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Abstract
Aim: Availability of uniformly collected presence, absence, and abundance data re-
mains a key challenge in species distribution modeling (SDM). For invasive species, 
abundance and impacts are highly variable across landscapes, and quality occurrence 
and abundance data are critical for predicting locations at high risk for invasion and 
impacts, respectively. We leverage a large aquatic vegetation dataset comprising 
point- level survey data that includes information on the invasive plant Myriophyllum 
spicatum (Eurasian watermilfoil) to: (a) develop SDMs to predict invasion and impact 
from environmental variables based on presence– absence, presence- only, and abun-
dance data, and (b) compare evaluation metrics based on functional and discrimina-
tion accuracy for presence– absence and presence- only SDMs.
Location: Minnesota, USA.
Methods: Eurasian watermilfoil presence– absence and abundance information were 
gathered from 468 surveyed lakes, and 801 unsurveyed lakes were leveraged as 
pseudoabsences for presence- only models. A Random Forest algorithm was used 
to model the distribution and abundance of Eurasian watermilfoil as a function of 
lake- specific predictors, both with and without a spatial autocovariate. Occurrence- 
based SDMs were evaluated using conventional discrimination accuracy metrics and 
functional accuracy metrics assessing correlation between predicted suitability and 
observed abundance.
Results: Water temperature degree days and maximum lake depth were two leading 
predictors influencing both invasion risk and abundance, but they were relatively less 
important for predicting abundance than other water quality measures. Road den-
sity was a strong predictor of Eurasian watermilfoil invasion risk but not abundance. 
Model evaluations highlighted significant differences: Presence– absence models had 
high functional accuracy despite low discrimination accuracy, whereas presence- only 
models showed the opposite pattern.
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1  | INTRODUC TION

Species distribution models (SDMs; aka ecological niche models) 
are among the most widely used modeling approaches in ecol-
ogy and conservation science (Elith & Leathwick, 2009; Johnson 
& Gillingham, 2005). Rooted in ecological niche theory (Higgins 
et al., 2012; Pulliam, 2000; Soberón, 2007), the goal of species dis-
tribution models is to quantify species– environment correlations 
that best capture the underlying true (but unknown) relationship be-
tween environmental conditions and species habitat suitability. Most 
commonly, SDMs are used to predict the occurrence or abundance 
of species within and outside of their current ranges and/or under 
future environmental conditions, for example, species responses to 
future climate change, or the potential for invasive species to estab-
lish in new habitats (reviewed by Guisan & Thuiller 2005; Barbet- 
Massin et al., 2018; Mikulyuk et al., 2020).

The predictive performance of SDMs varies depending on con-
ceptual assumptions, methodological specifics, and ecological infor-
mation used in developing SDMs (Hernandez et al., 2006; Merow 
et al., 2014; Synes & Osborne, 2011; Wiens et al., 2009). Efforts 
have been made to improve SDM performance and utility by in-
creasing the quality of the training data used— specifically by includ-
ing species abundance data instead of solely relying on presence 
and/or absence data (Howard et al., 2014; Kulhanek et al., 2011; 
Mi et al., 2017; Mikulyuk et al., 2020). Local abundance data indi-
cate both habitat suitability and quality and can account for differ-
ences in microhabitat conditions driven by factors such as resource 
availability and biotic interactions (Boulangeat et al., 2012; Pearce 
& Ferrier, 2001; VanDerWal et al., 2009; Verhoeven et al. 2020; 
Weber et al., 2017). Thus, the inclusion of abundance data may im-
prove predictive performance of occurrence- based SDMs and also 
offer a richer understanding of species’ niches and ecological effects 
(Carrascal et al., 2015; Howard et al., 2014; Warren et al., 2020).

Habitat suitability predictions from SDMs are typically based 
on species occurrence (presence– absence) data and are essentially 
occurrence probability or habitat suitability estimates. However, 
SDMs often do not involve true absence information, as confirmed 
absences are typically unavailable in most survey and monitoring 

databases. Given this difficulty to obtain absence information, sev-
eral presence- only SDM approaches have been developed in which 
false absences (typically referred to as “pseudoabsences”) are used in 
place of true absences. These pseudoabsences are locations where 
the species has not been documented, but in fact may not have been 
surveyed, and therefore, the true status of the species is unknown. 
The use of pseudoabsences involves many assumptions and needs 
careful planning (Barbet- Massin et al., 2012; Lobo & Tognelli, 2011; 
Senay et al., 2013), and it is not surprising that studies generally 
suggest using absence data whenever they are available (Brotons 
et al., 2004; Václavík & Meentemeyer, 2009).

Habitat suitability predicted from binary occurrence data can 
predict species abundance through the “abundance– suitability” rela-
tionship, that is, the correlation between predicted probability of oc-
currence and current (or potential) abundance (Nielsen et al., 2005; 
VanDerWal, Shoo, Johnson, et al., 2009). The abundance– suitability 
relationship is built on the assumption that locations that are more 
suitable for species establishment will also support higher abun-
dances. However, the existence and strength of the abundance– 
suitability relationship can vary substantially, with recent 
studies showing only weak correlations (Baer & Maron, 2020; Dallas 
& Hastings, 2018; Mills, 2021; Weber et al., 2017). In a meta- analysis 
by Weber et al. (2017), the strength of this correlation was found 
to vary depending on several factors, including the environmental 
variables used to predict suitability. For instance, SDMs built using 
coarse- scale climatic variables result in relatively weak abundance– 
suitability correlations compared to SDMs that also include local mi-
croclimatic variables and/or biotic factors (Dallas & Hastings, 2018; 
Weber et al., 2017). Despite these uncertainties, the strength of the 
abundance– suitability relationship provides a meaningful evaluation 
metric for occurrence- based SDMs (Lobo et al., 2008), which Warren 
et al. (2020) refer to as “functional accuracy.” Unlike “discrimination 
accuracy” measures such as AUC (area under the receiver operat-
ing characteristic curve; Fielding & Bell, 1997), functional accuracy 
measures based on abundance– suitability correlation strength have 
clear biological relevance that can be leveraged for empirical appli-
cations (Warren et al., 2020). Moreover, functional accuracy metrics 
avoid known problems with discrimination accuracy measures, as 

Main conclusion: Complementing presence– absence data with abundance informa-
tion offers a richer understanding of invasive Eurasian watermilfoil's ecological niche 
and enables evaluation of the model's functional accuracy. Conventional discrimina-
tion accuracy measures were misleading when models were developed using pseudo-
absences. We thus caution against the overuse of presence- only models and suggest 
directing more effort toward systematic monitoring programs that yield high- quality 
data.
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latter can be particularly troublesome when models include pseu-
doabsences from unsampled background distributions (Jiménez- 
Valverde, 2012; Lobo et al., 2008).

The abundance of an invasive species has long been consid-
ered one of the key components that determine its potential im-
pact (Latzka et al., 2016; Parker et al., 1999; Thomsen et al., 2011; 
Yokomizo et al. 2009). At the same time, there is considerable spatial 
heterogeneity in abundance across invasive species’ distributions, 
with relatively few locations typically supporting high abundance 
(Hansen et al., 2013). Given the ecological significance and inherent 
spatial variability of abundance, SDMs of invasive species increas-
ingly combine occurrence and abundance data to predict invasion 
risk and impact, respectively (Bradley, 2013; Januario et al., 2015; 
Kulhanek et al., 2011; Mikulyuk et al., 2020). Such approaches have 
highlighted discontinuities between predicted locations of inva-
sion risk and invasion impact (Bradley, 2016; Mikulyuk et al., 2020; 
Thomas et al., 2017). In short, it is now well understood that the 
availability of high- quality data, especially absences and relative 
abundance measures, is crucial for developing ecologically accurate 
SDMs (Bradley et al. 2018).

The importance of data type and quality in SDM applications 
is widely acknowledged (e.g., Bradley et al. 2018; Guillera- Arroita 
et al., 2015; Howard et al., 2014; Leroy et al., 2018). However, few 
studies to our knowledge have simultaneously addressed the roles 
of absence, pseudoabsence, and abundance information (Aarts 
et al., 2012; Carrascal et al., 2015). While studies have exploited 
abundance data to evaluate the functional utility of SDMs as mea-
sured by abundance– suitability correlation strength (reviewed by 
Weber et al., 2017), it remains unclear how pseudoabsences (in 
presence- only SDMs) affect the abundance– suitability relationship 
(but see Warren et al. (2020) for a simulation- based assessment). In 
the only known study by Carrascal et al. (2015), presence– absence 
models were found to be superior to pseudoabsence- based models 
in predicting local and regional abundance. However, the study by 
Carrascal does not probe the role of different pseudoabsence selec-
tion strategies in affecting functional accuracy.

The inclusion of spatial lag term (such as an autocovariate) is yet 
another common technique employed in SDMs to account for spatial 
autocorrelation in environmental drivers and/or species distribution 
data (Dormann et al., 2007). Addressing spatial autocorrelation is 
particularly important for invasive SDMs since biological invasions 
are often contagious processes constrained by dispersal limitation 
and proximity to anthropogenic disturbances (Václavík et al., 2012). 
Moreover, the incorporation of spatial lag terms is known to improve 
model performance measures such as AUC (and other discrimina-
tion accuracy measures) and estimation of species– environment 
relationship (Crase et al., 2012; Václavík et al., 2012). Yet again, it 
remains unknown if the inclusion of a spatial autocovariate will also 
improve functional accuracy.

Here, we make use of a rich long- term aquatic plant monitor-
ing dataset to build SDMs based on systematically collected pres-
ence, absence, and abundance data. We develop multiple SDMs 
for the invasive plant Eurasian watermilfoil (Myriophyllum spicatum 

L.; hereafter EWM) using response variables that differ in quality 
and definition. The goals of our study are to gain a comprehensive 
understanding of the environmental drivers of EWM invasion and 
simultaneously explore how data quality influences modeling re-
sults and interpretations. Specifically, we (a) develop multiple SDMs 
trained with EWM presence– absence, presence- only, and abun-
dance datasets with a focus on determining the relative importance 
of drivers for EWM occurrence versus abundance; (b) explore the 
effects of pseudoabsences and spatial lag terms on model results 
and performance; and (c) evaluate and compare presence– absence 
and presence- only models based on discrimination accuracy and 
functional accuracy.

2  | METHODS

2.1 | Study area and species

Our study focuses on the distribution and abundance of invasive 
EWM across the lake- rich landscape of Minnesota, USA (Figure 1). 
EWM is a submerged aquatic perennial plant native to Europe and 
Asia that was likely introduced to North America in the late 19th 
century (Nichols & Shaw, 1986). In Minnesota, the earliest known 
EWM occurrences were recorded in 1985 (Smith & Barko, 1990) and 
EWM is currently documented in more than 300 lakes (https://www.
dnr.state.mn.us/invas ives/ais/infes ted.html). Among the character-
istics that make EWM a successful invader are its efficient dispersal 
mechanisms and rapid growth early in the growing season (Grace 
& Wetzel, 1978; Smith & Barko, 1990). Under optimal conditions, 
EWM can attain high densities and form dense mats on the water's 
surface, which can negatively affect aquatic ecosystems by reducing 
species richness and altering water quality, food web interactions, 
and underwater habitat structure (Boylen et al., 1999; Cheruvelil 
et al., 2001; Madsen et al., 1991; Webb et al., 2016). EWM infesta-
tion is also associated with poor esthetic appeal and lower economic 
value of lakeshore properties (Goodenberger & Klaiber, 2016; Zhang 
& Boyle, 2010).

2.2 | EWM response data

Lake- specific EWM occurrence and abundance data were ob-
tained from point- intercept surveys of aquatic plants in lakes across 
Minnesota (Verhoeven, Glisson, et al., 2020; Verhoeven et al., 2021). 
Between 1995 and 2019, 1,534 Minnesota lakes were surveyed at 
least once, and 365 lakes were found to have EWM. All surveys were 
conducted via the rake- based point- intercept methodology, which 
entails sampling macrophytes (aquatic plants and macroalgae) from 
a boat using a metal rake dragged along the bottom at a predefined 
grid of sample locations within lakes’ photic/littoral zones (Hauxwell 
et al., 2010; Madsen & Wersal, 2017; Perleberg et al., 2016). This 
method provides occurrence data at the lake level and occurrence 
data at the point level.

https://www.dnr.state.mn.us/invasives/ais/infested.html
https://www.dnr.state.mn.us/invasives/ais/infested.html


12570  |     THOMAS eT Al.

We characterized EWM occurrence using two broad approaches: 
presence– absence data and presence- only data. The presence– 
absence approach relies exclusively on surveyed lakes, which pro-
vides true absences (i.e., lakes that were surveyed but no EWM was 
found). The presence- only approach encompasses EWM- invaded 
lakes together with unsurveyed lakes not known to have EWM, 
which are treated as pseudoabsences. Using three different spatial 
draws of pseudoabsences (i.e., unsurveyed lakes), the presence- only 
data were further categorized into (a) random presence- only data, 
where pseudoabsences were drawn randomly from the study area; 
(b) distant presence- only data, where pseudoabsences were drawn 
from unsurveyed lakes outside a convex hull surrounding invaded 
lakes; and (c) proximal presence- only data, with pseudoabsences 
drawn from unsurveyed lakes contained within the invaded- lakes 
convex hull. These three different presence- only datasets repre-
sent the commonly used pseudoabsence selection strategies (Senay 
et al., 2013) and provide a range of scenarios for comprehensive 
comparison and evaluation of model predictions.

EWM abundance for a given lake was calculated as the propor-
tion of surveyed point locations within a lake with positive EWM 
detection (Mikulyuk et al. 2020; Verhoeven et al., 2020). Lake- level 
EWM abundance is thus a measure of the proportion of sampled 
points within a lake in which EWM was found, hereafter the “fre-
quency of occurrence.” Unlike the binary presence– absence and 
presence- only response variable, frequency of occurrence is a 

measure of plant cover within the lake that can range from 0 to 1 
(i.e., from complete absence to detection at 100% of sampled points 
within a lake).

2.3 | Environmental predictors

We collated 11 lake- specific environmental predictors from multi-
ple sources that provide a snapshot of lake physical and chemical 
characteristics and surrounding landscape conditions (Table 1). Our 
choice of variables was primarily based on previous published works 
on EWM invasion (Buchan & Padilla, 2000; Roley & Newmann, 2008; 
Tamayo & Olden, 2014). Lake morphometric variables included lake 
size and maximum depth and were sourced from the Minnesota 
Department of Natural Resources (MNDNR) hydrological shape 
file (https://gisda ta.mn.gov/datas et/water - dnr- hydro graphy). EWM 
spring growth is initiated when water temperature exceeds 10°C 
(Stanley & Naylor, 1972) and growth is fastest at relatively high 
temperatures (30– 35°C) (Smith & Barko, 1990). To account for the 
dependence of EWM on water temperature, we used lake- specific 
growing degree days with a base temperature of 10°C, calculated 
from simulated water temperatures (Winslow et al., 2017). Lake- level 
growing degree days were estimated as averages of water surface 
temperatures between the years 1995 and 2015. Lake water chem-
istry variables included pH, conductance, chlorophyll- a, and total 

F I G U R E  1   Maps of study area showing invasive EWM distribution and abundance patterns used to construct (a) presence– absence 
models, (b) presence- only models with random pseudoabsences, (c) presence- only models with distant pseudoabsences, (d) presence- only 
models with proximal pseudoabsences, and (e) abundance (frequency of occurrence) models. Absences and pseudoabsences are shown as 
solid blue- colored dots, whereas presences are shown as solid red colored dots. Abundance is measured as frequency of occurrence with 
values ranging from 0 (complete absence of EWM) to 1 (all sampled points occupied)

(a) (b)

(c) (d)

(e)

Absence (0)
Presence (1)

https://gisdata.mn.gov/dataset/water-dnr-hydrography
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phosphorus, all of which were gathered from annual lake monitor-
ing surveys conducted by the Minnesota Pollution Control Agency 
(MPCA). Water chemistry measures for a lake were recorded as the 
average measure of all sampling events within a lake between the 
years 1995 and 2019. Lake connectivity variables comprised road 
density and stream density measures within 500 m from lake edges, 
which were sourced from the LAGOS database (Soranno et al., 2017). 
Water clarity was indexed by Secchi depth compiled from the MPCA 
and MNDNR databases for all years between 1995 and 2018. If data 
were available for sub- basins of multibasin lakes, we kept the data at 
the sub- basin scale whenever possible. If multiple Secchi observa-
tions were recorded on the same date within a lake or sub- basin, we 
used the daily median. The daily median values were then averaged 
across years to provide lake- specific mean Secchi depth measures. 
Water color was indexed by remotely sensed CDOM a440 (colored 
dissolved organic matter absorption coefficients at 440 nm, aver-
aged over years 2015– 2016) from Olmanson et al. (2020).

The final dataset included only the lakes for which all environ-
mental variables were available, with 184 invaded and 284 unin-
vaded lakes forming the presence– absence data (Figure 1a), and 
an additional 801 unsurveyed lakes leveraged as pseudoabsences 
in presence- only datasets (Figure 1b– d). In total, 1,269 lakes with 
complete information on all lake- level predictors form the crux of all 
our models and analyses. These lakes span a broad climatic range, 
from 43.5°N to 48.5°N, and capture a wide variety of aquatic habi-
tats and surrounding landscape conditions (Table 1). In the random, 
distant, and proximal presence- only datasets, 284 pseudoabsences 
were strategically selected from the 801 unsurveyed lakes to replace 
the true absences (Figure 1b– d; see previous section for details on 
pseudoabsence selection strategies). Finally, the frequency of oc-
currence of EWM for the 184 invaded lakes, together with the 284 
uninvaded lakes, formed the EWM abundance dataset (Figure 1e). 
EWM frequency of occurrence values ranged from 0 to 0.8, and the 
distribution was strongly right skewed, with few lakes having high 
EWM frequency of occurrence.

2.4 | Random Forest SDMs

We used the Random Forest (RF) algorithm (“randomForest” pack-
age in R; Liaw & Wiener, 2002) to model the distribution and abun-
dance of EWM invasion in lakes. RF models combine the strength 
of multiple classification trees with a bagging approach (since they 
combine predictions from multiple decision trees) to make accurate 
predictions that are resistant to overfitting while also allowing for 
nonlinear response curves (Cutler et al., 2007; Evans et al., 2011). 
Another advantage of using RF models is the ability to directly esti-
mate relative variable importance, which allows an identification of 
influential ecological predictors (Cutler et al., 2007). Overall, RF is 
considered to have high performance accuracy and stability (Duan 
et al., 2014).

We developed five different categories of RF models, one for 
each individual response type: presence– absence model, presence- 
only model with random pseudoabsences, presence- only with 
distant pseudoabsences, presence- only with proximal pseudoab-
sences, and an abundance model. Each RF model included the 11 
environmental variables described previously. An additional set of 
five RF models were developed with all the environmental predic-
tors plus an auxiliary spatial lag term to account for spatial auto-
correlation. The spatial lag term was incorporated in the form of an 
inverse distance- weighted autocovariate using the “spdep” package 
(Bivand et al., 2013). Prior to incorporating the spatial autocovariate, 
assessment of spatial autocorrelation using Moran's I showed sig-
nificant and positive spatial autocorrelation in the residuals of both 
presence– absence and abundance models; this was especially evi-
dent in the case of presence– absence model residuals (Moran's I for 
presence– absence model residuals = 0.047, p < 0.0001; for abun-
dance model residuals = 0.012, p = 0.04). All model runs involved 
splitting the datasets into 70 percent training data and 30 percent 
test data for estimating model accuracy. Overall, the 10 distinct RF 
models provide a detailed comparison of EWM’s predicted niche in 
relation to multiple types of distribution measures, with and without 

Variable name (units) Mean SD Min Max

CDOM_a440 (m−1) 2.38 2.27 0 15.1

Chlorophyll- A (µg/L) 31 84 0.093 2,231

Conductance (µS/cm) 313 215 8.53 1,750

Water temperature degree 
days (base 10, °C*days)

1671 225 1,078 2,465

Lake depth (m) 10.2 9.58 0.914 141

Lake size (acres) 759 4984 8.82 128,251

pH 8.03 0.633 6.02 9.71

Phosphorus (mg/L) 0.090 0.116 0.004 1.18

Road density (m/ha) 40.6 29.3 0 211

Secchi depth (m) 2.35 1.48 0.167 12.9

Stream density (m/ha) 4.18 3.5 0 21.2

Latitude (DD) 46.1 1.22 43.5 48.5

Longitude (DD) −93.9 1.21 −96.7 −90.1

TA B L E  1   Summary statistics of the 11 
lake- level predictor variables used in the 
Random Forest SDMs to predict Eurasian 
watermilfoil invasion risk and frequency 
of occurrence. Longitude and latitude 
summarize the geographic distribution of 
the sampled lakes
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accounting for spatial autocorrelation. We provide a detailed over-
view of all the steps involved in the RF species distribution mod-
eling based on the ODMAP template developed recently (Zurell 
et al., 2020; see Table S1 for ODMAP).

2.5 | Model comparisons and evaluation

One of the main goals of our study was to compare the results of 
presence– absence, presence- only, and abundance- based RF mod-
els with a focus on understanding how the effects of lake- specific 
factors on EWM invasion risk and abundance vary across the dif-
ferent models. To do so, we first compared relative importance of 
predictor variables across all models. For both occurrence- based 
(i.e., presence– absence and presence- only) and abundance models, 
relative importance of variables was calculated as percent change 
in mean- squared error (MSE) score when a variable was permuted 
(Liaw & Wiener, 2002). Next, the response curves of key predictors 
were compared across all models using partial dependency plots. 
Additionally, we assessed change in relative importance of vari-
ables and response curves for all models after including the spatial 
autocovariate.

We were also interested in comparing discrimination accuracy 
and functional accuracy of presence– absence and presence- only 
models. Three conventional discrimination accuracy statistics— 
AUC (area under the receiver operating characteristic curve), 
Kappa, and TSS (true skill statistic)— were calculated (see Allouche 
et al., 2006) using three different model evaluation methods: 
nonindependent, quasi- independent, and spatially blocked. Kappa 
and TSS are threshold- dependent measures, meaning that pres-
ence is assigned when probability of presence exceeds a thresh-
old value. Threshold probability values were determined using 
the sensitivity– specificity equality approach, which is the pre-
ferred approach when it comes to ensuring both presence and ab-
sence have equal chances of being predicted correctly (Fielding & 
Bell, 1997; Liu et al., 2005). In the nonindependent evaluation ap-
proach, random 5- fold cross- validation with 50 iterations was exe-
cuted, and the final discrimination accuracy statistics reported are 
the average of all iterations. In the quasi- independent evaluation, 
discrimination accuracy statistics were the evaluation results from 
a single randomly assigned test dataset. In other words, the re-
ported discrimination accuracy statistics in the quasi- independent 
evaluation scenario are based on a single run of fixed training and 
test datasets. In the spatially blocked cross- validation approach, 
the training and test data were derived from large contiguous 
spatial blocks using the “blockCV” package (Valavi et al., 2019). 
The size of the spatial block was set to 10 km for all occurrence 
models (except the presence- only model with proximal pseudoab-
sences); this is approximately the largest scale at which lakes con-
tinued to show spatial clustering. For presence- only models with 
proximal pseudoabsences, the size of the spatial block was set to 
5 km to account for the restricted distribution of pseudoabsences. 
Spatial clustering of lakes was estimated using the pair correlation 

function, a point- pattern analysis technique where clustering is 
assessed across multiple distances in a noncumulative manner by 
only counting points (lakes) that fall along discrete distance inter-
vals (Baddeley et al.,2015).

Functional accuracy for each occurrence- based model was eval-
uated by quantifying the strength of the abundance– suitability re-
lationship between EWM frequency of occurrence and predicted 
suitability for EWM invasion. For each occurrence- based model, 
the Pearson and Spearman correlation coefficient estimate of the 
relationship between predictions of the model and frequency of 
occurrence was considered as the measure of its functional accu-
racy. Hence, high positive values of the correlation coefficient imply 
predicted EWM invasion risk was a strong predictor of EWM fre-
quency of occurrence. Studies have generally shown that inclusion 
of zeros can potentially inflate correlation coefficient estimates as 
it entails predictions of low suitability for zero abundance values 
(Dallas & Hastings, 2018). Given this sensitivity to zero abundance 
values, two separate estimates of Pearson's and Spearman's correla-
tion coefficient (Pearson's r and Spearman's ⍴) were reported, one 
that included zero values for frequency of occurrence (rall and ⍴all) 
and another that excluded zero values (rnonzero and ⍴nonzero). Finally, 
linear quantile regression models were used to further explore the 
abundance– suitability relationship. For both SDMs, with and with-
out spatial autocovariate quantile regressions were used to examine 
the relationship between predicted EWM invasion risk and upper 
limits of EWM frequency of occurrence (i.e., the 50th, 75th, and 
90th percentiles).

3  | RESULTS

3.1 | Model comparisons

Comparison of RF models of EWM presence– absence, presence- 
only, and abundance revealed key differences and similarities. In 
terms of relative variable importance (Figure 2), growing degree 
days from modeled surface water temperature and lake depth 
were consistently among the two leading drivers across all models. 
Interestingly, road density around lakes was a key predictor of EWM 
occurrence but not abundance. Another notable difference between 
occurrence models (except for presence- only models with proximal 
pseudoabsences) and the abundance model was the dispropor-
tionate influence of three variables on EWM occurrence— growing 
degree days, lake depth, and road density— compared to the rela-
tively even contributions of nearly all variables in predicting EWM 
abundance. In addition, presence- only models with distant pseu-
doabsences showed an exaggerated influence of growing degree 
days compared to other predictors. Among the three presence- only 
models, relative variable importance of the presence- only model 
with random pseudoabsences was most like that of the presence– 
absence model.

Species– environment response curves of the three most import-
ant predictors further highlight subtle, yet important, differences 
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among the models. Response curves of abundance models gen-
erally showed only modest changes in frequency of occurrence 
across a range of environmental variation, compared to occurrence 
models that exhibited strong shifts in invasion risk across the same 
range of environmental variation (Figure 3). Both EWM invasion 
risk and frequency of occurrence increased with increasing water 
temperature and plateaued at approximately 1,750°C*days (grow-
ing degree days); this was most apparent for occurrence models 
(Figure 3). Likewise, invasion risk and frequency of occurrence 
showed gradual increases with increasing lake maximum depth, up 
to ~30 m. Increase in road density around lakes increased only in-
vasion risk, an effect that diminished at road densities greater than 
~75 m/ha (Figure 3). Secchi depth was the third most important 
predictor in the abundance model, with clearer lakes (≥4- m Secchi 
depth) more likely to support EWM occurrence. Notably, across the 
entire range of observed road density and depth values, presence– 
absence models predicted greater invasion risk compared to all 
pseudoabsence models, with clear differences in peak invasion risk 
estimates. Response curves of occurrence models showed overall 
similar patterns of invasion risk but with one notable difference: 
The response curves of all pseudoabsence- based presence- only 
models diverged considerably from the response curve of models 
with absence information. Inclusion of a spatial lag term strongly 
influenced the results; the spatial autocovariate was the leading 
predictor in all models in which it was included, with pronounced 

effects on both EWM invasion risk and frequency of occurrence 
(Figure 4). Concurrently, the inclusion of the spatial autocovariate 
led to growing degree days dropping in rank and its response curve 
showing a subtler impact on EWM invasion risk and frequency of 
occurrence.

3.2 | Model evaluations

Regardless of the evaluation approach, discrimination accuracy 
statistics (AUC, TSS, and Kappa) revealed a similar pattern, with 
presence- only models with random pseudoabsences and presence- 
only models with distant pseudoabsences always being better pre-
dictors of EWM invasion than presence– absence models (Table 2). 
More specifically, discrimination accuracy measures of all occur-
rence models showed the following overall ranking: presence- only 
models with distant pseudoabsences > presence- only with random 
pseudoabsences > presence– absence > presence- only with proxi-
mal pseudoabsences. However, functional accuracy measured as 
Pearson's correlation coefficients (rall and rnonzero) and Spearman's 
correlation coefficients (⍴all and ⍴nonzero) showed a contrasting pat-
tern, with presence– absence models recording the highest val-
ues compared to all other models. Overall, functional accuracy 
values showed the following ranking: presence– absence mod-
els > presence- only with random pseudoabsences > presence- only 

F I G U R E  2   Percent relative contribution of predictors in EWM (a) presence– absence models, (b) presence- only models with random 
pseudoabsences, (c) presence- only models with distant pseudoabsences, (d) presence- only models with proximal pseudoabsences, 
and (e) abundance (frequency of occurrence) models. Abbreviations: GDD- 10cWater = water temperature degree days (base 10), 
CDOM- a440 = colored dissolved organic matter (absorbance at 440 nm)

(e) Abundance model
(Frequency of occurrence)

(a) Presence-absence model (b) Presence-only model
(Random pseudoabsences)

(c) Presence-only model
(Distant pseudoabsences)

(d) Presence-only model
(Proximal pseudoabsences)
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with proximal pseudoabsences > presence- only with distant 
pseudoabsences. Inclusion of a spatial autocovariate generally 
improved discrimination accuracy and functional accuracy values 
with some exceptions. Specifically, inclusion of a spatial autoco-
variate reduced discrimination accuracy estimates under the quasi- 
independent approach for presence- only models with distant and 
proximal pseudoabsences, and it also reduced Pearson's r for 
presence- only models with distant pseudoabsences. Averaging all 
the discrimination accuracy estimates provides a clearer picture, 
with only presence- only models with proximal pseudoabsences 
continuing to show a slightly lower Kappa estimate when an auto-
covariate is included.

Abundance– suitability plots of EWM frequency of occurrence 
and predicted suitability for EWM invasion showed a wedge- shaped 
relationship that varied among models with and without the spatial 
autocovariate (Figure 5a– d). Analysis of this wedge- shaped relation-
ship using quantile regression highlighted a strong positive relation-
ship between probability of presence and frequency of occurrence, 
especially at the higher quantile levels (i.e., the 75th and 90th quan-
tiles in Figure 5). However, there were noticeable differences in 
the quantile slope coefficients among the different SDMs, and the 
difference between 50th and 90th quantile slopes— a measure of 
strength of the wedge- shaped relationship (Carrascal et al., 2015; 
Jiménez- Valverde et al., 2021)— was greatest for presence– absence 
models and presence- only models with proximal pseudoabsence 
(Table S2).

4  | DISCUSSION

4.1 | Drivers of EWM invasion risk and frequency of 
occurrence

We developed multiple SDMs to gain a deeper understanding of 
the ecological drivers of EWM invasion, while also evaluating the 
importance of data quality and model assumptions. Results of the 
presence– absence, presence- only, and abundance- based SDMs 
showed considerable overlap; however, there were key differences 
with important implications for model interpretation. For instance, 
while growing degree days and lake depth consistently predicted 
EWM occurrence and abundance, road density around lakes mat-
tered most for occurrence models of invasion risk. Similar effects of 
surrounding landscape conditions on EWM invasion risk have been 
reported previously, especially with respect to boating, vehicular 
traffic, and lake visitation rates, all of which facilitate overland spread 
of EWM (Buchan & Padila, 2000; Kanankege et al., 2018; Mikulyuk 
et al., 2020). Moreover, while EWM invasion risk was overwhelm-
ingly influenced by two key broad- scale drivers— surface water tem-
perature and road density— EWM frequency of occurrence was more 
evenly mediated by multiple factors, including water chemistry and 
clarity. Similar differences between predictors of EWM occurrence 
and abundance were reported in a recent study on EWM invasion 
in Wisconsin (Mikulyuk et al. 2020). This distinction between driv-
ers of EWM occurrence and abundance suggests that efforts aimed 

F I G U R E  3   Partial dependence plots of RF models showing the predicted effects of the top three predictors on (a– c) EWM invasion 
risk and (d– f) frequency of occurrence. Line colors in the top panel highlight the different occurrence models, with the black colored lines 
depicting presence– absence models. The y- axis of the bottom panel is reduced to show the frequency of occurrence response curves with 
clarity

ecnerruccofo
ycneuqerF

(a) (b) (c)

(d) (e) (f)



     |  12575THOMAS eT Al.

at spread prevention versus management of established infestations 
might benefit from distinct prioritization strategies.

Temperature measures such as growing degree days can reflect 
species range limits related to growth and physiological processes. 
Appreciable levels of photosynthesis can occur in EWM at 10°C 
(Stanley & Naylor, 1972), and spring temperatures above 15°C are 
known to strongly influence both growth from overwintering roots 
and seed germination (Smith & Barko, 1990; Xiao et al., 2010). At 
the upper end of the temperature range limit, EWM can reportedly 
thrive in water temperatures as high as 35°C (Smith & Barko, 1990) 
and warmer temperatures can boost its photosynthetic activity 
(Grace & Wetzel, 1978). Hence, it is not surprising to find the strong 
influence of growing degree days in all models (Figure 2a– e), with 
both invasion risk and frequency of occurrence increasing markedly 
with increasing degree days (Figure 3a, d). Studies of EWM distribu-
tion and abundance have mostly ignored temperature as a predictor, 
with some exceptions (e.g., Mikulyuk et al., 2020, where maximum 
air temperature was found to be a strong driver of EWM invasion in 
Wisconsin lakes). It is therefore reassuring that growing degree days 
derived from water temperature had comparable effects on EWM 
invasion risk. It is worth noting that the steep increase in EWM in-
vasion risk in response to growing degree days is partly attributable 
to a strong spatial gradient in temperature. This was evident when 
addition of the spatial autocovariate in the RF models decreased the 
relative importance and effects of growing degree days on EWM 
invasion risk and abundance (Figure 4). Moreover, the observed im-
provement in discrimination and functional accuracy measures when 

a spatial autocovariate was included suggests proximity to invaded 
lakes does matter, which can be attributed to latent, that is, unmea-
sured, spatially structured environmental drivers (such as water 
flow) and biotic factors (such as dispersal).

Across all RF models, lake depth was among the top three pre-
dictors of EWM occurrence and an even stronger predictor of EWM 
abundance (Figure 2). Lake depth has repeatedly been identified 
as a key driver of EWM invasion (Buchan & Padilla, 2000; Roley & 
Newman, 2008), wherein the probability of EWM invading a lake 
generally increases with depth and reaches an asymptote near a 
maximum depth of 10 m. This positive influence of lake depth is 
perhaps the consequence of variation in light availability wherein 
deeper lakes with clearer water not only provide suitable conditions 
for EWM to establish (Roley & Newman, 2008), but more impor-
tantly, such lakes are also more desirable for boating and fishing, 
which can lead to increased human activity that can elevate the like-
lihood of EWM introductions (Keeler et al., 2015). In this context, it is 
worth noting that Secchi depth was an important predictor of EWM 
abundance along with maximum depth (Figure 2e), suggesting lake 
depth and light availability together reflect within- lake habitat avail-
ability and suitability. These findings are supported by recent work 
characterizing the species– environment associations of EWM from 
a microhabitat (within- lake) niche perspective. Verhoeven, Glisson, 
et al. (2020) showed that depth, light, and growing degree days influ-
enced not only habitat suitability for EWM, but also for other spe-
cies likely to interact with EWM. Thus, the influence of depth could 
partially be a reflection of biotic interactions. Future work should 

F I G U R E  4   Plots showing the effect of including a spatial autocovariate in RF models of invasion risk and frequency of occurrence. Left 
panel shows the relative importance of predictors after including the autocovariate in (a) presence– absence models of EWM invasion risk 
and (d) models of EWM frequency of occurrence. Middle and right panels show partial response curves of the autocovariate on EWM (b) 
invasion risk and (e) frequency of occurrence and the subsequent effect on response curves of growing degree days (c & f)
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further develop our understanding of how EWM abundance is influ-
enced by biotic interactions, and how these interactions, as well as 
environmental associations, vary across scales.

Previous studies have reported pH and phosphorus as addi-
tional water chemistry influents of EWM invasion (Madsen, 1998; 
Buchan & Padilla, 2000; Roley & Newman, 2008). Interestingly, 
pH was always among the lowest- ranked water chemistry variable 
across all models, except for presence- only with distant pseudoab-
sences. As noted by Roley and Newman (2008), lakes in metropol-
itan Minnesota have relatively higher pH compared to its distant 
counterparts in more northern parts of the state. Moreover, lakes 
in northern and northeastern parts of Minnesota are mostly within 
a forested landscape and have colder water temperature, which to-
gether can also result in lower lake pH levels (Dunford et al., 2012). 
In short, the large climatic gradient and differences in surrounding 
landscape conditions might explain why pH is a better predictor of 
models with distant pseudoabsences. Thus, while EWM is known to 
occur in lakes with a wide range of pH levels, hard- water lakes with 
moderately high pH levels tend to increase the likelihood of EWM 

occurrences. Phosphorus was a better predictor of EWM frequency 
of occurrence than of invasion risk, likely because elevated phospho-
rus stimulates EWM growth (Madsen, 1998).

4.2 | Effects of pseudoabsence in presence- 
only models

Presence- only models with random, distant, and proximal pseudoab-
sences differed in significant ways from presence– absence models. 
In general, all three presence- only models were able to discern the 
two key large- scale drivers of EWM occurrence— growing degree 
days and road density. However, the relative importance of these 
two predictors varied depending on the pseudoabsence selection 
strategy. Distant pseudoabsences showed overwhelming influence 
of growing degree days compared to other variables, indicating that, 
unsurprisingly, water temperatures of invaded and uninvaded lakes 
became more disparate as pseudoabsences and invaded lakes were 
further apart. Conversely, the nearly equal effect of most variables 

F I G U R E  5   Plots showing EWM abundance– suitability relationship where the predicted suitability is based on presence– absence and 
three distinct presence- only datasets. Red-  and blue- colored dots indicate models with and without the spatial autocovariate, respectively, 
with the corresponding quantile regression lines shown at the 50th, 75th, and 90th percentiles. Pearson correlation coefficients (functional 
accuracy measures) associated with these plots are shown in Table 2. Quantile regression coefficients associated with the regression lines 
are reported in Table S2

90th

75th

50th

90th

75th

50th

90th

75th

50th

90th

75th

50th

(b) Presence-only model
(random pseudoabsences)

(c) Presence-only model
(distant pseudoabsences)

(d) Presence-only model
(proximal pseudoabsences)

(a) Presence-absence model
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in the proximal pseudoabsence models suggests nearby lakes share 
similar characteristics, and no single predictor alone can differentiate 
invaded and uninvaded lakes. Studies examining the effects of vary-
ing spatial extent of pseudoabsence locations have shown similar ef-
fects on relative variable importance, with models becoming simpler 
and dominated by one or two predictor variables with increasing 
distance from presence locations (Stokland et al., 2011; VanDerWal 
et al., 2009). Relative variable importance for the randomly se-
lected pseudoabsences was closest to that of the presence– absence 
models. Random selection of pseudoabsences has often been the 
recommended approach as it samples a wide range of lakes across 
the study area (Barbet- Massin et al., 2012; Wisz & Guissan, 2009). 
It was also apparent from the response curves that, despite over-
all similarity, presence- only models showed clear discrepancies, 
with marginal effects on invasion risk either being under-  or over-
predicted. Pseudoabsences tend to distort species response curves 
and the degree of distortion depends on the pseudoabsence selec-
tion approach (Chapman et al., 2019; VanDerWal, Shoo, Graham, 
et al., 2009). In short, none of the presence- only models were able 
capture the “true” EWM- environment relationship as characterized 
by the presence– absence model. This perhaps also explains why in 
a previous study by Carrascal et al. (2015), MaxEnt models based 
on presence- only data were inferior to presence– absence models in 
predicting abundance.

4.3 | Limitations of discrimination accuracy metrics

Model discrimination and functional accuracy measures showed 
contrasting outcomes between presence– absence and presence- 
only models that further underscore the inability of presence- only 
models to capture species– environment relationships. The higher 
functional accuracy of presence– absence models compared to 
presence- only models implies that ecologically relevant indicators 
of habitat suitability, such as EWM abundance, are best predicted by 
models that incorporate EWM absence information. The lower func-
tional accuracy associated with presence- only models also indicates 
the limitations of replacing EWM absence information with pseu-
doabsences. Notably, EWM presence- only models often had higher 
discrimination accuracy measures, despite lower functional accuracy 
estimates, compared to presence– absence models. In other words, 
models with pseudoabsences had high discrimination capacity de-
spite being poor predictors of EWM abundance. This ambiguous ef-
fect of presence- only models is consistent with pseudoabsences not 
being a “gold standard” when it comes to evaluating SDMs (Carrascal 
et al., 2015; Jiménez- Valverde, 2012). Our results highlight that the 
ability of a model to predict withheld occurrence data is not always 
a reliable measure of how well it can estimate the true relationship 
between an environmental gradient and habitat suitability (Warren 
et al., 2020).

Plots of the abundance– suitability relationship show a charac-
teristic wedge- shaped structure with regression slopes increasing at 
higher quantiles, implying lake- level suitability estimates determine 

the upper abundance limits of EWM but not the actual observed 
abundance (Acevedo et al., 2017; VanDerWal, Shoo, Johnson, 
et al., 2009). From an EWM invasion perspective, it may be inferred 
that not all lakes that are predicted as highly suitable end up hav-
ing high abundances, and these differences matter when prioritizing 
prevention and mitigation actions (see Mikulyuk et al. 2020). This 
wedge- shaped relationship is assumed to be the result of an envi-
ronmental variable restricting the upper limit of abundance, while 
the precise value remains uncertain because of other covariates 
that are not typically included in SDMs (e.g., biotic interactions or 
dispersal constraint; Weber et al., 2017). Moreover, the strength of 
the wedge- shaped relationship was greatest for presence– absence 
models and presence- only models with proximal pseudoabsence, 
which have relatively lower discrimination accuracy measures com-
pared to presence- only models with distant pseudoabsences, which 
produced both the highest discrimination accuracy values and the 
smallest difference among quantiles. This decrease in the strength 
of the wedge- shaped pattern with increase in model's discrimination 
accuracy was explained by Jiménez- Valverde et al. (2021) as the in-
evitable outcome of information loss (i.e., presence can correspond 
to multiple abundance values) and stochasticity. In short, these con-
trasting outcomes reiterate the point that discrimination capacity is 
a poor indicator of models’ functional accuracy.

5  | CONCLUSIONS

Like most previous species distribution modeling studies, our study 
and its findings come with few caveats. For instance, SDMs as-
sume that the species is in equilibrium with its environment (i.e., all 
available suitable habitats have been invaded), which is especially 
unlikely for invasive species. Invasive SDMs also assume that the 
data used for calibration capture the invasive species’ entire range 
of environmental conditions. While the multidecadal presence of 
EWM in Minnesota ensures the assumption of equilibrium is less of 
a problem than it would be for a newer invaded, it still cannot be 
completely discounted. Hence, future studies on EWM’s distribution 
and niche might benefit by taking a more exhaustive calibration data 
that include water temperature measures from EWM’s native range 
and by developing dynamic models that incorporate EWM’s disper-
sal potential.

Species distribution models are an increasingly important tool in 
conservation decision making, and hence, their results and interpre-
tations have tangible consequences. For invasive species, a practical 
application of SDMs might involve identifying environmental drivers 
of species distribution and abundance, leveraging this understand-
ing to predict locations of high invasion risk. Here, we identify key 
ecological drivers of EWM distribution and abundance with a focus 
on better understanding the invasion processes. Prevention and 
management of EWM invasion may benefit by taking into consid-
eration these key differences in the drivers of invasion risk versus 
abundance. Furthermore, through the evaluation of the abundance– 
suitability relationship, our study highlights the limitations of 
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presence- only models with pseudoabsences. It is apparent from our 
results that SDMs designed to maximize discrimination accuracy are 
not necessarily optimal when it comes to identifying models that ac-
curately predict habitat suitability and species performance. This is 
especially true when models are based on presence- only data with 
pseudoabsences. If presence- only data are the only available option, 
random draws of pseudoabsence points are preferred for ensuring 
that the species– environment relationship is as accurate as possi-
ble. More importantly, high- quality data in the form of systemati-
cally collected absence and abundance information are often not 
available, forcing researchers to rely excessively on presence- only 
models. We thus caution against over- reliance on presence- only 
models in species distribution modeling and instead recommend that 
more resources be allocated to initiating and supporting monitoring 
programs that collect high- quality data via systematic monitoring, 
rather than relying upon opportunistic reporting of presences.
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