka earthquake occurred in that
polygonal source region on 4 November 1952 (www.wsspc.org/
resources-reports/tsunami-center/significant-tsunami-events/1952-
kamchatka-tsunami/). An associated tsunami generated by the earth-
quake led to the deaths of 10,000 to 15,000 persons in the Kuril islands
(WSSPC [www.wsspc.org/resources-reports/tsunami-center/signifi-
cant-tsunami-events/1952-kamchatka-tsunami/]). Run-ups as high as
15 m were observed locally, and run-ups as large as 1 m were
observed as far away as California.

The (green) vertical bars in Figure 2 represent the numbers of
6 ≤ M < 7.9 earthquakes between the M ≥ 7.9 great earthquakes that
occurred worldwide since 1950. Small earthquake data from years

prior to 1950 are not complete at theM ≥ 6 level (Rundle et al., 2018). The red curve monotonically ascending
from lower left to upper right is the CDF corresponding to the histogram. The current count of 199 small
earthquakes having magnitudes 6 ≤ M < 7.9 since the great earthquake in 1952 is indicated by the red
dot in Figure 2, leading to an EPS value of 70.4%. The interpretation of this statistic is that the Kamchatka
source polygon is 70.4% through the typical earthquake cycle characterizing global great earthquakes, as
measured by small earthquake counts.

4. Shannon Information Entropy

Shannon information entropy was developed in statistical communication theory as a means to charac-
terize the information content transmitted between a source and a receiver by means of a communica-
tion channel (Cover & Thomas, 1991; Shannon, 1948; Stone, 2015). In his 1948 paper, Shannon described
a method for computing a metric for the information delivered from a source to a receiver using only
binary (yes/no) decisions. Given an “alphabet” of symbols, Shannon showed that the number of decisions
needed to send a symbol from the source to the receiver defines the information content of the commu-
nication. He related this to the degree of surprise, or “surprisal,” of unanticipated content embedded in
the signal.

The typical example is “Alice” sending a dictionary word to “Bob” by means of a binary digital communication
device. Alice must send the message letter by letter. So the question is, how many binary digits must Alice
send to convey a single letter? If each letter in the alphabet is equally probable (it is not!), the answer is 4.7
bits of information. This value can be determined by the use of equation (1) below, using a letter probability
pi ¼ 1

26 for the constant probability case.

The principal objective of the present paper is to apply ideas about Shannon information entropy to
earthquake physics. Here we use the known earthquake frequency-magnitude statistics to measure the
information that an earthquake is contributing to current hazard calculations.

A reason to believe that information might be contained in earthquake sequences is the idea that earth-
quakes bear strong similarities to neural networks in terms of the governing equations (Hertz & Hopfield,
1995; Hopfield, 1994; Rundle et al., 2002). It is known that neural networks convey information, and that
Shannon information entropy methods are used to characterize their information content (Marzen et al.,
2015; Marzen & Crutchfield, 2017).

Figure 2. Current earthquake potential score (EPS) for the Kamchatka source
polygon. Vertical green bars are the histogram of counts of “small” earthquakes
havingM ≥ 8.0. The red dot records the current count, 199, of small earthquakes in
the polygon, with a corresponding EPS value of 70.4%.
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Neurons are simple elements that emit action potentials or voltage
“spikes” in response to driving currents (Hopfield, 1994). Once a neuron
fires, typically at a level of �53 mV, the voltage resets to around
�70 mV, followed by a refractory period during which the neuron does
not fire. The information is contained in the temporal spacing between
the spikes (Marzen & Crutchfield, 2017).

On the other hand, earthquakes are caused by tectonic driving forces that
lead to a sudden slip event associated with a sudden change in fault stress,
a stress “spike.” While neural networks are an electrical system, earth-
quakes are a mechanical system. The common features of these two sys-
tems have been discussed by Hopfield (1994), Hertz and Hopfield (1995),
and Rundle et al. (2002). We begin with an analysis of the information con-
tained in the magnitude of the events in earthquake sequences.

To understand information entropy, one starts with an “alphabet” of sym-
bols, each symbol indexed by the integer i. In our case, the “alphabet” will
be a sequence of discrete magnitude “bins” centered on a value mi, each
bin being of width Δm. The probability that an earthquake has a magni-
tude mi is denoted as pi.

For a system having discrete states indexed by an integer i, Shannon
defined the self-information Ii as

Ii ¼ � log2 pið Þ (1)

(Cover & Thomas, 1991; Shannon, 1948; Stone, 2015).

The equation for average or expectation of Shannon self-information is

I≡ < Ii >¼ �∑ipi log2 pið Þ (2)

It is required that 0 ≤ pi ≤ 1 and that∑ipi = 1. As a result, I ≥ 0. By construction, I is an expectation or average.
As a common practice, we will refer to I as simply the “Shannon information.”

Although we use only earthquakemagnitude, the neural network studies suggest that additional information
might be found by evaluating the probabilities of earthquake time
intervals. In future research, we plan to discuss the similarities and dif-
ferences between magnitude entropy and interval entropy. Similarly,
we might find ways to evaluate entropy of slip-rate distributions, and
other earthquake-related quantities. A potentially important question
might be, is entropy change in one variable correlated with entropy
change in another variable? This might imply some sort of crossover
information principle important to earthquake predictability.

5. Magnitude Information Entropy

We first examine magnitude information entropy. We start with the
Gutenberg-Richter distribution:

N ≥mð Þ ¼ 10a�bm (3)

Equation (3) can be interpreted as the survivor distribution for magni-
tudes m, given the catalog completeness magnitude mc. The asso-
ciated CDF P(m|mc) is then

P mjmcð Þ ¼ 1� 10b mc�mð Þ (4)

Figure 3. Current earthquake potential score (EPS) for the Kamchatka source
polygon. Vertical green bars are the histogram of self-information in bits for
“small” earthquakes having M ≥ 6 between the great earthquakes having
M ≥ 8.0. The red dot records the current self-information value, 661 bits, of
small earthquakes in the polygon, with a corresponding EPS value of 64.8%.

Table 1
Natural Time Nowcast

Location
(source)

EPS (%)
score

Most recent
large EQ

Mag recent
large EQ

Count on
2018/06/27

Current
MP

Aleutions E 77.8 1946/04/01 8.6 251 8.2
Kamchatka 70.4 1952/11/04 9 199 8.2
Cascadia S 69.4 1922/01/31 7.3 26 7.3
Cascadia N 55.3 1946/06/23 7.5 28 7.4
Calif.-
Nevada

43.0 1906/04/18 7.9 69 7.7

Aleutions
W

40.7 1965/02/04 8.7 100 7.9

Alaska PWS 38.9 1964/03/28 9.2 88 7.8
Sagami 25.9 1923/09/01 8.1 64 7.7
Sumatra N 25.9 2004/12/26 9.1 62 7.7
Sanriku 25.9 2011/03/11 9.1 58 7.7
Sumatra S 25.9 2005/03/28 8.6 56 7.6
Valdivia 20.4 1960/05/22 9.5 46 7.6
Concepcion 18.5 2010/02/27 8.8 40 7.5
Nankai 13.0 1946/12/20 8.3 22 7.3

Note. EPS = earthquake potential score.
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Using the substitution β ≡ b ln (10), the associated probability density
function ρ(m) in magnitude space is found from differentiating (4):

ρ mð Þ ¼ βeβ mc�mð Þ (5)

For a discrete bin probability centered on a magnitude value mΔ, the
discrete probability density function is

p mΔð Þ ¼ ϱ mΔð ÞΔm ¼ βeβ mc�mΔð ÞΔm (6)

In this case, the “alphabet” of symbols being transmitted is the
sequence of magnitude bins beginning at the completeness magni-
tude mc, and having width Δm.

We replace the counts of small earthquakes with the sum of the self-
information in magnitude space using equations (1) and (6) (see
Rundle et al., 2016). Further, we assume that the coarse-grained mag-
nitude element is given by the typical magnitude resolution of
Δm ≈ 0.1. Thus, we find that the accumulated self-information Icum
since the last large earthquake is given by combining (1) and (6):

Icum ¼ �∑j
1
pj

(7)

where

pj ¼ 0:1 βeβ mc�mjð Þ (8)

and index j refers to small earthquakes that have occurred since the last large earthquake.

The result is shown in Figure 3 for the same polygon as in Figure 2, the Kamchatka polygon. Here the EPS is
64.8%, compared to the previous natural time count-based value of 70.4%.

Comparing Figures 2 and 3, it can be seen that there is relatively little difference between the values for the
EPS. Data for the remainder of the 13 source polygons are shown in Tables 1 and 2. EPS scores shown in
Table 1 are based only on natural time counts. In Table 2, the EPS values are based on the sum of self-
information of the small earthquakes since the last great earthquake. Note that small earthquake counts
for great earthquakes prior to 1950 are based on estimates whose accuracy is unknown (Rundle et al.,
2018), a subject for future research.

In some cases, the largest catalog earthquake that occurred in the source polygon is less than M7.9 and is
indicated in the 4th column. In other columns we show the date of themost recent great earthquake, its mag-
nitude, the natural time count of M ≥ 6 events since the last great earthquake, and the estimated current
potential magnitude MP of the next great earthquake:

MP ¼ mc þ 1
b

� �
log10ns (9)

In equation (9), nS is the current count of small earthquakes,mc is the catalog completeness magnitude, and b
is the Gutenberg-Richter b-value.

Most of the information is contained in the smaller events, primarily because there are somanymore of them.
This raises the question of whether this method could be modified to more strongly emphasize the larger of
the small events. To emphasize this last point, we show in Figure 4 the frequency-magnitude relation for a
region of radius 1,000 km around Tokyo, Japan. In Figure 4a, data are for the time interval from 1 January
1970 through the last event prior to the M9.1 earthquake on 11 March 2011. Figure 4b shows the data follow-
ing the M7.7 aftershock up to the present.

Table 2
Information Nowcast

Location
(source)

EPS (%)
score

Most recent
large EQ

Mag recent
large EQ

Bits on
2018/06/27

Current
MP

Aleutions E 74.1 1946/04/01 8.6 841 8.2
Cascadia S 66.7 1922/01/31 7.3 95 7.3
Kamchatka 64.8 1952/11/04 9 661 8.2
Cascadia N 47.9 1946/06/23 7.5 88 7.4
Calif.-
Nevada

44.3 1906/04/18 7.9 266 7.7

Aleutions
W

38.9 1965/02/04 8.7 354 7.9

Alaska PWS 35.2 1964/03/28 9.2 317 7.8
Sagami 24.1 1923/09/01 8.1 216 7.7
Sumatra S 24.1 2005/03/28 8.6 218 7.6
Sumatra N 24.1 2004/12/26 9.1 208 7.7
Sanriku 22.2 2011/03/11 9.1 185 7.7
Valdivia 18.5 1960/05/22 9.5 159 7.6
Concepcion 18.5 2010/02/27 8.8 127 7.5
Nankai 13.0 1946/12/20 8.3 84 7.3

Note. EPS = earthquake potential score.
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Figure 4a shows that the data are well fit at almost all magnitude intervals by a Gutenberg-Richter scal-
ing line having a slope, or b-value of 1.0 ± 0.1. This can be considered to be the long-term average
behavior of earthquakes in the region. On the other hand, the data in Figure 4b show that the scaling
line is first re-established at the small magnitude end, and that there is a deficiency of larger magnitude
earthquakes relative to the scaling line. The b-value of the scaling line in Figure 4b is 1.04 ± 0.1, nearly
the same as in Figure 4a. This deficit in larger earthquakes is eventually removed as larger
earthquakes occur.

6. Summary and Conclusions

This paper has focused on a first study to incorporate measures of Shannon information entropy into the
nowcasting method. A question that has been addressed elsewhere is the issue of the sensitivity of the
EPS values to the data used to define the histogram and therefore the CDF.

We have shown in companion papers (Rundle et al., 2018) that the nowcasting method is generally not
very sensitive to the choice of large spatial region defining the histogram, leading to a standard error of
approximately ±10%. However, the method is strongly sensitive to issues of catalog completeness (Rundle
et al., 2018).

Extending our current results to great earthquakes that occurred prior to 1950, the beginning of catalog
completeness for magnitudes M ≥ 6, is at this time only approximate. To rectify this problem, we will
require additional assumptions, such as estimates of aftershock activity, together with estimates of
magnitude statistics.

We have found that in this first study, the results of using magnitude information are similar to those
found using only natural time counts of events. The primary reason for this is that even though large
magnitude events carry more information than small magnitude events, there are many more small mag-
nitude events at approximately the catalog completeness magnitude. Thus the information entropy at
these small events dominates the total self-information sum.

Further work will investigate techniques to focus attention on primarily the largest events. In future work
we also plan to incorporate temporal information in the Shannon information measures through the use
of methods similar to those developed in connection with models for Epidemic Type Aftershock
Sequences and their derivative methods such as the Branching Aftershock Sequence Statistics
(Helmstetter & Sornette, 2003; Ogata, 2004; Turcotte et al., 2007).

Figure 4. (a) Magnitude-frequency data for the spatial region within 1,000 km of Tokyo, Japan, prior to the M9.1 mainshock
on 11 March 2011. Red solid line indicates the magnitude range fit by the scaling line, from M5.0 to M7.5. (b) Magnitude-
frequency data for the spatial region within 1,000 km of Tokyo, Japan, following the M7.7 aftershock on 11 March 2011. Red
solid line indicates the magnitude range fit by the scaling line, from M5.0 to M6.0.
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Data Sources

The data used in this paper were downloaded from the online earthquake catalogs maintained by the U.S.
Geological Survey (https://earthquake.usgs.gov/earthquakes/search/), accessed between June through
August, 2018.
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