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Abstract

Closed-loop brain stimulation refers to capturing neurophysiological measures such as

electroencephalography (EEG), quickly identifying neural events of interest, and producing

auditory, magnetic or electrical stimulation so as to interact with brain processes precisely. It

is a promising new method for fundamental neuroscience and perhaps for clinical applica-

tions such as restoring degraded memory function; however, existing tools are expensive,

cumbersome, and offer limited experimental flexibility. In this article, we propose the Porti-

loop, a deep learning-based, portable and low-cost closed-loop stimulation system able to

target specific brain oscillations. We first document open-hardware implementations that

can be constructed from commercially available components. We also provide a fast, light-

weight neural network model and an exploration algorithm that automatically optimizes the

model hyperparameters to the desired brain oscillation. Finally, we validate the technology

on a challenging test case of real-time sleep spindle detection, with results comparable to

off-line expert performance on the Massive Online Data Annotation spindle dataset (MODA;

group consensus). Software and plans are available to the community as an open science

initiative to encourage further development and advance closed-loop neuroscience

research [https://github.com/Portiloop].

1 Introduction

Electrical activity within the brain forms the basis of perception, thought and behaviour. This

activity tends to be oscillatory in nature, as reciprocal connections within and between brain

regions form functional circuits for processing and communicating information. Changes in

electrical fields caused by synchronously firing populations of neurons can be measured on the

scalp using a technique known as electroencephalography (EEG). Correlational studies have

been performed for nearly a century that attempt to link specific patterns and frequency bands

in EEG to cognitive functions or brain states. These approaches are informative for many

types of research questions and have increased our understanding of brain processes, but they

are unable to establish causal relationships. The ability to interact with brain oscillations in a

precisely-timed fashion to enhance or inhibit endogenous processes—using sensory [1–4],
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electrical [5] or magnetic [6] stimulation—allows for their functional roles to be determined

[7], and potentially for restoration of processes deteriorated by aging or pathology [8]. These

so-called closed-loop stimulation approaches thus hold great promise for neuroscience.

One of the closed-loop research areas that has progressed the fastest using non-invasive

neurophysiological recordings (i.e., EEG) and brain stimulation techniques is studying mem-

ory consolidation processes in sleep [1, 9–11]. A first target has been slow oscillations (SOs: 0.5

—1.5 Hz), which are high amplitude waves that appear in non-rapid eye movement (NREM)

sleep and are known to be involved in memory consolidation (i.e., the process by which recent

learned experiences are transformed into long-term memory) [1]. Using auditory stimulation

to SO up-states, when neural tissue is partly depolarized and more excitable, Ngo et al.
enhanced the amplitude of SOs and reported an overnight improvement in memory perfor-

mance, a result that has now been replicated multiple times (see [12–14] for reviews). Closed-

loop stimulation has also been used in the context of preventing drowsiness [2], enhancing

attention and engagement [4], and reducing central nervous system damage after strokes [3].

There is great potential for these closed-loop stimulation techniques in fundamental neurosci-

ence, and potentially, for clinical applications [7, 15]. However, progress is hampered by the

limited portability and flexibility of available systems, as well as by their expense and by the

complexity of their use.

The goal of our interdisciplinary collaboration between neuroscientists, data scientists and

computer engineers is to design, explore, and document the properties of a new, complete

closed-loop stimulation system (i.e., hardware and software), which we call the Portiloop. The

Portiloop is a deep learning-based, portable, battery-efficient and low-cost device that will

enable the neuroscience community to collect and process EEG data in real-time, detect pat-

terns of interest for fundamental research questions, and respond at low latency with pre-

cisely-timed stimulation. We aim to accelerate fundamental research on closed-loop

stimulation in neuroscience by designing a highly functional device and offering the code and

plans freely to developers and scientists in the research community.

The scope of this work encompasses both neuroscience and engineering aspects, which

may be of interest to audiences for different purposes. First, we describe some general back-

ground concerning the use of closed-loop stimulation in neuroscience and its potential,

describe limitations in existing tools, and introduce sleep spindles, a fast neural event that is

observable in EEG, as a challenging test case. Next, we discuss the real-time and portability

design constraints and the (hardware) architecture of our Portiloop implementation, which is

sufficiently powerful to allow us to run a neural network-based EEG detection algorithm. The

hardware is not commercially available in assembled state, but it or a similar device may be

constructed by readers with appropriate technical training (plans and additional information

are freely available [https://github.com/Portiloop]). Third, we describe a lightweight neural

network architecture that can run on inexpensive, modest hardware systems such as that

which we have proposed, and which can detect and react to physiological signals in real time.

Most importantly, we detail our design methodology and optimization algorithm, so that the

architecture can be adapted to other neural events (e.g., theta or beta-band oscillations) or

types of signal (e.g., functional near-infrared spectroscopy). This latter section and associated

S1 File will be of most interest to readers with a data science background who may wish to

implement, use or modify the detection algorithm (all code is available). We then present data

from our case study EEG event, showing that the Portiloop implementation can effectively

detect sleep spindles in real time, and we describe the performance with respect to detection

threshold and time delay. The latter sections may be most interesting for research users to

understand the performance of the system and select appropriate parameters for its use
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detecting and stimulating brain oscillations. Finally, we discuss next steps and future prospects

for this technology.

The Portiloop is the first open-science device that is capable of closed-loop brain stimula-

tion. Its most noteworthy contributions include:

• Two open-hardware implementations that can be constructed from commercially available

components (one using the Xilinx Pynq FPGA together with the HackEEG board and one

using a custom board and a Google Coral System-on-Module neural accelerator)

• A fast implementation of a recurrent neural network model that can be run on inexpensive

hardware to detect events in physiological signals in real time

• A design-space exploration algorithm that automatically optimizes the model hyperpara-

meters to the neural event to be detected

• A real-time spindle detector with accuracy comparable to offline analysis by experts

We hope that the Portiloop will increase research on closed-loop stimulation, and continue

to evolve and develop as a community-supported tool.

2 General background

2.1 Limitations of current systems and design objectives

Speed, expense, flexibility, and portability are important considerations for designing a highly

functional research-focused closed-loop system. The brain’s endogenous oscillations range

from about 0.1 to 150 Hz. Depending on the application and the neural event of interest, real-

time constraints can vary from a few ms [16] to seconds [4]. Currently available commercial

systems that are capable of slow oscillation closed-loop stimulation have difficulty accurately

and precisely detecting and stimulating faster, higher frequency neural events. Devices that are

fast enough and flexible enough for research purposes tend to be derived from high-end sys-

tems used for real-time computing in other applications, e.g., in aerospace and automotive

industry [1], and are large and expensive.

Various portable devices have been developed to acquire and process EEG signals. In

McCrimmon et al. [17], the authors developed a low-cost device limited to acquisition. Other

portable devices enable closed-loop stimulation [2–4], some also based on low-cost hardware

[9], but work with simple heuristics and are generally not sufficiently powerful for complex

signal detection algorithms such as those based on deep learning. Our goal is to design a

closed-loop system that runs on inexpensive, portable hardware, yet is still sufficiently fast,

powerful, and flexible for cutting-edge research. Another element of experimental flexibility

that we incorporate into the design is the capability to change the input and output signals.

Thus, although our current focus is EEG and auditory stimulation, an EEG trace could be

exchanged for another physiological signal like that derived from functional near infrared

spectroscopy, and detection output could be used to stimulate the brain more forcefully using

transcranial electrical or magnetic stimulation. By designing the system flexibly such that it

can be extended to detect and stimulate a variety of brain oscillations, we can greatly expand

its application, for example to theta-band oscillations that are associated with working memory

capacity and task performance [18], or sleep spindles. The Portiloop is designed to be the first

system to provide a portable, real-time and deep learning-capable solution for multiple funda-

mental research applications.
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2.2 Sleep spindles as a challenging test case

Slow oscillations, which have been the main target for closed-loop auditory stimulation

(CLAS) to date, are thought to work in concert with other faster oscillations, called sleep spin-
dles, to reactivate recently learned memories and transfer them to long-term memory [19, 20].

Sleep spindles are transient oscillations observed in both lighter and deeper non-rapid eye

movement (NREM) sleep (i.e., sleep stages 2 and 3). Their role in memory consolidation is

supported by increases in spindle density following learning (e.g., [21]), and the observation

that age-related changes in sleep spindles are correlated with differences in overnight perfor-

mance gains (e.g., [22, 23]; see [24] for a review of spindle mechanisms and functions).

If it were possible to influence spindles with sound, as it is to enhance slow oscillations,

researchers could explore their functional role in healthy adults as well as characterize their

involvement in cognitive aging, and even perhaps restore degraded function. Particular chal-

lenges of spindle stimulation are that each oscillatory cycle is only*60 ms long and the entire

spindle is between 0.5 and 2.5 s, leaving little time for traditional window-based frequency

analysis; there is considerable variability between the frequency, amplitude, and duration of

individuals’ spindles, particularly in older populations [25, 26]; and even for offline detection

of spindles (which is an easier task than detecting spindles online, as the entire spindle is avail-

able and can be used in detection), agreement on spindle identification between experts them-

selves is limited (*70%) [27, 28]. Real-time detection of spindles is therefore a challenging test

case for the Portiloop, and a working online spindle detector would be of direct interest as a

research tool.

2.3 Offline sleep spindle detection for labeling and performance

comparison

Machine learning-based detection algorithms are powerful means of detecting subtle signals in

physiological data such as EEG, but they require large sets of accurately labeled data for train-

ing and testing the algorithm’s performance. Once trained, the success of an algorithm on clas-

sifying previously unseen data can be quantified using the f1-score, which is a widely used

metric to quantify an average of recall (i.e., success in detecting events) and precision (i.e., the

proportion of detected events that are correct), see S1 File for equations. The consistent detec-

tion and labeling of sleep spindles is a challenging task, due to variability in their appearance

and strength. Traditionally, spindles have been visually identified by multiple experts, with

f1-scores computed for each scorer with respect to spindles identified by the consensus. One

commonly used dataset for creating and testing spindle detection algorithms [29, 30] is the

Montreal Archive of Sleep Studies (MASS) [31], in which the sleep spindle annotations were

provided by two experts. Projects using MASS for training usually take spindles identified by

either expert (i.e., a logical “OR” operation). However, the MASS annotations have a low inter-

rater agreement (f1-score = 0.54 [28]), which makes this procedure statistically naive. The

Massive Online Data Annotation (MODA) [28] project addressed this issue by having 5

experts (on average) annotate spindles on a subset of data from MASS, and rate their confi-

dence, in each EEG segment. The experts had an inter-rater f1-score of 0.72 with respect to the

final MODA labels. This score is considerably better than the MASS equivalent, and the num-

ber of experts, the scoring and the post-processing steps enable final labels of much higher pre-

cision. We therefore adopt MODA as a basis for performance measurement, bearing in mind

that even MODA does not provide a true answer about whether a spindle has occurred or not;

only some degree of consensus.

Several offline sleep spindle detectors have been developed and tested on MODA [27, 32–

37]. However, these generally use heuristics that compute Fourier transforms or wavelet
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decomposition on large portions of the signal. For real-time detection in online applications,

spindles must be detected soon after their onset, if stimulation is to arrive before the spindle

ends and thus be capable of influencing its evolution. Online real-time detectors therefore can-

not take the same approaches that have been successful for offline detection.

2.4 Considerations for online sleep spindle detection

Online detectors (i.e., detectors that act during signal acquisition) face more challenging con-

ditions than offline detectors, due to the unavailability of “future” data points. For example, if

we aim to detect and stimulate a spindle before it ends, the duration of the spindle is not yet

known by definition, yet it is one of the identifying criteria for spindles commonly used by

experts. Some existing heuristics filter the signal, compute power features and rely on thresh-

olds to perform detection; however, these approaches yield relatively poor f1-scores [9].

Deep learning can also be leveraged to perform online sleep spindle detection. This is done

by first training an artificial neural network offline through supervised learning to detect sleep

spindles, and then feeding the incoming signal to the trained detector. Several such models

have been trained in previous work [29, 30, 38, 39]. However, these works do not consider

hardware constraints that are central for our purpose: they use large models that are often

unable to run in real time even on high-end GPUs, which makes them inapplicable in embed-

ded systems. Moreover, they are usually trained and tested on MASS [31] with an “OR” opera-

tion performed on the two experts’ labels, which as discussed above is not a highly precise

target [28].

In this work, we design a Pareto-optimal neural architecture that performs best on the

MODA dataset [28] while satisfying our hardware and timing constraints. We validate our

architecture against the state-of-the-art SpindleNet [29], initially used with the MASS dataset.

When both architectures are trained and tested on MODA, ours vastly outperforms the base-

line, on top of running in real time on embedded hardware.

3 The Portiloop system

A high-level description of the Portiloop system is provided in Fig 1(a), while a more detailed

implementation scheme can be found in Fig 1(b). Fundamentally, it is made of an EEG front-

end connected to an embedded computer which reads the EEG signals, filters them, feeds the

filtered signal to an Artificial Neural Network (ANN) trained to detect specific signals, and

generates a stimulus when a target pattern is detected.

We propose two implementations of the Portiloop that can be replicated by readers with

the appropriate technical background:

• A version that can be fully built using off-the-shelf components based on a Xilinx Pynq

FPGA board and an 8-channel HackEEG frontend (Fig 1(c))

• A custom printed circuit board (PCB) featuring an EEG frontend and a Google Coral neural

accelerator (Fig 1(d))

The detailed hardware implementation is out of the scope of this paper, but readers can

find all instructions and plans in our open-source repository.

Since closed-loop stimulation requires very precise timing, the Portiloop needs to detect

target pattern as quickly as possible, and minimize the delay of the output stimulus. We iden-

tify two different sources of delay in the proposed system, hardware and software delays. By

hardware delays we refer to the time it takes to retrieve the signal from the electrodes, convert

it to digital, filter it, process it through the ANN, and send the resulting feedback stimulation

to the subject. By software delays we refer to time required for our system to collect enough
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data to perform its functions. As an example, although the hardware operations performed by

signal filters are near-instantaneous, filtering requires that a certain amount of data be col-

lected before outputting a filtered value, introducing a constant software delay in the output

signal. This delay is a trade-off related to the order of the filter. The higher the order of a filter,

the more efficient it is at removing undesirable frequencies, but also the longer the software

delay introduced in the signal by the filtering operation. Similarly, an ANN may need to “see”

a certain portion of a signal to recognize it, introducing a (generally variable) delay on the out-

put of the classifier. An example of such delay is illustrated in Fig 2, where the trained ANN

that we latter describe in Section 6 takes a variable amount of time before correctly detecting a

transient pattern in EEG signal. These hardware and software delays sum to a total delay that

is the response time of the Portiloop system. They depend on the target signal and put limits

on the timing constraints of the application.

The Portiloop GitHub includes a software for recording and visualizing the EEG signal on

the device, as well as Python programming interface for the development of extensions or new

Fig 1. Portiloop implementation. (a) High-level view of the system: captured EEG data is first filtered and fed into a neural network. If a neural event

is detected with sufficient confidence (>threshold), a decision is made to initiate brain stimulation. The types of delays introduced by each component

are denoted in parenthesis: C/V denote Constant/Variable delays, and H/S denote Hardware/Software delays. (b) A detailed implementation scheme,

and two possible implementations: (c) an FPGA prototype based on off-the-shelf components, and (d) a Coral-based implementation that uses a

custom printed circuit board. Plans are available on our GitHub page.

https://doi.org/10.1371/journal.pone.0270696.g001
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applications. The Portiloop can be accessed via WiFi. A web-based Graphical User Interface

(GUI) allows to configure the EEG channels, set up detection and stimulation, visualize the

signals in real-time, record EEG, set up custom filters, and more. The recording can be saved

either in the internal memory (32GB) or an SD card in EDF format, or streamed through the

network using the Lab Streaming Layer (LSL) [https://github.com/sccn/labstreaminglayer],

which timestamps the data stream with microsecond accuracy.

4 Neural network implementation

The Portiloop is primarily designed for EEG signals, i.e. time-series of data containing oscil-

latory and transitory elements. In the realm of deep learning, a natural way of processing such

data is to use either 1D convolutions, recurrent units, or a combination of both. The type of

ANN architecture that we recommend is inspired by SpindleNet [29]. In essence, a sliding

window over a few last data points is fed to a Convolutional Neural Network (CNN) whose

purpose is to extract relevant features (e.g., frequencies) in this signal fragment. Then, these

extracted features are fed to a Recurrent Neural Network (RNN) whose purpose is to keep

track of the features extracted in past forward passes (where a “forward pass” is the action of

computing an output from the ANN). Note that another family of architectures, called Trans-

formers [40], is known for exhibiting good results with this type of data when infinite compute

is available for inference. However, Transformers are memory-less and not suitable for light-

weight real-time applications, because they need to process the whole signal at each forward

pass. Conversely, RNNs are able to process one single data point at each forward pass and keep

track of the past in memory, which makes them more applicable for the Portiloop.

The Portiloop has a limited amount of available memory, so as to ensure its portability and

low price. Therefore, large ANN architectures such as SpindleNet [29] are orders of magnitude

too large to be implemented in our device. To produce networks that are suitable to our device,

we rely on an automated optimization algorithm named “Parallel Model-Based Optimization”

Fig 2. Real-time stimulation example of the Portiloop on sleep spindles. The output of the ANN (likelihood between 0 and 1, magenta) is displayed

in the lower part of the Figure. When it crosses an adjustable detection threshold (horizontal grey line, here set to 0.84), the Portiloop sends a stimulus

(vertical grey line). The optimal target for this stimulus is the beginning of the sleep spindle (vertical cyan line). Thus, the variable software delay is

visible here between the vertical cyan and grey lines. The sections of the signal in red mark are sections wrongly detected as spindles (false positives),

and the areas in black those that are not, or not yet, detected as spindles but were identified as spindles by experts (false negatives).

https://doi.org/10.1371/journal.pone.0270696.g002
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(PMBO) that allows us to trade-off accuracy and use of resources on our device (see S1 File for

details).

In addition, given the Portiloop’s design constraints, we sought a lightweight means of

allowing our resource-restricted network to use as much signal history as possible (as do larger

neural networks). Time dilation [41] is a technique that enables recurrent units such as Gated

Recurrent Units (GRUs) to look further back in time before gradients vanish, at no computa-

tional cost. In the S1 File, we propose a version of this technique that allows us to virtually par-

allelize a single physical ANN into several decoupled virtual models. Our approach enables

shallow recurrent neural networks to look further back in time by skipping the redundant

information that is inherent to the use of a sliding window as input, while still acting as fast as

possible.

5 Case study: Online sleep spindle detection

We now turn our attention to a case study application of the Portiloop in neuroscience—

detecting sleep spindles shortly after they start so as to be able to stimulate the brain during the

spindle. The long-term goal of this application is to further clarify the role of sleep spindles in

learning and memory, and to explore therapeutic interventions for memory decline (see Sec-

tion 2.2). As described in Section 2.4, stimulating sleep spindles is a particularly challenging

case study due to their high frequency (*12 to 16 Hz) and rapid evolution (<2.5 s), and there-

fore tight timing constraints, and thus serves as a demonstration of the technology’s

capabilities.

To the best of our knowledge, the state-of-the-art in previous work regarding online sleep

spindles detection was SpindleNet [29]. This architecture has too many parameters to be

implemented on anything but the largest graphics processing units. Moreover, it was trained

and evaluated on the MASS labels (i.e., a logic “OR” on the annotations of two experts whose

spindle evaluation varies considerably). Since we do not have access to the SpindleNet model,

which is closed-source, we rebuilt the architecture described in [29] and trained it on the more

difficult MODA dataset [28] with the same pipeline that we used to train our models, as a

means of comparing the models’ performance.

We draw inspiration from SpindleNet as a starting point for our ANN architecture design.

In particular, we train models based on the same idea of using Convolutional Neural Networks

(CNNs) followed by Recurrent Neural Networks (RNNs), and we evaluate the relevance of the

three different inputs used by SpindleNet (namely, the raw signal, the signal envelope and the

signal’s power features) in our setting. We then use our optimization algorithm (named

PMBO) along with the MODA dataset to derive a much smaller architecture, and provide a

quantitative comparison with the SpindleNet architecture on MODA. Since maximum experi-

mental flexibility is attained by being able to stimulate anytime during the course of the spindle

including with phase precision, we conduct a thorough time analysis of the proposed system,

and document possible trade-offs that a researcher might use to maximize performance for a

given experimental application.

5.1 Dataset and training

We use the MODA dataset (a subset of MASS), for training our ANN, since its labels are con-

siderably more reliable [28]. Ethical approval for use of the dataset was obtained from the data-

base’s scientific committee and Concordia University’s Research Ethics Unit. This dataset is

divided in two subsets. The first one, called phase 1, consists of 100 younger subjects, whereas

the second one, phase 2, consists of 80 older subjects. The MODA dataset provides two types

of annotations (labels) on the signal: the first is the mean score given by the group of experts
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for each data point; the second is a binary classification of each data point as a spindle or non-

spindle, defined by a threshold on the aforementioned scores (0.2 for phase 1 and 0.35 for

phase 2). Further post-processing steps were applied to obtain these binary labels: spindles that

were too short (<0.3 s) and too close (<0.1 s) to each other were merged, then spindles that

were too short (<0.3 s) or too long (>2.5 s) were relabeled as negative. Given this dataset, two

types of ANNs are possible: classifiers and regressors. These two types of ANNs differ only by

the labels and losses used to train them. Classifiers are trained on the binary labels, by optimiz-

ing the binary cross entropy loss. They directly predict whether the current signal is a spindle

or not, according to the very specific definition given by these binary labels (i.e., taking into

account the thresholds and post-processing applied by MODA). Regressors are trained on the

score labels, by optimizing the mean square error loss. They predict the score given by the

experts (before the aforementioned post-processing steps), which allows the user to select their

own threshold for detection. Note that, in practice, classifiers also enable the user to select

their own threshold, although in a less interpretable way. We experiment with both types of

models. Finally, note that MODA is a highly unbalanced dataset as only about 5% of the signal

is labeled as sleep spindles. During the course of this work, we tried different ways of balancing

training for classifiers and regressors. Interestingly, we found that classifiers benefit highly

from oversampling (i.e., sampling 50% of spindles and 50% of non-spindles from the dataset

during training) whereas all the balancing techniques we tried for regression (including over-

sampling, Label Distribution Smoothing [42] and a custom version of the latter) actually hin-

der training.

To evaluate against SpindleNet we compute the inputs used by this model: the signal, the

envelope of the signal, and a “power feature ratio” [29]. The latter compares frequencies

between 2 Hz and 8 Hz with frequencies between 9 Hz and 16 Hz from the Fourier transform

over the last 500 ms of signal. Computing this ratio is resource-intensive in the context of the

Portiloop system, and furthermore did not improve our models’ performance. Therefore, we

compute this ratio offline for the sole purpose of comparison with SpindleNet, and we do not

use it in our model. We set the sampling frequency to 500 Hz, which allows the Portiloop to

log the raw signal at a higher resolution, and then downsample to 250 Hz. Fig 3 depicts the

pipeline that computes the cleaned signal and envelope.

We filter the EEG signal in the same frequency band as used in standard sleep scoring (i.e.,
0.5 Hz to 30 Hz) [43]. An FIR filter of order 20 works reasonably well to remove frequencies

above 30 Hz, but we observed persistent power line noise in unshielded home or office record-

ing environments. To address this issue, we apply a notch filter whose frequency depends on

the geographical area (50 Hz in Europe, 60 Hz in North America). For removing low frequen-

cies, we rely on online standardization through exponential moving average (formulas are

Fig 3. Portiloop signal processing pipeline for extracting relevant inputs for the ANN. The selected filters introduce an identical software delay of 40

ms in both branches. (Note that power features are computed offline only for the SpindleNet architecture and are not represented in this diagram).

https://doi.org/10.1371/journal.pone.0270696.g003
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provided in S1 File). We use a coefficient αμ = 0.1 for our running average, which attenuates

frequencies under 4 Hz. We use a smaller coefficient ασ = 0.001 for our running variance,

meaning that our estimate of the standard deviation takes a larger portion of the signal into

account. We empirically found this choice of αμ and ασ to reveal EEG features of interest and

yield acceptable standardization, by visual inspection.

We apply a similar procedure to extract the envelope: first, we filter the signal with a FIR

band-pass between 12 Hz and 16 Hz. Then, we standardize with αμ = ασ = 0.001, we square the

signal, and we smooth the result by computing its moving average, this time with αμ = 0.01.

We evaluate different types of ANN architectures, using either both or only one of these pre-

processed signals as input. Since FIR filters introduce software delays, we have designed both

branches of the pipeline so that they introduce identical software delays to their respective out-

puts (i.e., 40 ms at 250 Hz sampling rate with FIR filters of order 20).

The output of the ANN tells whether the model considers the current signal being a sleep

spindle or not. Some further processing is necessary to ensure that we only send one stimula-

tion per spindle. As seen in Fig 2, the detection can be noisy around the beginning or the end

of a spindle, especially since we use decoupled virtual parallel networks (see S1 File). A stimu-

lus is sent upon initial spindle detection. To avoid multiple stimuli of the same spindle, the

subsequent stimulation may only occur 400 ms following the end of the spindle. If a spindle is

detected again within this duration the timer is reset, and we consider it as being part of the

previous spindle.

6 Validation and performance

We report results from a thorough quantitative and qualitative study of the system, not only in

terms of detection scores as generally seen in previous work (i.e, proportion of data points cor-

rectly detected to be part of a spindle), but also in terms of real-time stimulation performance.

Note that all our experiments are based on the MODA dataset rather than actual nights spent

wearing the Portiloop device, as we would not have ground truth labels for newly recorded

data. Further validation of the final device will require reproducing the experimental setting of

MASS/MODA with the Portiloop (while participants are simultaneously wearing a research-

grade polysomnography system for comparison) and labelling acquired data.

All results regarding online detection performance are summarized in Table 1. This table

shows the f1, precision and recall metrics that statistically describe how efficient different mod-

els are at detecting sleep spindles (on average over all data points). These metrics are provided

separately for phase 1, which groups younger subjects, for phase 2, which groups older sub-

jects, and for the whole cohort.

As previously highlighted, sleep spindle detection is a difficult task and experts themselves

often do not agree when annotating these offline. This disagreement is quantified by MODA

[28] and represented in Table 1, row (1) for reference. The experts annotating the MODA

dataset had an average performance of 0.72 on the whole cohort in term of the f1-score of their

individual annotations with respect to the final labels. They are compared to other offline detec-
tion, i.e., when a virtually infinite computational budget and the whole signal is available,

including future data points, presented under “offline detection” in Table 1 (taken from [28]).

We instead perform online detection, which has additional challenges: (a) computation hap-

pens in real time; (b) the future signal is not available.

The MODA dataset is relatively small (*24 h of annotated data) and heterogeneous. This

adds some difficulty for training and properly assessing the performance of our models,

because we choose to use only 10% of subjects as our validation set (for model selection), and

another 10% of subjects as our test set (for final model evaluation). Since the results would
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otherwise be dependent on the assignment of subjects to the three sets, we evaluate our models

through the following procedure:

• we shuffle all subjects 10 times and compute a different training/validation/test split of the

dataset each time (sets are thus made of separate subjects);

• for each split, we use the training set to train 3 models, the validation set being used to esti-

mate their f1-score. We select the best of these 3 models by its best f1-score on the validation

set. We then report the performance of this model in terms of its f1-score on the test set;

• the above being repeated 10 times, we report the average test f1-score in Table 1, with the

corresponding standard deviation being indicated in parenthesis.

As described previously, we use the SpindleNet [29] architecture as a baseline for evaluating

the performance of our own models. Since SpindleNet is closed-source and trained on the

MASS dataset, we retrain its architecture from scratch with the same pipeline as used to train

our other classifiers. In particular, we balance training through oversampling (as opposed to

the data augmentation technique used by the authors of the original paper), and we train and

evaluate SpindleNet on the MODA dataset. The results of this experiment are presented in

Table 1, row (2). The baseline has a high recall and a poor precision; in other words it it tends

to incorrectly label non-spindle events as spindles.

We first derive a lightweight ANN architecture by drawing inspiration from SpindleNet.

More precisely, we use our optimization algorithm PMBO to find a Pareto-optimal architec-

ture that uses both the cleaned signal and the envelope as inputs. The resulting architecture is

presented in the Supplementary Information. We measure a total duration of 40 ms for each

Table 1. Quantitative results. Our different models and ablations are compared under “Online Detection” using the nomenclature “mean (std)”, and superscripts

for referencing rows in the text. In rows (4) and (5) we replace an input of our 2-input model by a copy of the other, in row (7) we remove time-dilation, in rows (8) and

(9) we train our model only on phase 1 or phase 2 (i.e., young subjects or old subjects), and in row (10) we train a regressor to evaluate it as a classifier.

(a) Phase 1 (younger) (b) Phase 2 (older) (c) Whole Cohort

Recall Precision f1 Recall Precision f1 Recall Precision f1
Experts

Inter-rater agreement1 0.76 (0.16) 0.81 (0.17) 0.76 (0.1) 0.66 (0.19) 0.74 (0.17) 0.65 (0.12) 0.72 (0.18) 0.78 (0.17) 0.72 (0.12)

Offline Detection

Ferrarelli [32] 0.19 0.83 0.31 0.16 0.87 0.27 0.18 0.85 0.29

Mölle [33] 0.83 0.47 0.6 0.78 0.44 0.56 0.81 0.46 0.58

Martin [34] 0.61 0.64 0.62 0.58 0.56 0.57 0.6 0.6 0.6

Wamsley [35] 0.57 0.69 0.63 0.56 0.62 0.59 0.57 0.66 0.61

Lacourse [27] 0.75 0.73 0.74 0.7 0.69 0.7 0.73 0.71 0.72

Ray [36] 0.73 0.47 0.57 0.75 0.32 0.45 0.74 0.4 0.51

Parekh [37] 0.85 0.61 0.71 0.74 0.68 0.71 0.8 0.65 0.71

Online Detection

Based on SpindleNet [29]2 0.92 (0.04) 0.24 (0.07) 0.38 (0.07) 0.85 (0.06) 0.19 (0.08) 0.3 (0.1) 0.89 (0.05) 0.22 (0.07) 0.35 (0.08)

2-input3 0.68 (0.04) 0.6 (0.06) 0.64 (0.03) 0.52 (0.09) 0.58 (0.04) 0.54 (0.05) 0.62 (0.06) 0.6 (0.05) 0.61 (0.03)

2-input ablation 14 0.7 (0.09) 0.47 (0.08) 0.55 (0.04) 0.56 (0.11) 0.43 (0.09) 0.47 (0.04) 0.65 (0.1) 0.46 (0.08) 0.52 (0.04)

2-input ablation 25 0.72 (0.03) 0.57 (0.06) 0.64 (0.03) 0.57 (0.08) 0.53 (0.04) 0.55 (0.04) 0.67 (0.04) 0.56 (0.05) 0.61 (0.03)

1-input6 0.7 (0.04) 0.59 (0.05) 0.64 (0.03) 0.54 (0.09) 0.58 (0.05) 0.55 (0.05) 0.64 (0.05) 0.59 (0.05) 0.61 (0.03)

1-input ablation td7 0.47 (0.1) 0.6 (0.09) 0.51 (0.03) 0.31 (0.12) 0.59 (0.08) 0.39 (0.08) 0.41 (0.1) 0.6 (0.09) 0.47 (0.04)

1-input trained on p18 0.72 (0.05) 0.56 (0.05) 0.63 (0.03) 0.57 (0.08) 0.52 (0.07) 0.54 (0.05) 0.66 (0.07) 0.55 (0.05) 0.6 (0.03)

1-input trained on p29 0.75 (0.05) 0.5 (0.05) 0.6 (0.02) 0.62 (0.09) 0.45 (0.05) 0.52 (0.03) 0.7 (0.06) 0.49 (0.04) 0.57 (0.02)

1-input regression10 0.62 (0.07) 0.64 (0.06) 0.63 (0.03) 0.53 (0.06) 0.55 (0.08) 0.53 (0.04) 0.58 (0.06) 0.62 (0.06) 0.6 (0.03)

https://doi.org/10.1371/journal.pone.0270696.t001
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forward pass in this model on the FPGA-based variant of the Portiloop. The detection perfor-

mance of this model, reported in Table 1, row (3), vastly outperforms the baseline.

The idea of using the envelope along the raw signal as input to the ANN is drawn from the

baseline. Since the envelope is computed from the raw signal, it should not contain any addi-

tional information that cannot be extracted by an ANN. To evaluate the relevance of this par-

ticular input, we perform the following ablation: to keep the same architecture (and thus the

same model capacity), we replace one of the two inputs by a copy of the other. In Table 1, row

(4) both inputs are the envelope, while in row (5) both inputs are the cleaned signal. We find

that the envelope input can be removed: the model in which we replace the envelope with a

copy of the cleaned signal (5) has the same performance as the original model (3), and even

performs marginally better on phase 2.

Since we deem the use of the envelope input ineffective, we use PMBO one more time to

devise our final Pareto-optimal ANN architecture, now with only the cleaned signal as input.

For this matter, we run PMBO on 20 Tesla V100 GPU workers over a period of 24h. The

detailed hyperparameters used in this experiment are provided in S1 File, and the results are

visualized in Fig 4, which shows all the explored architectures according to their classification

performance (software cost) and the use of FPGA resources (hardware cost). The red line is

the Pareto front, meaning the set of configurations that are optimal for at least one of the two

metrics: this means all points that are not on the Pareto front have at least one corresponding

configuration that is better in terms of both software and hardware cost, and should therefore

not be considered. We select the best model in terms of software cost (i.e. the one with the

highest classification performance) irrespective of its hardware cost i.e., the model correspond-

ing to the right-hand end of the Pareto front. This model is acceptable because it is anyway

rather small, with only 25.6k parameters. We measure the execution time of this architecture

to be 20 ms per forward pass on the Portiloop (vs. 40 ms for the 2-input version).

Fig 4. Search space of the single-input architecture, found with PMBO. The hardware cost is the number of trainable parameters in the neural

architecture, and the software cost is 1−f1- score of the fully- trained model. Black dots: non-Pareto-optimal models tested by the algorithm. Red dots:

Pareto-optimal models found by the algorithm. Red line: Pareto front. The researcher would select a configuration from the Pareto front, which

represents optimal trade-offs between both costs.

https://doi.org/10.1371/journal.pone.0270696.g004
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The selected architecture is described in Fig 5, and its detection performance is summarized

in Table 1, row (6). Compared to our 2-input model, the single-input model exhibits the same

performance, with even a marginal improvement on phase 2, while executing twice as fast (20

ms versus 40 ms). The detailed hyperparameters of this model are provided in S1 File.

To verify that the use of virtual parallelization via time-dilation (c.f. S1 File) is indeed neces-

sary to obtain our results, we shrink the time-dilation (set to 168 ms by PMBO) to the mini-

mum, i.e., 20 ms since this is the execution duration of the ANN per forward pass. This

removes the virtual parallelization, since the same ANN must now be used for each sample.

Therefore, each step of back-propagation reaches 8 times less far back in time during training.

The result of this ablation is presented in Table 1, row (7). The highly deteriorated results illus-

trate the importance of time-dilation. This hints at the relevance of looking relatively far back

in time to annotate sleep spindles.

Finally, to ensure the generality of our ANN, and knowing that spindles change in older

adults [24], we compare the results using the data of MODA phase 1 (younger subjects) and

the data of MODA phase 2 (older subjects). Namely, we either train the model on subjects

drawn only from phase 1, or subjects drawn only from phase 2. The results of these experi-

ments are presented in Table 1, rows (8, 9). We observe that the ANN trained on phase 1 per-

forms almost as well as the ANN trained on the whole cohort (6) on all subsets, including

phase 2, whereas the ANN trained on phase 2 is noticeably worse on all subsets, even including

phase 2. We hypothesize that this is because phase 2 is comprised of older adults, who have

lower amplitude and fewer sleep spindles. Using phase 2 during training is still useful in terms

of generalization. Indeed, the ANN trained on phase 1 only (8) has a slightly worse perfor-

mance when tested on phase 1 than the ANN trained on the whole cohort (6).

Note that all models presented beforehand are classifiers. We also train a regressor with the

same architecture, as explained in Section 5.1. There is a subtle difference in what this model

measures when compared to our classifiers: whereas classifiers predict whether the signal is a

sleep spindle according to the full definition given by MODA (including post-processing), the

regressor predicts the mean score given by the experts (excluding post-processing). Since we

are primarily interested in classification in this article, we find the threshold that maximizes

the f1-score on the binary labels, presented in S1 File. We find that the optimal threshold is

0.27 for phase 1, 0.23 for phase 2 and 0.26 for the whole cohort. We then evaluate the regressor

with these thresholds on the classification task and report the results in Table 1, row (10).

These results are slightly weaker than those of the classifier (6). We surmise that this effect

comes from the post-processing steps performed by MODA to compute the binary labels. We

choose the 1-input classifier (6) for the remainder of this article.

6.1 Real-time stimulation

The performance measured in the previous section is not entirely representative of the perfor-

mance on the final task. So far, we have only measured the capability of the model to annotate

each data point of the signal individually. Yet, we want the ability to send one single stimula-

tion per sleep spindle.

The ANN delays must be compounded with the other sources of delays (here reported for

the FPGA version as a worst case, as they are slightly lower for the Coral version), i.e., the soft-

ware delay from FIRs (40 ms), the ANN forward pass duration (20 ms) and the stimulation

hardware delay, to measure our real stimulation performance. We measure an auditory stimu-

lation delay of 4 ms when using a basic sound controller, for a total constant delay of 64 ms.

The measured delays are summarized in Table 2, were one can see that the most significant
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Fig 5. Final single-input ANN architecture. The dimensions of each layer are provided in parenthesis using the PyTorch nomenclature.

https://doi.org/10.1371/journal.pone.0270696.g005
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source of delay is the detection delay of our ANN. Training a faster model is thus a potential

avenue for future work.

From now on, we redefine: (a) True positive: the first stimulus sent within the duration of a

spindle, taking all delays into account; (b) False positive: any other stimulus; (c) False negative:

any spindle that does not receive a stimulus within its labeled duration.

Fig 6(a) displays the detection performance (taking all delays into account) of our final

device. We compute the stimulation precision, recall and f1-score according to the aforemen-

tioned definitions of true positives, false positives and false negatives. This provides a visualiza-

tion of possible trade-offs in terms of how many spindles we want to stimulate (recall) versus

how sure we want to be that all stimuli are relevant (precision). In terms of f1-score, the best

such trade-off is attained at a threshold of 0.84 with our model, yielding a precision and a recall

of 0.71 both.

The timing performance of our system can be observed in Fig 6(b), which displays the dis-

tribution of stimulation delays, i.e., the distribution of the stimulus being closest to the begin-

ning of each sleep spindle, all delays being taken into account. Some stimulation delays are

negative, as spindles are sometimes stimulated in advance (note that we count these as false

positives, which slightly harms our reported results). Fig 6(b) shows the effect of increasing the

detection threshold of our model on the stimulation delays. According to Fig 6(a), choosing a

0.84 detection threshold over the 0.5 default classification threshold in our ANN yields a better

stimulation f1-score and in particular much more precise stimuli, but this comes at the price

of slightly shifting the stimulation delay distribution to the right, i.e., introducing some addi-

tional delay to the stimulation, as further seen in S1 File.

To further illustrate the final performance of the system, Fig 2 displays an example of its

real-time stimulation capability on actual EEG signal (test dataset). More examples and visual

insights are provided in S1 File.

Finally, we estimate the Portiloop energy efficiency by running the FPGA version continu-

ously, powered by a fully-charged 20000 mAh battery. The battery dies out after 26 hours and

22 minutes, suggesting that our power consumption is roughly 756 mA. The Coral version

runs for approximately 8 hours with a 12000 mAh battery pack suggesting a 1500 mA current

draw.

7 Discussion and future work

In this article, we introduce the Portiloop, a device that enables the real-time detection and

stimulation of patterns of interest in electroencephalography signals. Our system is open-

source, portable, low-cost, and can be tailored for many brain stimulation research applica-

tions. We propose a pipeline to design neural architectures that are relevant for processing

EEG signals in real time. We further propose an algorithm that automates the process of find-

ing efficient models (i.e., PMBO), using one-to-many parallel workers. We demonstrate our

proposed system on the closed-loop stimulation of sleep spindles, a difficult task of high

Table 2. Delays measured in the Portiloop (sleep spindle configuration).

Component Hardware delay Software delay

Electrodes + ADC - -

Filters - 40 ms

ANN 20 ms * 250 (± 100) ms

Stimulus 4 ms -

Total: * 314 ms 24 ms 290 (± 100) ms

https://doi.org/10.1371/journal.pone.0270696.t002
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relevance for the neuroscience community. Our resulting system is the first portable device to

be able to detect and stimulate sleep spindles in real time with an f1-score of 0.71, measured on

MODA, a dataset renowned for the reliability of its labels. The Portiloop system can be

adapted to any application of EEG closed-loop stimulation, and potentially, any other neuro-

physiological signal. As opposed to classical heuristics, our deep learning-based approach does

not require specific knowledge of the phenomenon of interest when defining the classifier, nor

does it require a way to extract the relevant information. Instead, a large dataset of annotated

signals suffices to derive a high-performance model that detects complex patterns such as sleep

spindles.

Although we compare our architecture to a state-of-the-art sleep spindle detector (Spindle-

Net), we did not have access to their weights and thus we could not compare their original

Fig 6. Detection threshold trade-off. (a) Evolution of the stimulation performance with respect to the chosen detection threshold on the ANN output

value. A threshold of 0.84 yields the optimal trade-off; however, researchers may wish to select different parameters according to experimental

objectives. (b) Distribution of stimulation delays for a classifier with 0.5 and 0.84 thresholds, respectively. Increasing the threshold yields longer delays.

Note that delays are negative when spindles are stimulated in advance of human expert annotation.

https://doi.org/10.1371/journal.pone.0270696.g006
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model with ours directly on the MODA dataset. Instead, we retrained their architecture from

scratch on MODA, using our own pipeline. Contrary to the observations of Kulkarni et al.
[29], we were able remove the envelope and power inputs without harming the performance

of our models.

Concerning PMBO, the algorithm produces high-performance lightweight architectures,

but we note that the predictions of the meta-learner are often near-constant in well-perform-

ing areas of the search space, suggesting that the meta-model could not further predict the soft-

ware cost. In other words, we were unable to differentiate between the best-performing

configurations of the neural network. We surmise that this is due to the large variance in

model performance from one training session to another. This might be further improved by

additional training. In future work, techniques such as Integrated Gradients [44] could be

used to better understand the search space, and potentially fine-tune the ANN.

Explainable artificial intelligence techniques such as this may also help researchers to reveal

unknown dependencies in neural activity, for example that a spindle might be preceded by

another pattern of neural activity (see S1 File for an exploration of which parts of the signal are

used by the neural network for classification).

In addition, while the MODA dataset provides high-quality labels, training on a larger data-

set of similar quality would likely further improve the performance of our models. Expanding

MODA is a relevant avenue for future work, as is implementing transfer learning techniques

(i.e., tools that allow a trained network to adapt to a different environment), because the EEG

acquisition and signal may differ somewhat from the training data or between individuals.

Transfer can be achieved with techniques such as domain randomization [45]. Alternatively, a

dataset can be collected on the Portiloop and annotated following the same protocol as

MODA.

Long term, we intend to target specific portions of sleep spindles for stimulation (e.g.,

beginning, middle, end; or by oscillatory phase). This harder task will likely involve labeling

these portions and developing more advanced RNNs/Transformers so as to consistently pre-

dict sleep spindles. Although our model does use information far back in time to make predic-

tions, we believe that the main role currently played by the RNN is to accumulate information

regarding whether the last few windows were spindles or not, rather than actually predicting

the future (see S1 File). Such models will likely be more complex and computationally hungry,

which is why the newer hardware implementation of the Portiloop integrates an embedded

tensor processing unit (a powerful neural network accelerator). In general, finding an optimal

model for a given Portiloop application involves either retraining our ANN, or re-executing

PMBO to find a whole new architecture. Both activities can be done by interested practitioners

using tools that accompany this work.

In sum, we hope that the Portiloop will help the neuroscience community explore brain

functions, such as the role of sleep spindles in memory consolidation.
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