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Preterm birth is associated with increased risks of neurological and motor impairments such
as cerebral palsy.The risks are highest in those born at the lowest gestations. Early identi-
fication of those most at risk is challenging meaning that a critical window of opportunity
to improve outcomes through therapy-based interventions may be missed. Clinically, the
assessment of spontaneous general movements is an important tool, which can be used for
the prediction of movement impairments in high risk infants. Movement recognition aims
to capture and analyze relevant limb movements through computerized approaches focus-
ing on continuous, objective, and quantitative assessment. Different methods of recording
and analyzing infant movements have recently been explored in high risk infants. These
range from camera-based solutions to body-worn miniaturized movement sensors used
to record continuous time-series data that represent the dynamics of limb movements.
Various machine learning methods have been developed and applied to the analysis of the
recorded movement data. This analysis has focused on the detection and classification of
atypical spontaneous general movements. This article aims to identify recent translational
studies using movement recognition technology as a method of assessing movement in
high risk infants. The application of this technology within pediatric practice represents a
growing area of inter-disciplinary collaboration, which may lead to a greater understanding
of the development of the nervous system in infants at high risk of motor impairment.

Keywords: preterm birth, cerebral palsy, neuro-motor assessment, general movement assessment, movement
recognition

INTRODUCTION
Each year more than 15 million babies worldwide are born preterm
(before 37 weeks gestational age) and the number of cases contin-
ues to rise (1). Infants born preterm are at higher risk of developing
motor impairment than infants born at term (2). Morbidity is
inversely correlated to gestational age meaning that those born
extremely preterm (<28 weeks gestation) are most at risk (3).
Cerebral palsy (CP) is a common motor impairment (3) for high
risk infants (such as those born preterm) and these infants are also
at high risk of developmental delay and other motor coordination
disorders (4).

There are currently no standardized clinical guidelines for the
prediction of motor impairment in high risk infants and the iden-
tification of those at highest risk typically involves the integration
of clinical history, neuroimaging results, different clinical assess-
ments, and experience of health care professionals. The assessment
of spontaneous general movements is an important tool, which
can be used for the prediction of movement impairments in high
risk infants (5).

Movement recognition aims to capture and analyze rele-
vant limb movements through computerized approaches focusing
on continuous, objective, and quantitative assessment. Different

methods of recording and analyzing infant movements have
recently been explored. Camera-based solutions (6–10) and body-
worn miniaturized movement sensors (11–14) have been applied
in order to record continuous time-series data that represent the
dynamics of limb movements. Various machine learning meth-
ods have been developed to analyze the recorded movement data.
This has specifically focused on the detection and classification of
atypical spontaneous general movements.

The aim of this article is to briefly summarize the current
most evidence based clinical approach to observational move-
ment assessment in high risk infants (Prechtl’s General Movements
Assessment) and identify the current studies, which have applied a
variety of automated movement recognition technologies to assess
infant movement.

CLINICAL PREDICTION OF CEREBRAL PALSY USING
PRECHTL’S GENERAL MOVEMENTS ASSESSMENT
Infants learn how their bodies move and interact with the envi-
ronment in early infancy (15). This is achieved through the
development of spontaneous movements into goal directed move-
ments through exploration and problem solving (15). Conse-
quently, the development of spontaneous movements in early
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infancy is a high predictor for later movement (and also cognitive)
performance (4, 16).

The development of spontaneous movements in infants has
been studied and described in detail by Heinze Prechtl and
colleagues (17). Prechtl’s general movements assessment is cur-
rently the clinical assessment that can most reliably predict CP
in high risk infants with a reported sensitivity of 98% (95% con-
fidence interval, CI 74–100%) and specificity of 91% (95% CI
83–93%) (5).

The application of this assessment clinically involves the eval-
uation of the qualities of the spontaneous general movements
through Gestalt perception of the observer (18). A video record-
ing is taken of the infant’s spontaneous general movements, which
is then assessed during playback of the video recording at normal
speed and in addition, a higher speed may be used to identify the
presence of movement stereotypies (18).

In typically developing infants, spontaneous movements are
characterized by large variation (18, 19). Writhing movements
(observed between 36 weeks and 2 months post term) are per-
formed with moderate amplitude and speed and are characterized
by high complexity and large variation in relation to amplitude,
velocity, and acceleration (18). Between 2 and 5 months of age,
fidgety movements become apparent: these show smaller ampli-
tudes of circular shape, lower speed, and a higher variability in
acceleration (18).

Atypical motor development is characterized by limited vari-
ation and limited variability in generalized movements (18).
In particular, the presence of cramped synchronized general
movements (CSGMs) during preterm and term age and the
absence of fidgety movements at 3–5 months are strong predic-
tors for later CP diagnosis (20, 21). CSGM’s are atypical and
lack fluency, variation, and complexity and are also stereotyped
in nature (limb and trunk muscles contract and relax nearly
simultaneously) (18, 21).

The challenges of applying the GM assessment in practice relate
to the availability of appropriately trained and skilled clinicians.
Considerable training is required for an assessor to become reliable
enough to make an accurate evaluation. The assessment is suscep-
tible to observer fatigue (21) and is dependent on the behavioral
state of the infant during recording (ideally an infant should be
in an alert, awake state). By the time, a single GM assessment is
most accurate in predicting CP (3–5 months) (5) an opportunity
to influence the nervous system at an earlier stage of development
may have been missed.

Despite good levels of inter-observer reliability with the GM
assessment (22), there will always remain a degree of subjectiv-
ity in interpretation. In common with all techniques involving
interpretation by a skilled and experienced observer (including
for example, ultrasound scan interpretation), experience of inter-
pretation will improve with time. Despite this, it is not possible
to determine the nature and extent of any subjectivity; however,
the lack of widespread adoption among clinical teams may suggest
there is a concern.

These challenges in the early detection of motor impairments
in high risk infants have led to an increasing interest in the use of
automated movement recognition technologies being applied in
this clinical area.

AUTOMATED MOVEMENT RECOGNITION FOR CLINICAL
MOVEMENT ASSESSMENT
The use of automated movement recognition technology has been
explored in many different clinical conditions such as dementia
(23), Parkinson’s disease (24), and Autism (25, 26). Many of these
applications have produced promising results regarding the over-
all potential for continuous and longitudinal assessments in both
clinical and home environments (27).

Movement recognition in clinical applications aims at the auto-
mated detection, classification, and assessment of the quality of
limb movements focusing on indications for abnormalities. Cap-
turing limb movements can be based on either indirect or direct
sensing (28). Indirect sensing utilizes devices that are integrated
into the assessment environment, such as video cameras or 3D
motion capture facilities (29) and direct sensing records move-
ment data through sensors that are worn by the patient, i.e.,
miniaturized devices attached to the limbs (11, 30, 31). Both
methods capture movement as time-series data, i.e., sequences of
sensor readings. Depending on the sensing modality applied, this
data exhibit differences in temporal and spatial resolution, which
requires adaptations of the analysis methods. Typical methods for
automated data analysis include sequential probabilistic modeling,
e.g., using Markovian approaches (32), statistical methods (11, 14)
to model specific gestures of interest (12) or holistic monitoring
of general movements (27).

There are considerable challenges in utilizing this technology
in the neonatal environment, in particular, the size, fragility, and
vulnerability of infants needs to be taken into account. Further-
more, the automated movement assessment must be sensitive and
reliable enough to detect subtle changes in movements, which are
the basis for clinical diagnosis.

Table 1 summarizes some of the advantages and disadvantages
associated with the two sensing modalities, i.e., direct sensing,
where movements are captured using hardware directly attached
to the subject; and indirect sensing, where hardware is placed in
the assessment environment.

Figure S1 in Supplementary Material gives an overview of the
general approach to automated gesture recognition for clinical
movement assessment. Sensory data for capturing movements
using one or more of the sensing techniques (summarized in
Table 1) are usually pre-processed [see in Ref. (40, 48, 49)] for
wearable sensors and (50, 51) for vision-based systems followed
by movement segmentation, i.e., parts from the recorded data are
partitioned that might contain important movement informa-
tion [see in Ref. (26) for automatic segmentation]. This is usually
followed by feature extraction used to represent large amounts
of sensing data in a reduced fashion [e.g., (52); see also Ref.
(53) for a generic feature learning approach]. Finally, classifi-
cation is performed to identify (or predict) different types of
movements. Various classification frameworks have been reported
in the context of wearable/environmental sensors such as (54–
56) and vision-based systems for activity recognition (57–59). A
supervised classification framework also requires some form of
ground truth labeling. These labels are used for training a machine
learning classifier [some issues related to ground truth annota-
tion have been addressed in Ref. (48, 60); automated vision-based
annotation systems have also been explored in Ref. (59, 61)].
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Table 1 | Brief overview of some of the advantages and disadvantages associated with various sensing modalities in the context of recording

general movements in preterm infants.

Advantages Disadvantages

Indirect

sensing

Video cameras (33, 36, 63) 1. Easy to understand 1. Computationally expensive analysis

2. High spatial resolution 2. Privacy concerns

3. High context information 3. Large disk space requirements

4. Portable 4. Generally low temporal resolution

5. High availability 5. Occlusion issues

3D motion capture (29, 37) 1. High spatial resolution 1. High costs

2. Depth information 2. Computationally very expensive analysis

3. Accurate motion capture 3. Privacy concerns

4. High reliability 4. Very large disk space requirements

5. High temporal resolution possible 5. Large physical space requirement

6. Secondary movement analysis possible

(such as force and weight exchange)

6. Markers needed for motion capture

7. Occlusion issues

Microsoft kinect (35, 47, 62) 1. High spatial resolution 1. Not suitable for infants (<4 years)

2. Depth information 2. Occlusion issues

3. Low-cost 3. Low temporal resolution

4. Marker-less motion capture 4. Limited field of view

Direct

sensing

Wearable movement sensors

(11–13, 34, 39–43, 45, 64)

1. High temporal resolution 1. Low spatial resolution

2. Low-cost 2. Occasional data losses (wireless)

3. Energy efficient 3. Limited battery life (wireless/real-time)

4. Privacy preserving 4. Difficulty in consistent positioning

5. Small physical size 5. Comfort issues

6. Good battery life (embedded) 6. Relative movement capture only

7. High availability (e.g., mobile phones)

8. Actigraphs: sleep/wake patterns

Magnet tracking system (31, 46, 66) 1. High temporal resolution 1. High costs compared with accelerometers

2. Very high accuracy 2. Computationally very expensive analysis

3. Metal tolerant 3. Complex setup

4. No line of sight occlusions 4. Magnetic and electrical interference issues

In the following sections, we identify and classify existing
systems for gesture recognition based automated movement
assessment in preterm infants.

AUTOMATED MOVEMENT RECOGNITION FOR CLINICAL
MOVEMENT ASSESSMENT IN HIGH RISK INFANTS
VIDEO-BASED ASSESSMENT
Existing video-based movement assessment systems for infants
can be categorized into: (i) using three dimensional (3D) motion
capture systems; and (ii) using traditional color cameras. Motion
capture based systems require special markers to be attached to the
limbs being tracked. High-end cameras typically provide very high
3D tracking accuracy and resolution (both spatially and tempo-
rally; Figure S1 in Supplementary Material), but at a considerable
price and setup effort. These systems are most commonly seen in
the research setting and due to practical limitations are not easily
adaptable to the clinical environment.

Meinecke and colleagues applied a motion capture system to
objectively measure the spontaneous movements of infants during
the first months of life (29). Fifty-three movement-based parame-
ters were automatically extracted from motion tracks followed by

cluster analysis based on Euclidian distances that selected eight
of the parameters. These were able to delineate between healthy
and at risk infants. Classification was performed using quadratic
discriminant analysis (sensitivity 1, specificity 0.7) (see Table 2).
With a similar setup Kanemaru and co-workers analyzed sponta-
neous movements in infants aiming to investigate the relationship
between spontaneous movements and the development of CP at
3 years of age. The authors found that the jerkiness in spontaneous
movements at term age (defined as the time integral of the square
of the magnitude of jerks per unit movement distance) was higher
in infants who developed CP (8–10).

Despite the popularity of consumer 3D cameras such as
Microsoft’s Kinect (47), these have not yet been used extensively
for movement analysis in infants. This is in stark contrast to
other clinical applications (35, 62). Although having great poten-
tial for general movement analysis, Kinect’s capabilities are not
largely explored with regards to assessments of preterm infants.
This could be because the provided human tracking system in
Kinect, necessary for detailed analysis, is recommended for track-
ing humans who are at least 4 years old and therefore considered
unsuitable for use with infants.
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Table 2 | Identification of different automated gesture recognition systems applied to objectively measure movement in infants.

Maintainer Movements/

predictions

Clinical

outcome

Sensing

technology

Data analysis Dataset/

study

Results/findingsa

(sensitivity, specificity)

Reference

Data preprocessing Classification method

RWTH

Aachen,

Germany

GM/ 24 months

(CP/no CP)

Accelerometry 32 features using

velocity + acceleration (73, 74)

Decision trees 23 Infants (1.00, 0.86) (45)

1. Healthy 19 Healthy

2. At risk 4 High risk

Seirei

Christopher

University,

Japan

SM/ Nil doc Accelerometry MEM + FNN + MLE +Amplitude

adjusted Fourier Transform

Mann–Whitney U

test + Student’s t -test

14 Infants With BI – high

dimensional, unstable,

and unpredictable

movement

(13)

1. With BI 7 High risk

2. Without BI 7 Low risk

UC Irvine, USA GM/ Nil doc Accelerometry Statistical features using acceleration

including; mean, standard deviation,

min, max, products, z-value

DT + SVM + DBN-RF 10 Infants (0.103, 0.939) + (0.069,

0.964) + (0.498, 0.764

(11)

1. CSGM present

2. CSGM absent

6 CSGM

present

4 CSGM

absent

University

Children’s

Hospital Bern,

Switzerland

SM/

1. Only healthy

Nil doc Accelerometry Detrended fluctuation analysis (DFA) t -test statistical

test + Linear regres-

sion + generalized least

squares regression

22 Healthy

infants

Correlation study (14)

UC Irvine, USA GM/ Nil doc Accelerometry Several basic motion features using

acceleration + mean, max, min, SD,

z-score

RF + Boosted

NB + SVM + EC/DBN

10 Infants (0.72, 0.57) (12)

1. CSGM present

2. CSGM absent

NTNU,

Trondheim,

Norway

GM/(Visualization) 24 months

CP/no CP

Accelerometry +

Computer vision

Periodicity + PCA n/a 14 Patients

4 FM types

n/a (visualization only) (69)

University of

Heidelburg,

Germany

GM/ Nil (31, 52) Magnet tracking

system +

computer vision

Stereotypy score, Periodic and Torpid

leg movements

t -test 67 Infants (0.90, 0.95) (31, 46, 66)

1. CP 24 mon (46) 49 High risk

2. Non-CP 18 Low risk

NTNU,

Trondheim,

Norway

GM/

1. Healthy

2. At risk

Not specified Accelerometry +

Computer vision

Skewness, cross-correlation, areas

calculated using the moving average,

Periodicity, PCA, AR + Linear

Separability (scatter matrix), and

Clustering analysis

1. LDA

2. QDA

81 Infants (0.86, 0.90) (70)
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Table 2 | Continued

Maintainer Movements/

predictions

Clinical

outcome

Sensing

technology

Data analysis Dataset/

study

Results/findingsa

(sensitivity, specificity)

Reference

Data preprocessing Classification method

University of

Tokyo, Japan

SM/

1. CP

2. Non-CP

3 years Dev

Delay

3D Motion

capture

6 Movement indices (using

Frame-DIAS; DHK, Japan) including

Jerk index (time integral of the square

of the magnitude of jerks per unit

movement distance)

Kruskal–Wallis

test + Fisher’s exact

test + Mann–Whitney U

test

145 Infants

16 CP

129 Normal

Significantly higher jerk

index in CP

(8–10)

St. Olav

University

Hospital,

Trondheim,

Norway

GM/

1. CP

2. Non-CP

5 years (CP/no

CP)

Computer Vision Quantity of motion, Centroid of

motion, Variability of velocity and

acceleration, CP predictor feature

t -test statistical

test + Mann–Whitney

U test + Logistic

regression

30 High risk

infants

(0.85, 0.88) (7)

St. Olav

University

Hospital,

Trondheim,

Norway

GM/

1. FM present

2. FM absent

Nil doc Computer Vision Quantity of motion, Centroid of motion,

Variability of velocity and acceleration

Threshold analysis 82 Infants

50 Low risk

32 High risk

(0.815, 0.70) (6)

RWTH

Aachen,

Germany

GM/

1. Healthy

2. At risk

Nil doc 3D Motion

capture

Skewness, cross-correlation, area

outside the SD of moving average,

Area differing from moving

average + Cluster analysis with

Euclidian distances

QDA 22 Infants

15 Healthy

7 Affected

(1.00, 0.70) (29)

GM, general movements; SM, spontaneous movements; CSGM, cramped synchronized GM; CP, cerebral palsy; BI, brain injury; PCA, principal component analysis; SD, standard deviation; DT, decision tree; NB,

naïve Bayes; MEM, maximum entropy method; FNN, false nearest neighbors; MLE, maximal Lyapunov exponent; AR, auto-regression; SVM, support vector machine; QDA, quadratic discriminant analysis; LDA,

linear discriminant analysis; EC/DBN, Erlang-Cox/dynamic Bayesian network.
aPredictive values of the assessment methods listed in the table need to be interpreted with caution as the number of infants included in the studies are mostly low.

w
w

w
.fro

n
tiersin

.o
rg

January
2015

|Volum
e

5
|A

rticle
284

|5

http://www.frontiersin.org
http://www.frontiersin.org/Neuropediatrics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marcroft et al. Automated movement recognition in infants

Standard video cameras such as regular web-cams, RGB cam-
eras on tripods, and even video-enabled baby monitors (36) have
also been used for marker-less capturing of infants’ body move-
ments. These systems offer a more reasonable priced alternative
to 3D motion capture system and in addition come with sub-
stantially less set up effort, which enables applications beyond
research and clinical settings, allowing for continuous and more
detailed analysis in natural (home) environments. Typically, these
recording setups come with lower spatial and temporal resolu-
tion, which limits the level of detail of the analysis. Additionally,
marker-less tracking is less accurate than professional motion cap-
ture (37), which may be problematic when attempting to identify
more subtle differences in movement patterns. An example would
be in identification of the differences between CSGMs and poor
repertoire general movements. CSGMs are described as monoto-
nous and rigid with the limb and trunk muscles contracting and
relaxing simultaneously (33) and poor repertoire general move-
ments are monotonous, with the amplitude, speed, and intensity
lacking normal variability (33). While both of these movement
patterns are identified as being atypical (18, 33), CSGMs can also
be most easily recognized by human gestalt perception and also
have a much higher predictive value for motor impairment (33).
Therefore, identification of any difference between the two atypical
patterns is clinically highly relevant.

Adde and colleagues have developed an advanced video-based
analysis system for quantitative and qualitative assessments of
infants general movements (63). Utilizing standard RGB video
cameras and an analysis method that uses so-called “motion-
grams” for quantifying changes in the infant’s movements, the
general movements toolbox (GMT) is able to detect fidgety move-
ments as described in the GM assessment (18). This clinical tool-
box may be useful in the early diagnosis and/or risk stratification of
infants at high risk of developing CP. The first studies using GMT
on a small number of high risk infants (n = 30) report promis-
ing results (sensitivity 85% and specificity 88%) with respectable
follow-up data past 4 years of age (7). This suggests that the appli-
cation of the GMT as a method for prediction of neurological
impairment may be straightforward, cost-effective, and feasible
for use in clinical practice but will require further systematic
validation.

ASSESSMENT THROUGH DIRECT MOVEMENT SENSING
While indirect sensing settings require external tracking equip-
ment, body-worn accelerometers have recently been successfully
applied and remain popular in clinical studies. In particular, the
proliferation of affordable, reliable, and miniaturized sensing facil-
ities in combination with sophisticated data analysis techniques
has allowed for automation of movement assessment in small
infants. Accelerometers are sensors, which measure inertial forces
in one or three spatial axes, resulting in high-resolution time-series
data that represent the dynamics of the acceleration of the sensor
during movements (34). Specifically, they have been used to mea-
sure physical activity levels in children (34), sleep/wake cycles, and
the physiology of swallowing in infants (38, 64). These applica-
tions are in line with a large body of research that focuses on
objective assessments of movement related parameters in a multi-
tude of health-related scenarios, including gait analysis (39) sport

activity (40), rehabilitation monitoring (41, 42), quantification of
disease progression, and investigation of effectiveness of therapy
interventions (43).

Even though reduced frequency and quantity of limb move-
ments in infants have recently been identified as early predictors
for developmental delay (9), it is widely accepted that in infants
with a suspected diagnosis of CP, the general movements change in
quality rather than quantity (44, 65). An automated analysis there-
fore needs to capture fine details of limb movements, for which
video-based assessments are often limited.

Karch et al. developed an electromagnetic tracking system
to undertake movement analysis (66). Small lightweight sensors
(1.3 mm diameter) were attached to the infant’s limbs, which were
then sensed using a commercial (external) tracking system that
provided high accuracy and allowed for detailed analysis of joint
flexion. Serving as proof of concept this tracking system has suc-
cessfully been used for detecting anomalous, spontaneous limb
movements in infants (31, 66). Phillippi et al. conducted a recent
study using this work where it was found that the stereotypy score
of arm movements could be used as a predictor for CP and stereo-
typed periodic leg movements predicted neurodevelopmental
impairments (46).

A limited number of more recent studies have successfully
applied accelerometers to preterm infants to measure spontaneous
movements (13, 31, 45, 46) and also to create models for atypi-
cal movement patterns such as CSGMs (11, 12). While this is an
evolving area of translational use of technology in the healthcare
setting, there is limited data quantifying limb movements and also
comparing the results to longer-term neurodevelopmental out-
comes. Ohgi et al. used tri-axial accelerometry for a cross-sectional
study that measured upper limb acceleration in a small number of
preterm infants with and without brain injuries at 1 month cor-
rected age (13). This was the first application of accelerometers in
preterm infants in a clinical environment but the recording time
was limited to 200 s due to the variability of the infant’s states. Sta-
tistical analysis confirmed that infants with brain injuries exhibited
unstable and unpredictable spontaneous movements with larger
dimensionality (details of the analysis techniques and statistical
tests are provided in Table 2).

A group from University of California, Irvine have tested the
use of wireless accelerometers in the neonatal unit and compared
accelerometer data to the general movements assessment (11, 12).
CSGMs are highly predictive of CP (21, 67) and the group investi-
gated whether accelerometry, combined with machine learning
techniques for automated data analysis, could accurately iden-
tify the components of these atypical movements. By means of
this automated assessment, limb acceleration and correlation have
been characterized successfully. Gravem et al. used various sta-
tistical classification techniques to correctly identify the presence
of CSGM in 6 out of 10 infants (11). Reported accuracy varied
between 70 and 90% (see Table 2 for details).

Heinze et al. used miniature accelerometers with the aim of
developing a methodology to allow objective diagnosis of the
development of movement disorders in preterm infants (45). The
overall detection rate was >90% over three measurements and the
timing of the data collection correlated with the characteristics of
spontaneous movements as described in the general movements
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assessment (18). Nineteen healthy term infants and four “at risk”
preterm infants were included in the study. Clinical and neuro-
logical examinations were undertaken and “at risk” infants were
identified through abnormalities on computer tomography and/or
follow-up to 2 years.

These direct sensing studies represent promising applications
of technology to contribute to the identification of atypical move-
ment patterns in preterm infants. However, it is important to take
into consideration that only small numbers of preterm infants
with atypical movements were included which do not allow for
the calculation of sensitivity and specificity. Furthermore, the fea-
sibility of applying these techniques to larger numbers of high
risk infants in a clinical environment is difficult to establish and
in comparison to applying video-based methods of assessment
(including Prechtl’s GM assessment) may be more difficult to
achieve due to the logistics of attaching direct sensors to small
infants.

Hybrid systems
The main advantage of video-based movement analysis lies in
the recording of spatial data in addition to temporal measure-
ments, which gives direct access to, for example, posture-related
information. In contrast, direct sensing approaches typically have
a much higher temporal resolution allowing for more detailed
assessments, which is beneficial for in-depth analysis of subtle
changes that may precede the development of CP.

Some approaches have been developed that aim at combining
both sensing methods in order to benefit from both spatial and
high temporal resolution – at reasonable costs and minimum setup
efforts for practical applications – for high-fidelity movement
analysis (68). Berge and colleagues have proposed a software tool
for GM representation and modeling called ENIGMA – enhanced
interactive general movement assessment. ENIGMA provides a
useful support tool for visualizing features of motion data in con-
junction with video data for GM experts (69). Similarly, Rahman-
pour et al. employ a hybrid sensing approach for the prediction
of CP using an extensive analysis of movement-based features.
The authors found that dynamic features are more indicative than
the standard statistical features (70). Results from their analysis
are shown in Table 2 with a detailed description of the employed
features.

SUMMARY
Prediction of motor impairment (such as CP) in preterm infants
is challenging, and ideally requires techniques that are both sen-
sitive and specific. Due to the large number of complex factors
affecting neurodevelopment, and the difficulty in assessing brain
plasticity, predicting which children will develop CP on the basis
of a single assessment will always be challenging (71). A multi-
modal longitudinal approach including a combination of meth-
ods, e.g., neurological assessment, general movements’ assessment,
and neuroimaging is likely to improve both positive and negative
prediction. Early risk stratification and prediction has many bene-
fits. It allows for early identification of those most likely to benefit
from early intervention and targeting of resources and support
for parents. Furthermore, access to health, social, and educational
services is often dependent on a diagnosis (72).

Accurate, non-invasive assessments of sufficient sensitivity to
identify longitudinal changes in movement patterns could hold
considerable hope for the future. This mini-review has identi-
fied recent studies employing video-based assessment, assessment
through direct movement sensing and hybrid systems. Specifically,
the use of accelerometry and computer vision may offer clinically
feasible and promising methods of objectively measuring qual-
ity and quantity of infant movement. The application of these
technologies may prove to be useful not only in the prediction
of infants at highest risk of motor impairment but also in the
evaluation of therapies aiming to influence the developing brain.
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