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Silencing of sinusoidal DDR1 
reduces murine liver metastasis 
by colon carcinoma
Irene Romayor1, Iker Badiola2, Aitor Benedicto1, Joana Márquez1, Alba Herrero1, 
Beatriz Arteta1 & Elvira Olaso1*

Liver metastasis depends on the collagenous microenvironment generated by hepatic sinusoidal cells 
(SCs). DDR1 is an atypical collagen receptor linked to tumor progression, but whether SCs express 
DDR1 and its implication in liver metastasis remain unknown. Freshly isolated hepatic stellate cells 
(HSCs), Kupffer cells (KCs), and liver sinusoidal endothelial cells (LSECs), that conform the SCs, 
expressed functional DDR1. HSCs expressed the largest amounts. C26 colon carcinoma secretomes 
increased DDR1 phosphorylation in HSCs and KCs by collagen I. Inhibition of kinase activity by 
DDR1-IN-1 or mRNA silencing of DDR1 reduced HSCs secretion of MMP2/9 and chemoattractant 
and proliferative factors for LSECs and C26 cells. DDR1-IN-1 did not modify MMP2/9 in KCs or LSECs 
secretomes, but decreased the enhancement of C26 migration and proliferation induced by their 
secretomes. Gene array showed that DDR1 silencing downregulated HSCs genes for collagens, 
MMPs, interleukins and chemokines. Silencing of DDR1 before tumor inoculation reduced hepatic C26 
metastasis in mice. Silenced livers bore less tumor foci than controls. Metastatic foci in DDR1 silenced 
mice were smaller and contained an altered stroma with fewer SCs, proliferating cells, collagen and 
MMPs than foci in control mice. In conclusion, hepatic DDR1 promotes C26 liver metastasis and favors 
the pro-metastatic response of SCs to the tumor.

Abbreviations
DDR1	� Discoidin domain receptor 1
PDDR1	� PhosphoDDR1
ECM	� Extracellular matrix
SCs	� Sinusoidal cells
HSC	� Hepatic stellate cell
KC	� Kupffer cell
LSEC	� Liver sinusoidal endothelial cell
CRC​	� Colorectal carcinoma
α-SMA	� Alpha-smooth muscle actin
MMP	� Matrix metalloproteinase

Collagen deposition promotes tumor development. Up to recently, integrins were considered the unique col-
lagen receptors, but their signaling did not completely explain the underlying mechanism of collagen signaling. 
Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor for collagen that functions as a central sen-
sor of the extracellular matrix (ECM) microenvironment1,2. DDR1 is involved in cell adhesion, proliferation, 
migration and ECM remodeling2–4. Together with DDR2, these proteins comprise the family of tyrosine kinase 
DDRs. DDR1 is an independent prognosis factor for several cancers5,6, and is involved in several hallmarks of 
cancer7,8. DDR1 also participates in tissue fibrosis9,10 and atherosclerosis11. In the last years, intensive research 
has been carried out to generate new therapies against such severe diseases using DDR1 as a target, some of them 
are FDA-approved. However, the success of these therapies relates to a more profound knowledge of the mecha-
nism of DDR1 signaling, its cellular localization, and its functional implications in healthy and diseased tissues.

While DDR1 was initially reported in cells of epithelial origin, increasing evidences demonstrate DDR1 
expression in cells from the connective, immune, neural and vascular source12–14. The use of DDR1KO mice 
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allowed Sun et al. to show that DDR1 drives stromal secretion of IL6 to promote invasive breast cancer15, and 
allowed Hou et al. to demonstrate that DDR1 regulates vascular smooth muscle cell attachment to collagen, 
chemotaxis, proliferation, and metalloproteinases (MMPs) production16. Activation of DDR1 in macrophages 
stimulates the production of inflammatory cytokines17 and nitric oxide, a pivotal modulator of the immune 
response18. While wound healing in DDR1 null mice occurs normally, Chin et al. found that DDR1 plays a crucial 
role in modulating overexpression of collagen in keloids19. Furthermore, Ruiz et al. described that DDR1 drives 
collagen I-induced human lung fibroblasts migration through collagen IV-coated inserts, but not proliferation20. 
DDR1 deficit in vascular smooth muscle cells leads to mislocalization of adherent contacts21. Whether sinusoidal 
cells (SCs) express DDR1 and its potential implication in liver physiology and pathology remains unknown.

The cellular and molecular composition of the microenvironment is critical for tumor progression22–24 and 
chemoresistance25. The liver is the most common site for colorectal carcinoma (CRC) metastasis. Successful arrest 
and growth of tumor cells occurs within the sinusoidal vessels26. The collagen deposition observed afterward 
induces cancer stiffness that enhances tumor growth and metastatic colonization27. Furthermore, experimen-
tal models demonstrate that the interplay between collagen, sinusoidal-derived stromal cells, and tumor cells 
constitute a unique microenvironment that broadly defines the evolution of the metastatic growth28. Hepatic 
stellate cells (HSCs), resident macrophages (Kupffer cells, KCs), and liver sinusoidal endothelial cells (LSECs) 
are the three major components of the sinusoids. Extensive studies in liver diseases showed that SCs play pivotal 
roles in hepatic immune, inflammatory, angiogenic, and fibrogenic responses. We have previously demonstrated 
that SCs exert those functions in experimental liver metastasis29–32. Clinically approved multi-kinase inhibitors, 
such as nilotinib33,34 and antibody–drug conjugates35 strongly reduced DDR1-mediated CRC cell invasion and 
metastasis in mouse models, suggesting that DDR1 might be a potential target for cancer treatments. Because 
nilotinib also affected the host tissue, a role for liver DDR1 could be envisioned. Despite this, nilotinib is not 
DDR1-specific and, therefore, its effects cannot be ascribed solely to DDR inhibition.

Healthy human liver contains low amounts of DDR1 compared to other organs such as breast36 and, thus, 
hepatic DDR1 effect in liver metastasis has not been sufficiently studied. Intravital microscopy showed that 
CRC cells mainly arrest in the sinusoidal vessels to initiate their metastatic dissemination and growth, in which 
extensive collagen deposition composed the associated stroma since very early steps of CRC colonization of the 
liver. In this work, we utilized a relevant in vitro model of pathological collagen and SCs interaction in the liver 
and an in vivo model of liver metastases by CRC to study DDR1 expression and its functional consequences in 
hepatic metastasis. Our previous studies using this model allowed us to focus our research on key aspects of SCs 
promotion of CRC growth in the liver.

Results
DDR1 expression and signaling in hepatic SCs.  To explore DDR1 expression in the murine liver sinu-
soids, we isolated HSCs, KCs and LSECs, and briefly maintained each of them as monocultures (see Material and 
Methods). Western blot analysis using cell-type-specific markers indicated a purity of more than ~ 95% for each 
SC type in the corresponding monoculture (Fig. 1a) (See full-length blots in Supplementary Fig. S8). RT-qPCR 
demonstrated DDR1 gene expression in all SCs monocultures (see Supplementary Fig. S1).

Western blot analysis showed DDR1 as a band of ~ 125 kDa in lysates from each one of the three SC monocul-
tures. Lysates from human HSCs LX2 and skin fibroblasts derived from DDR1+/+ or from DDR1−/− mice were 
used as positive controls for DDR1 expression (see Supplementary Fig. S2). DDR1 protein expression per cell 
was ~ fourfold higher in HSCs extracts than in KCs or LSECs ones (Fig. 1b). Exogenous collagen I induced DDR1 
phosphorylation by an ~ 1.7 and ~ 1.5-fold increase in HSCs and KCs lysates, respectively, compared to cells in 
basal media, but it did not increase basal DDR1 phosphorylation in LSECs at the time tested (Fig. 1c). Immuno-
fluorescence staining for DDR1 in the monocultures confirmed these results (Fig. 1d). DDR1 was expressed in 
the cell membrane and the cytoplasmic compartment of the SCs. Although DDR1 is a membrane receptor, such 
cellular localization may correspond to protein intracellular trafficking across the cell, as described for DDR1 in 
renal cells9. In consensus with the Western Blot analysis, HSCs displayed the largest amount of DDR1. Similar 
results were obtained using several anti-DDR1 antibodies (see Supplementary Fig. S2; “Material and methods”). 
To our knowledge, this is the first study that documents DDR1 in murine liver SCs. It also indicates that the 
level of DDR1 expression in SCs drastically depends on the cell type. Future analyses will further analyze DDR1 
expression and phosphorylation mechanisms in LSECs.

Increased DDR1 expression by sinusoidal cells in response to C26 cells secretomes.  To inves-
tigate how DDR1 signaling participates in a pathologic process were collagen plays an important role, we set 
an in vitro model of tumor-SCs crosstalk. Primary HSCs, KCs, and LSECs monocultures were treated for 1 h 
with secretomes from C26 cells cultures to obtain tumor-activated SCs or were maintained in basal media. 
Then, comparative RT-qPCR analyses were performed on a set of pro-inflammatory, immunoregulatory, and 
pro-fibrogenic genes previously related to liver metastasis by our group29–32 (see Supplementary Fig. S1). The 
gene profile obtained confirmed that C26 cells secretomes generated a pro-metastatic activation program in the 
SCs. Under those conditions, DDR1 gene expression was enhanced in HSCs and KCs in response to the tumor 
secretomes, but not in LSECs.

Next, we compared DDR1 protein expression and phosphorylation between SCs maintained overnight in 
either C26 cells secretomes (tumor-activated SCs) or basal media (Fig. 2). Tumor secretomes enhanced DDR1 
protein expression by ~ 1.4 fold in KCs (Fig. 2b), while it did not modify DDR1 protein levels in HSCs (Fig. 2a) 
or LSECs (Fig. 2c). Tumor secretomes promoted DDR1 phosphorylation by collagen I in HSCs by ~ 1.5 fold and 
in KCs by ~ 1.4 fold, but not in LSECs, under the conditions used (see full-length blots in Supplementary Fig. S8). 
To explore the role of DDR1 signaling in SCs, we used DDR1-IN-1, a type II kinase inhibitor with high specificity 
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for DDR137. Although DDR1-IN-1 can target DDR2 (IC50 = 413 nM), its inhibitory effect is fourfold less potent 
compare to DDR1 (IC50 = 105 nM)38. To set the appropriated concentration and time conditions for DDR1-IN-1 
treatment of SCs, we utilized two cell lines: 3T3 fibroblasts and J774A.1 macrophages, known to express a DDR1 
that strongly responses to collagen I (see Supplementary Fig. S3). The two cell lines were cultured in the pres-
ence of increasing concentrations of DDR1-IN-1 (see Supplementary Figs. S4, S5). The results indicated that 
1-h pretreatment with DDR1-IN-1 followed by 2-h treatment with collagen I and DDR1-IN-1 results in a 50% 
decrease of DDR1 phosphorylation at a 70–100 nM concentration range. A 70–100 nM DDR1-IN-1 for a total 
of 3 h was tested in SCs. 100 nM promote stress fiber formation in HSCs. Longer culture time and/or higher 
DDR1-IN-1 concentrations promoted KCs and LSECs detachment, and thus, results were not considered. 70 nM 
was finally selected for further experiments because it did not promote cell detachment or stress fiber formation. 
More importantly, 70 nM DDR1-IN-1did not promote apoptosis in the SCs, as demonstrated by the lack of active 
Caspase 3 in the cell cultures (see Supplementary Fig. S6). DDR1-IN-1 decreased DDR1 phosphorylation by 

Figure 1.   Murine HSCs, KCs and LSECs expression of functional DDR1. SCs were isolated from pooled livers 
and maintained briefly as monocultures. (a) Western blot analysis of the purity of each monoculture using 
specific cell type markers: GFAP for HSCs, F4/80 for KCs, and CD146 for LSECs. (b) Western blot analysis 
of PDDR1 and total DDR1 expression in the SCs in response to collagen type I. (c) Histogram on the semi-
quantification of the three experiment performed. (d) Immunofluorescence images of DDR1 sub-localization 
in the SCs. Scale bar 10 µm. Each experiment utilized cells from an independent isolation, and the western blots 
were processed in parallel. Data are expressed as the means ± SD. *P < 0.05. Full-length blots are presented in 
Supplementary Figure S8.
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collagen I in basal HSCs by ~ 50%. Even more, DDR1-IN-1 lowered DDR1 phosphorylation in tumor-activated 
HSCs by ~ 40% (Fig. 2). DDR1-IN-1 reduced PDDR1 in basal KCs by ~ 30%, but was unable to inhibit PDDR1 
in tumor-activated KCs under the conditions used. Finally, DDR1-IN-1 did not significantly modified PDDR1 
levels in LSECs (Fig. 2d–f).

Figure 2.   Effect of inhibition of DDR1 kinase activity in the functional response of monocultures of primary 
SCs to collagen and C26 secretomes. SCs were isolated from pooled livers and maintained briefly as HSCs, KCs 
and LSECs monocultures. Next, monocultures were maintained under basal conditions (Ø), or in the presence 
of tumor secretomes to generate tumor activated cells (TA). Some cells were maintained for 2 h in the presence 
of collagen type I with or without 70 nM DDR1-IN-1. Lysates were analyzed by Western blot. (a–c) Western 
blot analyses of PDDR1 and total DDR1 expression in HSCs (a), KCs (b) and LSECs (c). (d,e) Histograms on 
computer-assisted semi-quantification of the three experiments performed in HSCs (d), KCs (e) and LSECs (f). 
Each experiment utilized cells from an independent isolation, and the western blots were processed in parallel. 
Data are expressed as the means ± SD. */#P < 0.1, **P < 0.01, ###P < 0.001. Full-length blots are presented in 
Supplementary Figure S8.
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Inhibition of DDR1 kinase activity modifies key functional prometastatic responses of primary 
sinusoidal cells to C26 cells secretomes in the presence of collagen I.  Next, we utilized DDR1-
IN-1 to analyze if DDR1 phosphorylation mediates SCs pro-metastatic behavior. We focused on two sinusoidal 
cell functions essential for tumor growth: regulation of MMPs synthesis and secretion of proliferative and migra-
tory factors. Basal-SCs or tumor activated-SCs monocultures were treated or not with DDR1-IN-1 and collagen 
I (see “Material and methods”). The amounts of gelatinases (MMP2 and MMP9) in the resulting secretomes were 
analyzed by gelatin zymography (Fig. 3). A mixture of recombinant MMP2/MMP9 was used as control to better 
address the nature of each band (data not shown). Each of the MMPs appears as bands of different sizes, accord-
ing to their processing status, the major bands being ~ 92KDa (pro-MMP9), ~ 82KDa (active MMP9), ~ 72 kDa 
(pro-MMP2) and ~ 62 kDa (active MMP2). The three SCs monocultures secreted MMPs to the culture media. 
Tumor activation induced a significant increase in MMPs secretion only in HSCs, under the conditions used. 
DDR1-IN-1 decreased total MMP2 and total MMP9 (mainly detected as pro-MMPs and active MMPs) secre-
tion by basal HSCs and tumor-activated-HSCs (Fig. 3a,d). These results correlate with the inhibition of PDDR1 
by DDR1-IN-1 in HSCs (Fig. 2). On the other hand, total MMPs secretion was not modified in KCs neither by 
tumor secretomes nor by DDR1-IN-1, compared to that of untreated basal KCs (Fig. 3b). Despite this, analy-
sis of each MMP band in each of the three independent experiments showed that DDR1-IN-1 significantly 
reduced by ~ 25% the expression of the active MMP9 (~ 82KDa) in the secretomes from basal KCs cultures, and 
by ~ 50% in the secretomes from tumor-activated KCs (see Supplementary Fig. S7). MMP2 was ~ 20% lower in 
KCs treated with DDR1-IN-1, but it was not statistically significant. Finally, there were no statistically significant 
changes in MMPs secretion by LSECs under any of the assayed conditions (Fig. 3c,f).

Next, the SC secretomes were utilized as a source of proliferative or chemotactic factors for primary LSECs 
or C26 cells. Some control C26 cells were cultured in basal media, while the remaining were cultured in SCs 
secretomes. C26 cells proliferation was measured afterward. Other C26 cells were seeded in a collagen-coated 
upper well of a modified Boyden chamber to analyze their invasion rate in response to the chemotactic effect of 
control conditions or SCs secretomes located in the lower chamber.

Secretomes from basal and tumor-activated HSCs promoted C26 cells proliferation and migration. DDR1 
blockage decreased both C26 growth and C26 migration to control levels, in response to basal HSCs secretomes. 
On the other hand, DDR1-IN-1 reduced the induction of C26 proliferation by tumor-activated HSCs, but it did 
not affect significantly C26 migration (Fig. 4a,d).

Tumor-activated KCs secretomes, but no basal KCs secretomes, enhanced C26 proliferation rate, which was 
reverted by DDR1-IN-1 (Fig. 4b). Secretomes from basal and tumor-activated KCs also contained chemotactic 
factors for C26 cells, whose secretion was mainly DDR1-kinase-dependent (Fig. 4e). Finally, secretomes from 
tumor-activated LSECs, but no basal LSECs secretomes, increased tumor proliferation. In this case, DDR1-IN-1 
completely blocked the proliferative effect (Fig. 4c). LSECs-derived factors did not affect significantly tumor 
migration (Fig. 4f).

These results indicate that DDR1 phosphorylation in HSCs supports the most robust modulation of cell 
secretomes among SCs to promote MMPs secretion, tumor proliferation and chemotactic migration. We next 
utilize mRNA silencing as a second approach to block DDR1. We focused exclusively on DDR1 in HSCs because 
our results indicated that these cells are the main source of DDR1 in the sinusoids, and showed the more robust 
changes under DDR1-IN-1 treatment. We also selected HSCs because, as opposed to KCs and LSECs, culture on 
plastic surface prompt quiescent HSCs to transdifferentiate from vitamin A-rich cells to the myofibroblast-like 
ones present inside liver metastases31,32.

DDR1‑dependent genes in HSCs.  HSCs monocultures were maintained in culture for 2 days and then 
transfected with either an irrelevant si mRNA (siØ), a siDDR1, or remained untreated (see Material and Meth-
ods). Then, media was changed and subconfluent HSCs remained untreated for 3 days to allow maximal inhi-
bition of DDR1 expression. Since day three of culture, endogenous collagen was enough to maintain DDR1 
basally phosphorylated (see Fig.  1, lane 1 from the left). At day five after transfection, Western blot showed 
that siDDR1 HSCs expressed ~ 80% less DDR1 than HSCs siØ or untransfected HSCs (Fig. 5a,b). At that time 
point, total RNAs were isolated and hybridized onto DNA microarrays for gene expression analysis. Accord-
ing to the hybridization, 327 genes were twofold or more upregulated in the siDDR1 HSCs compared with siØ 
cells, while 976 genes were twofold or more downregulated. Gene ontology (GO) was carried out in both sets of 
genes (Tables 1, 2). The genes which were up- or down-regulated in the siDDR1 HSCs were introduced into the 
AmiGO 2 database.

Table 3 shows selected genes differentially expressed between siDDR1 silenced and non-silenced HSCs that 
had been previously reported to be altered in SCs during liver metastases, arranged by their inclusion in GO 
terms. The silencing of DDR1 in HSCs reduced the expression of genes for collagen II, III and IV, and collagen 
catabolism and remodeling, including MMPs. A second large set of downregulated genes belonged to the inflam-
matory response, including genes for interleukins IL1, IL6, IL13 and IL18. Genes related to cell migration, such 
as those of the CXCL family, were also downregulated. Several genes that regulate cell proliferation and HSCs 
transdifferentiation, such as those for PDGF receptors, FAP, STAT1 and CSF1-2, were less expressed in the 
silenced cells. Finally, genes related to cell adhesion such as the ECM components tenascin, laminin, versican 
and dystroglycan were also downregulated. Several upregulated genes were related to cell cycle arrest, such as 
p53-dependent cyclins and regulation of protein phosphorylation such as AKT.

Silencing of DDR1 reduces the ability of tumor‑activated HSCs to promote migration of LSECs 
and C26 cells across collagen I and tumor proliferation.  Accumulating in  vivo and in  vitro data 
suggest that activated HSCs promote tumor cell migration, survival, and growth and mediates the angiogenic 
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Figure 3.   DDR1 kinase‐dependent expression of MMPs by SCs. Primary monocultures of basal (Ø) or tumor-
activated (TA) HSCs, KCs and LSECs were pretreated or not with DDR1-IN-1 and collagen I. Then media was 
changed to fresh basal media, and secretomes collected 10 h afterwards, and submitted to gelatin zymography. 
(a–c) Gelatin zymography of HSCs (a), KCs (b) and LSECs (c) secretomes. (d–f) Histograms on computer-
assisted semi-quantitation of the three experiment performed in HSCs (d), KCs (e) and LSECs (f). Data 
represents the total amount of each MMP, expressed as the sum of the intensity of the bands corresponding to 
proMMP and active MMP in SCs secretomes. Each experiment utilized cells from an independent isolation, and 
the zymographies were processed in parallel. Data are expressed as the means ± SD. */#P < 0.01, ***/###P < 0.001. 
Histogram on MMP9 expression in KCs is presented in Supplementary Figure S7.
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migration of LSECs into the developing tumor along the metastasis process31,32,39. Because the gene array favors 
the notion that HSCs secretion of chemotactic factors is DDR1-dependent, primary LSECs and C26 cells were 
cultured in a modified Boyden chamber and allowed to migrate across collagen I (Fig. 5c,d). Secretomes from 
HSCs, untransfected or transfected with either siØ or siDDR1, and maintained under basal conditions or acti-

Figure 4.   DDR1 kinase‐dependent secretion of chemotactic and proliferative factors for C26 cells by SCs. 
Primary monocultures of basal (Ø) or tumor-activated (TA) HSCs, KCs and LSECs were pretreated or not 
with DDR1-IN-1 and collagen I. Then media was changed to fresh basal media, and secretomes collected 10 h 
afterwards. Those secretomes were utilized as a  source of proliferative or chemotactic factors for C26 cells. 
Control C26 cells were cultured in basal media, while the remaining C26 were cultured in SCs secretomes. C26 
cells proliferation was measured afterward. Other C26 cells were seeded in a collagen-coated upper well of a 
modified Boyden chamber to analyze their invasion rate in response to the chemotactic effect of SCs secretomes, 
located in the lower chamber. Control cells were allowed to migrate in response to basal media. (a–c) Tumor 
proliferation in response to secretomes from HSCs (a), KCs (b) and LSECs (c). (d–f) Tumor migratory activity 
in response to secretomes from HSCs (d), KCs (e) and LSECs (f). Each experiment utilized cells from an 
independent isolation. Data are expressed as means ± SD.*/#P < 0.1, **P < 0.01.
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Figure 5.   Silencing of DDR1 reduces HSCs secretion of chemotactic factors for both LSECs and C26 cells, and 
proliferative factors for C26 cells. (a) Western blot analysis of DDR1 in HSCs silenced (siDDR1) or not (siØ) 
for DDR1mRNA. (b) Histograms on computer-assisted semi-quantification of the Western Blot. LSECs or C26 
cells were seeded in a collagen-coated upper well of a modified Boyden chamber to analyze their invasion rate 
in response to the chemotactic effect of SC secretomes located in the lower chamber. Control cells were allowed 
to migrate in response to basal media. (c,d) Chemotactic migration of LSECs (c) or C26 cells (d) in response 
to HSCs secretomes. (e) Proliferation rate of C26 cells in response to HSCs secretomes. Data are expressed as 
means ± SD. *P < 0.1, **/##P < 0.01, ###P < 0.001. Each experiment utilized cells from an independent isolation, 
and the western blots were processed in parallel. Full-length blots are presented in Supplementary Figure S8.
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vated by pretreatment with C26 secretomes (TA) were used as chemoattractants. Secretomes from siØ HSCs 
under basal conditions did not affect endothelial or tumor migration significantly, while secretomes from siØ-
TA HSCs induced endothelial migration by ~ 1.25 fold, and tumor cells by ~ 1.5 fold. SiDDR1-TA HSCs gen-
erated secretomes that did not enhance endothelial and tumor cells migration above the levels generated by 
secretomes from siDDR1-basal HSCs. Finally, soluble factors from siDDR1-TA HSCs reduced tumor prolifera-
tion below that generated by siØ-basal HSCs (Fig. 5e) (see full-length blot in Supplementary Fig. S8). There 
were no significant differences between the effect generated by secretomes from untreated and siØ HSCs in any 
experiments performed with LSECs or C26 cells.

As a whole, these data show that tumor cells exposed to secretomes from DDR1 silenced HSCs showed a 
less aggressive invasive behavior than their counterparts exposed to DDR1-expressing HSCs. Moreover, DDR1 
silencing also decreased the pro-angiogenic phenotype of TA-HSCs.

Table 1.   Genes down-regulated in DDR1 silenced Hepatic Stellate Cells. Genes down-regulated in DDR1 
silenced hepatic stellate cell according to the gene array were introduced into the AmiGO 2 Gen onthology 
database by using Biological Process analysis. The table shows the gene number into each Go-slim Biological 
process Bonferroni-corrected for P < 0.05.

PANTHER GO-slim biological process Upload_Genes (976) (P value)

Granulocyte chemotaxis (GO:0071621) 19 8.79E−09

Leukocyte migration (GO:0050900) 22 1.53E−09

Leukocyte chemotaxis (GO:0030595) 19 6.89E−08

Positive regulation of GTPase activity (GO:0043547) 9 1.48E−02

Inflammatory response (GO:0006954) 33 7.79E−14

Defense response to virus (GO:0051607) 10 1.26E−02

Cellular response to tumor necrosis factor (GO:0071356) 9 3.81E−02

Positive regulation of ERK1 and ERK2 cascade (GO:0070374) 10 1.58E−02

Cellular response to cytokine stimulus (GO:0071345) 26 7.94E−08

Response to cytokine (GO:0034097) 28 5.32E−08

Regulation of hydrolase activity (GO:0051336) 17 6.66E−04

Cytokine-mediated signaling pathway (GO:0019221) 21 3.78E−05

Cell migration (GO:0016477) 35 9.21E−10

Response to lipopolysaccharide (GO:0032496) 16 2.88E−03

Cellular response to lipopolysaccharide (GO:0071222) 14 1.41E−02

Localization of cell (GO:0051674) 35 5.01E−08

Cell motility (GO:0048870) 35 5.01E−08

Response to organic substance (GO:0010033) 40 6.38E−06

Divalent inorganic cation homeostasis (GO:0072507) 22 3.94E−02

Regulation of catalytic activity (GO:0050790) 26 7.82E−03

Defense response (GO:0006952) 47 3.50E−06

MAPK cascade (GO:0000165) 27 1.61E−02

Apoptotic process (GO:0006915) 33 5.74E−03

Cell adhesion (GO:0007155) 42 4.06E−04

Biological adhesion (GO:0022610) 42 4.06E−04

Signal transduction by protein phosphorylation (GO:0023014) 28 4.58E−02

Programmed cell death (GO:0012501) 33 9.07E−03

Regulation of molecular function (GO:0065009) 38 3.93E−03

Protein phosphorylation (GO:0006468) 43 8.99E−04

Cell death (GO:0008219) 33 2.62E−02

Response to stress (GO:0006950) 53 1.95E−04

Immune system process (GO:0002376) 88 5.44E−08

Response to chemical (GO:0042221) 61 2.43E−04

Response to stimulus (GO:0050896) 125 5.10E−11

Cellular protein metabolic process (GO:0044267) 83 1.40E−03

Cellular macromolecule metabolic process (GO:0044260) 83 1.47E−03

Intracellular signal transduction (GO:0035556) 63 4.87E−02

Signal transduction (GO:0007165) 127 3.92E−04

Cellular response to stimulus (GO:0051716) 139 1.63E−03
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In vivo silencing of mouse DDR1 expression reduces liver metastasis.  To analyze the role of 
DDR1 in the early steps of liver metastases, we transiently silenced hepatic DDR1 by three consecutive injections 
of siDDR1 RNA. A siØ group of mice was injected with an irrelevant siRNA, and a third group of mice remained 
untreated. Then, tumor cells were injected in the spleen of mice untreated or treated with either siDDR1 or 
siØ 24 h after the last siRNA injection (Fig. 6a). Western Blot analysis of total liver lysates at day 8 of treatment 
showed that DDR was reduced in siDDR1 livers by a ~ 65% (Fig. 6b–d). All mice presented liver metastases 
10 days after tumor injection. As described previously40, the main mechanism of hepatic C26 metastasis growth 
was of the hepatic tissue replacement-type, characterized by an efficient invasive behavior of cancer cells. Also, 
cell of the tumor microenvironment conformed predominantly a sinusoidal type, containing a rich network 
of intratumoral microvessels supported by sinusoidal-derived myofibroblasts. Histochemical analysis showed 
a ~ 40% reduction in the volume occupied by metastasis and a ~ 27% decrement in the density of metastatic 
foci in siDDR1 mice, compared to siØ or untreated mice (Fig. 6e,f). No significant differences were observed 
between tumor development in siØ and untreated mice.

We arbitrarily divided all hepatic micrometastases in four groups, according to their size and developmen-
tal stage (Fig. 6g). Silencing of hepatic DDR1 resulted in a ~ 28% reduction in the number of small avascular 
micrometastases characterized by their lack of infiltrating stroma, which may indicate a role for hepatic DDR1 

Table 2.   Genes upregulated in DDR1 silenced hepatic stellate cells. Genes up-regulated in DDR1 silenced 
hepatic stellate cell according to the gene array were introduced into the AmiGO 2 Gen onthology database 
by using biological process analysis. The table shows the gene number into each Go-slim Biological process 
Bonferroni-corrected for P < 0.05.

PANTHER GO-Slim Biological Process Upload_genes (327) (P-value)

Vasculature development (GO:0001944) 24 3.82E−02

Regulation of apoptotic process (GO:0042981) 48 5.48E−03

Regulation of programmed cell death (GO:0043067) 48 7.03E−03

Regulation of cell death (GO:0010941) 52 3.99E−03

Regulation of cell population proliferation (GO:0042127) 51 6.62E−03

Animal organ development (GO:0048513) 84 7.92E−05

Positive regulation of nitrogen compound metabolic process (GO:0051173) 83 2.85E−04

Regulation of signaling (GO:0023051) 85 8.01E−04

positive regulation of macromolecule metabolic process (GO:0010604) 85 8.40E−04

Negative regulation of cellular process (GO:0048523) 121 2.22E−07

Regulation of developmental process (GO:0050793) 70 1.85E−02

Regulation of signal transduction (GO:0009966) 73 1.21E−02

Regulation of cell communication (GO:0010646) 84 1.19E−03

Positive regulation of cellular metabolic process (GO:0031325) 85 9.19E−04

Regulation of biological quality (GO:0065008) 101 8.42E−05

Positive regulation of metabolic process (GO:0009893) 90 1.10E−03

Positive regulation of cellular process (GO:0048522) 137 4.63E−08

Negative regulation of biological process (GO:0048519) 130 3.38E−07

Regulation of multicellular organismal process (GO:0051239) 81 1.00E−02

System development (GO:0048731) 104 2.89E−04

Positive regulation of biological process (GO:0048518) 148 7.92E−08

Cell differentiation (GO:0030154) 88 2.66E−02

Cellular developmental process (GO:0048869) 89 3.38E−02

Developmental process (GO:0032502) 129 9.99E−05

Anatomical structure development (GO:0048856) 120 6.88E−04

Multicellular organism development (GO:0007275) 110 6.17E−03

Regulation of cellular metabolic process (GO:0031323) 123 2.77E−03

Regulation of nitrogen compound metabolic process (GO:0051171) 115 1.14E−02

Regulation of macromolecule metabolic process (GO:0060255) 121 4.63E−03

Regulation of metabolic process (GO:0019222) 131 1.79E−03

Regulation of primary metabolic process (GO:0080090) 117 1.48E−02

Biological regulation (GO:0065007) 240 2.04E−08

Regulation of cellular process (GO:0050794) 213 1.65E−05

Response to stimulus (GO:0050896) 166 2.02E−02

Regulation of biological process (GO:0050789) 226 1.80E−06

Cellular process (GO:0009987) 263 1.58E−07

Unclassified (UNCLASSIFIED) 9 0.00E00



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18398  | https://doi.org/10.1038/s41598-020-75395-w

www.nature.com/scientificreports/

in tumor cell implantation. The majority of hepatic micrometastases were at a prevascular/angiogenic stage of 
growth, characterized by the highest densities of angiogenic and desmoplastic stromal reaction. They composed 
a ~ 70% of tumor foci per observed area in siØ mice and a ~ 60% in siDDR1 ones. A comparison between those 
groups showed a ~ 44% reduction in tumor density in siDDR1. Finally, panlobular metastases were ~ 58% lower 
in the siDDR1 livers. Central necrosis was rarely observed in the tumor foci under any treatment at this stage 
of development. As a whole, these results may indicate that DDR1-silenced livers offer less favorable microen-
vironmental conditions for both implantation and growth of CRC metastasis in mice.

Next, we investigated whether the composition of the tumor stroma is affected by the level of hepatic DDR1. 
Tumor foci at the prevascular/angiogenic stages of metastatic growth were analyzed by immunofluorescence and 
confocal microscopy (Fig. 7). Analysis of triple stained liver sections revealed that silencing of hepatic DDR1 
reduced the intratumoral density of angiogenic, CD31-expressing LSECs by ~ 40%, desmin expressing HSCs 
by ~ 10% and α-SMA expressing myofibroblast by ~ 37%. 85% of α-SMA-expressing cells also contained desmin, 
indicating an HSC origin. Immunofluorescence on serial sections also revealed a ~ 30% reduction in the density 
of recruited F4/80-expressing KCs. Furthermore, Picrosirius staining of collagen was ~ 42% lower in siDDR1 
than in siØ livers, and correlated with a 40% reduction in the in situ MMPs activity (Fig. 7a,c). Finally, a ~ 18% 
decrement was observed in the density of Ki67-expressing proliferating cells in siDDR1 hepatic tissue, com-
pared to the control (Fig. 7b,c). No statistical differences existed between untreated and siØ mice. Collectively, 
the data indicate that the silencing of hepatic DDR1 impairs the generation of a pro-angiogenic, pro-fibrogenic 
and proliferative microenvironment provided by the crosstalk between tumor cells and the surrounding SCs.

Discussion
Although DDR1 is mostly expressed by epithelial cells, previous studies indicated that non-epithelial cells, such 
as myofibroblast-like cells in cancerous tissues, also express DDR141. In this study, we demonstrated for the first 
time that freshly isolated HSCs, KCs and LSECs of the murine liver capillaries express DDR1. While no report 
exists on DDR1 in murine liver, expression of DDR1 has been described in human hepatocytes and cholangio-
cytes by immunohistochemistry analyses of human liver sections9,42. Interestingly, none of the reports utilized 
SCs markers nor studied DDR1 expression in isolate liver cell cultures. In this regard, we have reported robust 
DDR1 expression in the human HSCs line LX243.

The dysregulation of matricellular components of the tumor microenvironment has been linked with the 
development of metastases in multiple cancer types24. Increased production of collagen in and around hepatic 
metastases occurs in humans27, but its clinical implications are still not well understood. Experimental models 
have demonstrated that the crosstalk between metastatic CRC cells and the hepatic sinusoidal occurs in a col-
lagenous microenvironment since very early stages of tumor growth. To this regard, we found that DDR1mRNA 
expression in SCs increases in response to tumor secretomes at a time when gene expression of inflammatory and 
immunoregulatory genes are also upregulated in vitro, and in experimental liver metastasis26. Results using this 
gene signature analysis may indicate that the increased expression of DDR1 gene may also occur in vivo. DDR1 
silenced livers developed less metastatic foci than DDR1-expressing ones, which may suggest that depletion 
of DDR1 in the sinusoids creates a less favorable microenvironment for tumor implantation and colonization. 
Next, the desmoplastic and angiogenic response generated by the nearby SCs is diminished in DDR1 silenced 
livers. Thus, it is tempting to speculate that DDR1 phosphorylation and downstream signaling may participate 
in the generation of microenvironmental conditions for both CRC cell implantation and metastatic foci forma-
tion and growth in mice.

Table 3.   Gene Ontology (GO) analysis on selected HSCs genes  modified by DDR1 mRNA silencing. Genes 
were introduced into the AmiGO 2 Gen Ontology database, biological process. Bonferroni-corrected for 
P < 0.05.

Downregulated P value

Collagen fibril organization Col2α1, Col3α1,Col14α1, Loxl3 1.23E−06

Collagen catabolic process Mmp3, Mmp9, Mmp12, Mmp13 4.96E−08

Inflammatory response Il1a, Il1b, Il6, Il13, Il18, Il1rn, Il1rl2 3.02E−05

Inflammatory response Cxcl1, Cxcl2, Cxcl5, Cxcl9, Cxcl10, Cxcl11, Cxcl12, Cxcl13 7.81E−08

Regulation of inflammatory response Tnf , Tnfrsf11a, Tnfsf4, Tnfaip3, Tnfaip6 3.22E−04

Chemokine-mediated signaling pathway Cxcl1, Cxcl2, Cxcl5, Cxcl9, Cxcl10, Cxcl11, Cxcl12, Cxcl13 2.53E−17

Regulation of cell proliferation Pdgfra, Pdgfrb, Pdgfc, Fap, Csf1, Csf2, Stat1, Fgfr1op 7.67E−04

Cell adhesion Tnc, Lamb1-1, Vcan, Lama4, Dag1, Hpse 5.54E−03

Protein autoprocessing Casp1, Casp 12 4.74E−03

Upregulated P value

Mitotic cell cycle Cdkn1a, Ccno, Ccng1, Hus1, Gtse1, Cep55, Ckap2 3.14E−02

Regulation of cyclin-dependent protein serine/threonine 
kinase activity Cdkn1a, Akt1, Ccno, Ccng1 2.84E−02

Regulation of protein phosphorylation Cdkn1a, Akt1, Ccno, Ccng1, Hus1, Cblb, Gdf15, Ccl19, Ifna2 4.42E−02
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Figure 6.   Silencing of hepatic DDR1 reduces experimental liver metastasis by C26 cells. (a) Treatment 
schedule. (b) Western Blot of DDR1 expression in liver lysates from tumor-free mice injected with the silencing 
or control RNAs at day 8 post-treatment. (c) Histograms on computer-assisted semi-quantitation of western 
blots for DDR1 expression in siDDR1 and siØ livers. (d) Representative murine livers 8 days after tumor 
inoculation to the spleen. (e) Number of metastatic foci per liver area. (f) Percentage of total liver volume 
occupied by metastasis. (g) Distribution of metastatic foci according to their developmental stage. Histograms in 
(e–g) represent averaged values of 20 micrometastatic foci per mice, in 24 mice with liver metastases. Data are 
presented as means ± SD. *P < 0.1, **P < 0.01, ***P < 0.001. The experiment was repeated twice. Full-length blot is 
presented in Supplementary Figure S8.
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Figure 7.   Immunohistochemical analysis of experimental hepatic metastasis by C26 cells in mice pretreated 
or not with DDR1 silencing RNA. (a) Immunofluorescence images of intratumoral expression of CD31/
desmin/α-SMA in triple-labeled liver sections, and F4/80, Picrosirius Red, and in situ zymography in serial liver 
sections. (b) Representative images of DAPI and Ki67 staining in serial liver tissue sections. Liver tissue sections 
were obtained from the mouse analyzed in Fig. 6. T tumor, S sinusoids. Dotted white lines separate the tumor 
from the surrounding hepatic tissue. Scale bar 50 µm. (c) Histogram on computer-assisted semi-quantitation 
represents averaged values of 20 tumor foci per mice, in 24 mice with liver metastases. Data are expressed as 
means ± SD *P < 0.1, **P < 0.01, ***P < 0.001. The experiment was repeated twice. All images were processes 
under the same conditions.
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Our studies point out HSCs as the SCs with the most abundant DDR1. Furthermore, we find that both freshly 
isolated, quiescent and tumor-activated HSCs express DDR1. We previously reported that HSCs start to express 
DDR2 once these cells initiate their activation program44. Thus, DDR1 and DDR2 expression patterns differ in 
HSCs. We and others have previously shown that activated HSCs play a major role as a source of migratory fac-
tors for tumor cells, and pro-angiogenic factors for LSECs32,45. However, these data should be interpreted with 
caution as the gene analyses (Table 3) need to be further validated both at the RNA and protein levels. In vitro 
analysis revealed a role for DDR1 in HSCs expression of genes related to cell migration and secretion of pro-
migratory chemotactic factors for LSECs and tumor cells, such as interleukins, CXC chemokines, and MMPs. 
Chemokines mediate non-inflammatory cell migration and have been implicated in CRC metastasis30. These 
in vitro results may explain the in vivo reduction of angiogenesis and tumor growth in the metastatic tumors 
of hepatic DDR1-silenced mice. Alternatively, it may also derive from the reduction in the density of activated 
HSCs inside the tumor in DDR1-silenced livers. In this regard, important genes that regulate cell proliferation 
and HSCs activation, such as those for the PDGF receptors46,47, are less expressed in siDDR1 HSCs, which may 
further explain the reduced number of activated HSCs in the tumor stroma of hepatic DDR1 silenced mice.

Collagen deposits may act as signaling sources for DDR1 phosphorylation. Hepatic collagen at the sinusoidal 
areas mainly derives from activated HSCs. In turn, collagen further activates HSCs creating a positive feedback 
loop. A role for autocrine collagen type I in HSCs DDR1 phosphorylation may be envisioned, as occurred for 
DDR248. Furthermore, siDDR1 HSCs expressed lower levels of genes for collagen II, III and IV, and for others 
related to collagen catabolism and MMPs. Such decrement may account in part for the reduced collagen and 
MMPs activity in the micrometastases of hepatic DDR1-silenced mice. An alternative source of stromal col-
lagen could be the tumor cells. RT-qPCR and Western blot analysis shows that C26 express collagen I (Salado 
C, personal communication), as human HT29 colon carcinoma cells do43.

Remodeling of the collagen matrix aid tumor progression. In the liver, MMPs regulate tissue levels of collagen 
and participate in the crosstalk between SCs populations, and between the tumor and the SCs26. Using a DDR1 
kinase inhibitor, we found that expression of MMP2 and MMP9 in response to collagen I was DDR1kinase-
dependent in HSCs, and to a lesser extent in KCs. Nevertheless, recent studies reveal a role for DDR1-collagen-
independent or DDR1 kinase-independent in cell behavior3, such as collective migration in tumor cells49, which 
may explain the observed discrepancies between inhibition of PDDR1 and reduction of MMPs expression.

Our study does not rule out a direct effect of DDR1 silencing in hepatocytes. Hepatocytes promote HSCs 
recruitment and activation50. In our hands, freshly isolated murine hepatocytes express DDR1 (Romayor I, 
unpublished data). Moreover, Lee et al. have recently unveiled their direct implication in the formation of the 
pro-metastatic niche51. Furthermore, our work utilizes an experimental model of liver metastasis. Whether the 
same mechanisms occur in the human liver and its relevance in the development of metastatic CRC remain to be 
assessed. Finally, our studies open the door for future analyses on a role for DDR1 in other liver pathologies where 
excessive collagen is produced and the contribution of SCs is critical, such as fibrosis and primary liver cancer.

Material and methods
Animals.  Balb/c male mice (6–8 weeks old) were obtained from Charles River (Barcelona, Spain). Housing, 
care, and experimental conditions were carried out in conformity with institutional guidelines and national 
and international laws for experimental animal care. The animals were fed ad libitum with standard chow and 
water. All the proceedings were approved by the Basque Country University Ethical Committee (CEID) and by 
national and international guidelines regarding the protection and care of animals used for scientific purposes.

Isolation of murine hepatic SCs.  The isolation of liver SCs, namely HSCs, KCs and LSECs was performed 
according to the protocol established by Smedsrød and Pertoft52 with slight modifications29,40. Briefly, the liver 
was perfused by 0.02% collagenase type IV (Sigma-Aldrich) solution, followed by isopycnic centrifugation on 
Percoll (MP Biomedicals). HSCs were recollected from the upper phase and LSECs from the lower phase. SCs 
were assayed for purity prior to culture by Western blot using specific markers for each cell type: GFAP for 
HSCs, F4/80 for KCs and CD146 for LSECs (see Western Blot section below). KCs were further purified by their 
high capacity to adhere rapidly to plastic surfaces. HSCs were cultured at 4 × 105 cells/cm2, KCs were cultured at 
2 × 105 cells/cm2 and LSECs were seeded at 8 × 105 cells/cm2 onto 1% rat tail collagen I pre-coated plates (Thermo 
Fisher Scientific). Freshly isolated cells were incubated for 3  h in RPMI-1640 medium with 5% fetal bovine 
serum (FBS), penicillin, streptomycin, amphotericin B and gentamycin to allow them to recover and attach to 
the dishes. Then, media was changed to RPMI-1640 medium with 5% FBS, and antibiotics/antimycotics. KCs 
and LSECs were used right afterward to retain functionality52,53. HSCs were incubated for 2 days prior to use to 
allow full recovery40.

Murine cell lines.  C26 colon carcinoma cells, 3T3 skin fibroblasts and J774A.1 macrophages were obtained 
from the American Type Culture Collection (ATCC, LGC Standards SLU). C26 CRC cell line is syngenic with 
BALB/c mice. Cell lines were cultured in RPMI-1640 medium with 10% FBS, penicillin, streptomycin and 
amphotericin B. Cell lines were maintained in sub-confluent cultures and were discarded after ten passages.

In vitro DDR1 phosphorylation activation and blockage.  Cells were cultured for 2 h in RPMI-1640 
medium containing 10 µg/ml collagen I. In some experiments, cells were pre-treated with DDR1 kinase inhibi-
tor DDR1-IN-1(Tocris Bioscience) for 1 h, then media was changed to one containing 10 µg/ml collagen I and 
DDR1-IN-1 for 2 h.
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Cell secretomes.  C26 Secretomes were obtained as conditioned media (CM) from subconfluent C26 cul-
tures maintained for 24 h in fresh serum-free basal media and antibiotics/antimycotics. Basal SC (Ø) secretomes 
were obtained from SCs monocultures cultured overnight in fresh basal media plus 1% FBS. Then, media was 
changed with fresh basal media plus 1% FBS for another 24 h. To obtain tumor-activated (TA) SCs secretomes, 
SC cells were maintained overnight in the presence of tumor secretomes, diluted 1:2 in fresh basal media plus 
1% FBS. Then, media was removed, and new basal media plus 1% FBS were added to the cultures. All CM were 
collected after 24 h, centrifuged to remove cell debris, and stored at – 20 °C for further use. In some experiments, 
SCs treated overnight with basal media or with tumor secretomes received or not DDR1-IN-1 for 1 h, then 
media was changed to fresh basal media containing 10 µg/ml collagen I and DDR1-IN-1 for 2 h. Then, media 
was changed again to basal media plus 1% FBS, centrifuged and collected 10 h afterwards.

Cell immunofluorescence.  SCs were cultured in coverslips, fixed with 4% paraformaldehyde and incu-
bated in blocking solution (3% BSA in PBS). Next, cells were incubated with rabbit anti-DDR1 (1:200) (Cloud-
Clone Corp) overnight at 4 °C and Cy3 goat anti-rabbit (1:2000) fluorescent secondary antibody (Abcam). Actin 
fibers were stained using Phalloidin-Fluor 488 (1:100). Cells nuclei were stained with Hoechst 33342 (1:1000). 
Cells were observed using a Zeiss LM800 confocal microscope.

In vitro HSCs DDR1 silencing.  HSCs monocultures maintained in culture for 2 days after isolation were 
transfected with the DDR1 siRNASTABLE (siDDR1), or non-targeting control siRNASTABLE (siØ) (Dhar-
macon). Then, media was changed to fresh basal media with 1% FBS, and cells remained untreated for 3 days. 
DDR1 protein levels were analyzed by Western blot.

RT‑qPCR.  SCs monocultures under basal conditions (Ø) were generated by culture for 1 h in fresh basal 
media supplemented with 5% FBS and antibiotics/antimycotics. SCs monocultures under tumor activated con-
ditions (TA) were generated after 1-h incubation with tumor secretomes, diluted 1:2 in fresh basal media at 
a 5% FBS final concentration. Next, total RNA was extracted using Norgen FFPE RNA Purification kit (Nor-
gen Biotek Corp). RNA concentration and quality were assessed by NanoDrop spectrophotometer (Thermo 
Fisher Scientific). 0.5–1 µg RNA was reverse transcribed into cDNA with iScript Reverse Transcription Super-
mix (BIO-RAD). Quantification of cDNA template was performed using iTaq Universal SYBR Green Supermix 
(BIO-RAD) in an ABI 7900HT (Life Technologies). PCR primers were: COX2 F, TGC​ACT​ATG​GTT​ACA​AAA​
GCTGG and R, TCG​GAA​GCT​CCT​TAT​TTC​CCTT; IL6 F, TCT​ATA​CCA​CTT​CAC​AAG​TCGGA and R, GAA​
TTG​CCA​TTG​CAC​AAC​TCTTT; IL10 F, ACA​GCC​GGG​AAG​ACA​ATA​ACT and R, GCA​GCT​CTA​GGA​GCA​
TGT​GG; PDGF F, TGA​GAA​CCA​GCA​GAG​GCA​TTT and R, GCC​ACC​ATG​CTG​ATT​TCC​AG; VEGF F, TGT​
ACC​TCC​ACC​ATG​CCA​AG and R, ACT​TGA​TCA​CTT​CAT​GGG​ACT​TCT; COL1A F, TGG​GCA​TCT​GGT​TTA​
GCC​TT and R, TGA​CTG​TCT​TGC​CCC​AAG​TT; DDR1 F, GCG​TCT​GTC​TGC​GGG​TAG​AG and R, ACG​GCC​
TCA​GAT​AAA​TAC​ATT​GTC​T; GAPDH (housekeeping) F, GTA​TGA​CTC​CAC​TCA​CGG​CAA and R, CTT​CCC​
ATT​CTC​GGC​CTT​G. Relative expression of target genes was normalized to the internal control gene GAPDH 
by the ΔΔCt method. Data were generated by the use of specific software (ABI Prism, SDS2.0, Life Technologies) 
after normalization.

Western blot.  Cells were lysed in Laemmli sample buffer with 1% beta-mercaptoethanol at a ratio of 
100 µl/106 cells. Protein quantification was performed using TCA (Fluka Biochemika). Lysates were used in 
the following amounts: 10 µg (HSCs, KCs, LSECs) or 20 µg (3T3 and J774A.1). Electrophoresis was performed 
in 15% SDS PAGE gels (to detect GFAP, F4/80, CD146 and CASP3) or 10% SDS PAGE gels (to detect DDR1 
and PDDR1). Proteins were transferred onto nitrocellulose membranes. All membranes were cut in two. One 
part was incubated overnight at 4 °C with one or more of the following antibodies: rabbit anti-GFAP (1:2000, 
Abcam), rat anti-F4/80 (1:1000, BIO-RAD), rabbit anti-CD146 (1:1000, Abcam), rabbit anti-DDR1, center 
region (1:1000, GeneTex), anti-DDR1 (1:1000, Cell Signaling Technology), anti-DDR1 (1:1000, gently donated 
by Regeneron Pharmaceuticals), rabbit anti-PDDR1 (Tyr 513) (1:500, St. John´s Laboratory), rabbit anti-CASP3 
(1:1000, Cell Signaling Technology). The other part was incubated overnight at 4 °C with mouse anti-GAPDH 
(1:1000, BIO-RAD) or rabbit anti-αTubulin (Abcam). Then, membranes were incubated for 1 h with specific 
secondary antibodies: streptavidin-HRP conjugated (1:500) to detect GFAP, F4/80, CD146 and GAPDH, or 
Ultra-Sensitive ABC Peroxidase Staining Kit (Thermo Fisher Scientific) for DDR1 and PDDR1 detection. Simi-
lar results were obtained using any of the anti-DDR1 antibodies. When adequate, bands were visualized using 
LuminataTM Crescendo Western HRP Substrate (Millipore). Blots were imaged with SynGene chemilumines-
cence box. FIJI-ImageJ software was used to quantify protein expression. Protein expression was normalized to 
GAPDH or αTubulin expression.

Zymography.  Gelatinase/collagenase activity in the culture supernatants was performed as previously 
described31. Loading of samples was standardized based on the amount of total protein. SynGene chemilumi-
nescence box was used to image the gels. FIJI-ImageJ software was utilized to quantify MMPs expression.

Cell migration assay across collagen I.  2 × 104 cells were shed on 0.8 µm-pore diameter inserts (Corn-
ing) pre-coated with 1% collagen I. Inserts were placed on top of 2 cm2 wells containing SCs secretomes, diluted 
1:2 with RPMI-1640 media at 2.5% FBS final concentration. Cells that had migrated to the lower side of the 
inserts, after 24 h (for C26) or 40 h (for LSECs), were counted in 10 20x-fields per insert, using FIJI-ImageJ 
software.



16

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18398  | https://doi.org/10.1038/s41598-020-75395-w

www.nature.com/scientificreports/

Cell proliferation assay.  5 × 103 cells/ml were seeded in 96 wells plates (Sarstedt) and maintained for 3 h 
in RPMI-1640 FBS-free media. Then, cells were incubated with SCs secretomes diluted 1:2 with culture media 
at 2.5% FBS final concentration for 48 h. Their proliferation rate was measured using PrestoBlue Cell Viability 
Reagent (Thermo Fisher Scientific), following the manufacturer’s instructions.

Gene array.  Total RNA from primary HSCs was isolated using RNeasy columns (Qiagen GmbH). Three cell 
samples were used for each siRNA. Samples quantity and quality were measured with a capillary 2100 Bioana-
lyzer and mRNA was labeled using the LRILAK PLUS two-color kit (Agilent Technologies). The Cy3-ctp and 
Cy5-ctp labeled cDNAs were isolated by the RNeasy Mini kit (Qiagen GmbH). These samples were hybridized 
using Custom Microarray GE, 4 × 44 k according to the manufacturer´s instructions. Slides were scanned using 
the DNA microarray scanner G2505B (Agilent Technologies) and the images were analyzed with the Agilent 
Scan Software Feature Extraction v9.5 for normalization and data analysis. Those genes which were 2 fold up-
regulated or down-regulated in the hybridization were introduced into the AmiGO 2 Gen ontology database. 
Bonferroni-corrected p values less than 0.05 were regarded as a statistically significant association. The p-value 
denotes the significance of GO term enrichment in the differentially expressed gene list.

In vivo hepatic DDR1 silencing.  Mice were injected with 1.5 mg/kg/day with the DDR1 siDDR1, siØ or 
saline solution through their tail veins for three consecutive days. Hepatic DDR1 protein levels were measured 
by Western blot 8 days afterwards.

Experimental hepatic metastases.  Metastases were produced in mice after the in vivo hepatic DDR1 
silencing. C26 cells were intrasplenically injected with 1.5 × 103 cells/g body weight in syngenic BALB/c mice. 
After 12 days, mice were killed, and their livers were processed for immunofluorescence analysis. All animals 
received humane care according to the criteria outlined in the "Guide for the Care and Use of Laboratory Ani-
mals" published by the NIH. The experiment was repeated twice (n = 24). Livers were frozen in TissueTek OCT 
(VWR International) and stored at – 80 °C for further use. Sections of 7 µm obtained at three different tissue 
levels (1 mm away from each other) per liver were used for hematoxylin/eosin staining and immunofluores-
cence. Hematoxylin/eosin staining was used to quantify the percentage of liver tissue occupied by the tumor foci 
(metastatic index) and the number of metastatic foci per liver (density index). Foci were arbitrarily divided into 
four groups according to their developmental stage and size6.

Tissue immunofluorescence.  Liver sections (7 µm thick) were fixed in cold acetone, and stained with 
hematoxylin/eosin staining. For triple immunohistochemical analyses, sections were reacted with rat anti-
mouse CD31 (1:100, Dako), rabbit anti-mouse Desmin (1:200, Dako), and mouse anti-human α-SMA (1:50, 
Sigma-Aldrich) followed by the appropriate fluorescent secondary antibodies (n = 72). Serial sections were incu-
bated with either rat anti-F4/80 (1:100, BIO-RAD) (n = 36) or mouse anti-Ki67 (1:200; Sigma-Aldrich) (n = 36), 
followed by appropriate fluorescent secondary antibodies. Irrelevant appropriate immunoglobulins were used as 
negative controls. Metastases were microphotographed using a Zeiss Axioskop fluorescence microscope under 
the same conditions. Specific immunostaining was quantified using FIJI-ImageJ software. Results were expressed 
as the percentage of specifically colored tissue area relative to the whole micrometastatic foci area.

Picrosirius Red staining.  Collagen detection was performed with Picrosirius red staining as previously 
described8.

In situ zymography.  Zymography was performed on cryostat sections using DQ gelatin conjugated with 
fluorescein (Thermo Fisher Scientific) following the manufacturer´s instructions.

Statistical analysis.  Each experiment was performed three times, except for the in vivo metastasis. Statis-
tical analysis was performed using GraphPad Prism statistical software (version 5.0). Significance was assessed 
using the Student’s two-tailed unpaired t-test and ANOVA test, as appropriate. Data are expressed as the 
mean ± standard deviation (SD).

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files). The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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