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Abstract

Phenotype driven genetic screens allow unbiased exploration of the genome to discover new biological regulators. Bloom
syndrome gene (Blm) deficient embryonic stem (ES) cells provide an opportunity for recessive screening due to frequent
loss of heterozygosity. We describe a strategy for isolating regulators of mammalian pluripotency based on conversion to
homozygosity of PiggyBac gene trap insertions combined with stringent selection for differentiation resistance. From a
screen of 2000 mutants we obtained a disruptive integration in the Tcf3 gene. Homozygous Tcf3 mutants showed impaired
differentiation and enhanced self-renewal. This phenotype was reverted in a dosage sensitive manner by excision of one or
both copies of the gene trap. These results provide new evidence confirming that Tcf3 is a potent negative regulator of
pluripotency and validate a forward screening methodology to identify modulators of pluripotent stem cell biology.
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Introduction

Genome-wide loss of function screening in the diploid

mammalian genome is hindered by the requirement for

homozygosity. Although RNA interference approaches have been

applied, this only reduces rather than eliminates gene expression,

currently lacks genome coverage in the mouse, and is subject to

off-target effects. An alternative possibility is to exploit embryonic

stem (ES) cells deficient for the Bloom syndrome tumour

suppressor gene (Blm) [1,2]. Blm encodes a RecQ helicase and

mutant ES cells exhibit an elevated frequency of non-sister

chromatid exchanges. Loss of heterozygosity (LOH) occurs at a

rate of 4.261024 per cell per locus per generation. This incidence

predicts that on average a homozygous mutant should arise from a

single heterozygous cell within 14 duplication cycles. A previous

functional screen using Blm-deficient ES cells identified homozy-

gous retroviral gene trap mutations in the DNA mismatch repair

(MMR) pathway [2]. From 10,000 gene traps, multiple hits were

identified in one gene, mismatch homolog 6 (Msh6). This

demonstrated the potential for homozygous screening for a

selectable phenotype in ES cells, but also highlighted the insertion

bias of retroviral mutagenesis.

PiggyBac (PB) transposition is highly efficient in human and

mouse cells [3,4]. Recently PB transposon based gene trap

mutagenesis was applied in a new MMR screen in Blm-deficient

ES cells [5]. Homozygous mutations in all four known MMR

factors were recovered from 14,000 PB insertions, consistent with

evidence that PB transposition has a broader spectrum of genome

coverage than retroviral insertion.

Self-renewal of mouse ES cells is traditionally maintained by

culture in serum using the cytokine leukaemia inhibitory factor

(LIF) [6,7]. Upon withdrawal of LIF, ES cells commit to

differentiation under the influence of serum-factors or, in serum-

free conditions, of autocrine fibroblast growth factor 4 (Fgf4) [8].

Disruptions in genes that mediate commitment or repress

pluripotency circuitry are anticipated to reduce dependency on

LIF. Here we used a PB transposon gene trap system in Blm-

deficient ES cells to conduct a pilot screen for recessive mutations

that could confer differentiation resistance.

Results

Implementing a recessive screen requires a strategy to identify

and isolate rare phenotypes of interest. In the context of ES cell

self-renewal, rapid and stringent selection is required because a

fraction of cells invariably escape initial commitment. Such cells

will subsequently expand under paracrine stimulation if differen-

tiated cells are not eliminated [9,10]. Rex1 (Zfp42) is a specific

marker of naı̈ve undifferentiated ES cells [11]. It is down-regulated

at the onset of differentiation more rapidly than the commonly

used Oct4 marker (Fig. 1A). We therefore constructed a selectable

Blm-deficient ES cell line by inserting eGFPIresPuro into the Rex1

genomic locus via homologous recombination (Fig. 1B). The

resulting NN97-5 cells expressed GFP in 60–80% of the

population (Fig. 1C), consistent with the known mosaic expression

of Rex1 in serum [11,12]. Upon plating for differentiation, the

proportion of GFP positive cells declined rapidly (Fig. 1D). By day

5, only 2–3% of cells remained GFP positive.
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We used a binary PB transposon delivery method for gene trap

mutagenesis. This comprises a PB gene trap vector, pGG85, and a

helper plasmid, pCAGPBase [4], that provides the transposase for

vector/chromosome transposition (Fig. 2A). pGG85 carries a

promoter-less gene trap cassette, SAIRESbgeo [13]. The PB 59

terminal repeat region (5TR) contains an RNA polymerase II

promoter [14]. Therefore we positioned the SAIRESbgeo cassette in

opposite orientation towards the 39 terminal (3TR) (Fig. 2A). We

included loxP sites to enable reversion by Cre-mediated excision of

the SAIRESbgeo cassette.

PBase mediated vector-chromosome transposition is very

efficient. To restrict the number of integrations it is important to

determined an appropriate ratio of transposase and transposon

vector [5]. Electroporation of 26106 ES cells with 1 mg pGG85

and 3 mg pPBase yielded 500–1,000 G418 resistant colonies.

Splinkerette PCR amplification [15] from 24 randomly picked

clones indicated one or two PB insertions in most clones (Fig. 2B

and 2C). We therefore employed this 1:3 ratio.

The screening strategy is depicted schematically in Figure 2D. A

pilot scale gene trap library was prepared by transfecting a total of

Figure 1. Generation of Rex1 reporter cells. A. qRT-PCR analysis of Rex1 and Oct4 mRNA during monolayer differentiation in N2B27. B. Strategy
to create the Rex1GIP knock in allele. C. Flow cytometry of a representative Rex1-Egfp profile in undifferentiated NN97-5 cells. E. Flow cytometry of
Rex1-Egfp population in NN97-5 cells during monolayer differentiation in N2B27.
doi:10.1371/journal.pone.0018189.g001
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107 NN97-5 cells in 5 electroporations as above. After twelve days

under selection in G418, plates were harvested in two separate

pools, each containing about one thousand clones and expanded for

a further 48 hours. This period of 14 days since transfection is

sufficient to allow for at least one homozygous conversion event at

the majority of loci. Cells from each pool were then separately

plated in N2B27 medium without serum and LIF. These conditions

lead to neural differentiation of ES cells [16]. Untransfected NN97-

5 cells were plated as a control. Five days later, puromycin was

applied for two days to remove differentiating Rex1 negative cells.

LIF was added at the same time to maximize self-renewal of

persisting undifferentiated cells. Recovered cells were replated for a

second round of differentiation. Ten days later, over 100

undifferentiated colonies were evident in pool 1, while pool 2 and

the NN97-5 control plates showed only around 10 colonies. Twenty

colonies were picked from pool 1 for further analysis.

Expanded clones were assessed for resistance to differentiation.

Six clones produced mostly undifferentiated ES cells in monolayer

neural differentiation conditions. The remainder showed high

levels of differentiation (Fig. 3A and Table 1). We used splinkerette

PCR amplification and sequence analysis to identify the insertion

sites. All 6 carry the same PB integration in the third intron of the

T-cell factor 3 (Tcf3) gene (Fig. 3B and 4A). This insertion was also

identified in 4 of the differentiating clones (Table 1). We examined

Tcf3 expression by RT-PCR in Tcf3 mutants (Fig. 4B). Tcf3

mRNA was undetectable in non-differentiating clones but present

in the differentiating clones. This indicates that differentiating

cultures with the Tcf3 insertion might be heterozygous.

To establish a causative link between the Tcf3 mutation and

differentiation deficiency, a homozygous Tcf3 gene trap clone, P1-

2, was transfected with a Cre expression plasmid. Cre recombi-

nation should remove the gene trap cassette and revert the

Figure 2. piggyBac mutagenesis and monolayer differentiation screen. A. Binary piggyBac gene trap system composed of gene trap vector,
pGG85, and transposase expressing helper plasmid, pCAGG-PBase. B. G418 resistant colonies produced by co-electroporation of 1 mg of pGG85 and
3 mg of helper plasmid. C. Splinkerette PCR amplified genome junction flanking PB insertions indicating the number of PB inserts in each clone. D.
Schematic representation of monolayer differentiation screen.
doi:10.1371/journal.pone.0018189.g002
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induced mutation (Fig. 4C). Transfected cells were plated at low

density for clonal expansion. By RT-PCR we identified clones that

express wild type Tcf3 mRNA (Fig. 4D). These included one clone,

CreA12, which expressed both the gene trap transcript and the

wild type Tcf3 mRNA (Fig. 4D). Sub-cloning confirmed that

CreA12 was not a mixed population but a clone in which only one

Tcf3 allele had been repaired. Consistent with heterozygosity, Tcf3

transcript level in CreA12 cells was around 50% of that in parental

NN97-5 cells (Fig. 4E). Whereas P1-2 cells formed abundant

undifferentiated ES cell colonies in serum-free culture without

LIF, homozygous repaired CreD10 cells rapidly differentiated

(Fig. 4F). Heterozygous CreA12 cells initially formed a mixture of

undifferentiated and differentiated cells, but by day 9 had mostly

differentiated with few remaining ES cells. Phenotype reversion

confirms that the Tcf3 mutation is causal for enhanced self-

renewal. Partial resistance to differentiation explains why hetero-

zygous clones could be recovered in the screen and indicates

dosage sensitive activity of Tcf3.

In the absence of LIF, serum induces heterogeneous non-neural

differentiation of ES cells [10]. We tested P1-2 cells in these

conditions and observed that a large fraction of cells retained

undifferentiated ES cell morphology and Oct4 expression (Fig. 5A).

They also maintained a high proportion of Rex1-GFP positive

cells (Fig. 5B). In contrast, CreD10 cells showed rapid loss of GFP

while Tcf3 heterozygous CreA12 cells showed a more gradual

reduction. We examined clonal propagation in the absence of LIF,

a rigorous test of self-renewal efficiency. CreD10 cells produced

only fully differentiated and mixed colonies (Fig. 5C). In contrast

P1-2 cells formed entirely ES cell containing colonies. These

colonies showed more differentiation than in the presence of LIF,

however, and were smaller (Fig. 5D). Thus Tcf3 deletion confers

heightened resistance to differentiation in serum but does not

substitute fully for LIF.

To rule out any effect specific to the Blm-deficient genetic

background, we used siRNA to knock down Tcf3 in wild type Rex1

reporter ES cells. qRT-PCR showed that Tcf3 mRNA was

reduced to less than 20% two days after Tcf3 siRNA transfection.

This effect was transient and after six days Tcf3 mRNA was

restored (Fig. 6A). In Tcf3 siRNA treated cells Rex1 expression

levels remained high in serum or serum-free differentiation

Figure 3. Gene trap mutants from monolayer differentiation screen. A. Images show typical differentiated and non-differentiated
morphologies after 7 days monolayer neural differentiation assay. P1-1, P1-2, P1-4, P1-11, P1-12, P1-19 and P1-20 are clones carrying Tcf3 gene trap
mutation. B. Splinkerette-PCR amplified genome junctions flanking PB inserts. Gel images showing the genome junction flanking PB 59 terminal
repeat region (59TR) and 39 terminal repeat region (39TR). Arrows indicate that a 500 bp 39TR fragment and a 300 bp 59TR fragment were amplified in
multiple clones. Sequencing locates this band to Tcf3 locus.
doi:10.1371/journal.pone.0018189.g003
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conditions for 2–3 days (Fig. 6B and 6C). Tcf3 knockdown also

allowed transient clonal expansion in serum without LIF.

Compact alkaline phosphatase positive undifferentiated ES cell

colonies were present in siRNA treated cultures 5 days after

transfection and plating, while control siRNA treated cells formed

only differentiated colonies (Fig. 6D).

Tcf3 is the predominant Tcf in ES cells [17]. Other Tcfs are

mediators of canonical Wnt/b-catenin induced transcriptional

activation, but the role of Tcf3 in this pathway is less well-defined

[17]. Despite the lack of Tcf3, P1-2 cells retained TOPFlash

reporter activation in response to Wnt3a (Fig. 7B). Furthermore

they showed induction of chromosomal Wnt target genes, Axin2,

Cdx1 and T-brachyury (Fig. 7C). Absence of Tcf3 therefore does not

impede canonical Wnt signalling in ES cells.

Genome location analyses suggest that Tcf3 binds to promoters

of several pluripotency genes including Oct4, Nanog, and Klf4

[18,19]. Through interaction with Groucho family members Tcf3

is proposed to repress pluripotent gene expression [17]. We

detected near two folds increase in the expression of the core

pluripotency genes, Oct4, Klf4 and Nanog in P1-2 cells when

compared to the reverted CreD10 cells. However, when compared

with NN97-5 cells only Klf4 showed significantly increased

expression (Fig. 7A). This biological variation between parental

line and subclone indicates that the repressive effect of Tcf3 on

individual genes may be modest and environmental factors.

Nonetheless, the increased expressions of Klf4 or Nanog are

notable because either of these is sufficient to increase resistance to

differentiation [20,21,22,23].

Western-blotting analysis indicated that neither Oct4 nor

Nanog protein are appreciably increased in Tcf3 deficient cells

(Fig. 7D). We therefore examined cellular expression by

immunofluorescent staining because Nanog is heterogeneous in

ES cells in serum [24]. This dynamic heterogeneity is postulated to

underlie ES cell susceptibility to differentiation [24,25,26].

Compared with NN97-5 cells, P1-2 cells cultured in serum with

LIF showed more uniform immunofluorescent staining for Nanog

(Fig. 7E). We quantified staining intensity relative to Oct4 over 25

fields using CellProfiler software [27]. Scatter plots of mean

fluorescence intensities confirm that the fraction of low or non-

expressing cells within the Oct4 positive population is reduced in

Tcf3 deficient cells (Fig. 7F). Thus absence of Tcf3 stabilises

expression of Nanog within individual ES cells, even though

overall expression level may not be significantly altered. Interest-

ingly there was also a modest shift in the Oct4 profile towards

higher expression, consistent with evidence that Tcf3 may repress

Oct4 [18].

Discussion

In this study, we piloted a recessive screening strategy to identify

genes modulating ES cell differentiation and self-renewal. There

are three key components in this approach. First, use of PB

transposon mutagens offers significant advantages for genome-

wide screens. They have much higher chromosomal integration

efficiencies than plasmids and do not appear to have the bias for

hot spots seen with retroviral vectors [4,5]. Second, rapid and

stringent selection is critical in an ES cell self-renewal screen to

minimise paracrine interactions between residual undifferentiated

ES cells and differentiating progeny [20]. Oct4 is widely used as a

reporter and selection driver, but it is not optimal because

expression reduces only gradually. Moreover, in early derivatives

of ES cells, including stable EpiSC cell lines, Oct4 is fully

maintained [28]. Indeed we found that selection for Oct4 was of

limited utility over the time course of monolayer differentiation,

with high background necessitating multiple rounds of replating.

In contrast Rex1 selection allowed mutants to be isolated after only

a single round of secondary plating. Third, it is essential to

demonstrate reversion of phenotype in order to confirm causality.

Using the PB vector reversion can readily be achieved by excision

of the gene trap cassette with Cre recombinase.

From 2,000 gene traps, we isolated ES cells with enhanced self-

renewal. All 5 non-differentiating clones had a gene trap insertion

disrupting the Tcf3 gene and no Tcf3 mRNA was detectable in

these cells. The integration site was identical in these clones

indicating that they arose from the same original PB insertion.

Some colonies exhibited partially differentiation-resistant pheno-

types and also contained this Tcf3 insertion. The presence of Tcf3

mRNA in these cells indicates either that they have not converted

to homozygosity or that they are mixed clones. Complete Tcf3

deficiency greatly reduced differentiation and allowed ES cell

expansion without exogenous LIF, even at clonal density. These

findings are consistent with recent studies linking Tcf3 to the core

Table 1. Monolayer neural differentiation of individual gene trap clones.

Gene trap clones Monolayer Differentiation Gene trap clones Monolayer Differentiation

P1-1* D P1-12* Non D

P1-2* Non D P1-13* Non D

P1-3 D P1-14* Non D

P1-4* D P1-15* Non D

P1-5 D P1-16 D

P1-6 D P1-17 D

P1-7 D P1-18 D

P1-8 D to flat cells P1-19* Non D

P1-9 D P1-20* D

P1-10 D P2-1 D

P1-11* D P2-2 D

Monolayer neural differentiation of twenty clones from gene trap mutation pool 1 is presented. Clones with Tcf3 mutation are labelled with ‘‘*’’. Two clones from mutant
pool 2 were also included as a control for monolayer differentiation assay. ‘‘D’’ represents clones showing extensive neural differentiation. ‘‘Non-D’’ represents cells
showing predominantly undifferentiated ES cell morphology. P1-8 cells differentiated to flat non-neural cells.
doi:10.1371/journal.pone.0018189.t001
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Figure 4. Tcf3 gene trap mutants. A. Tcf3 gene trap (Tcf3trp) and Cre-reverted (Tcf3rev) alleles. Cre recombination deletes the gene trap cassette to
leave a reverted allele retaining the PB terminal repeats. B. RT-PCR analysis of Tcf3 expression in gene trap mutants. Tcf3 mRNA was not detected in
clones P1-2, P1-12 and P1-19 but evident in clones P1-1, P1-11 and P1-20. C. Diagram showing generation of het or homozygous reverted cells. D. RT-
PCR analysis of Tcf3 gene trap (Ex3-SA) and Tcf3 wild type (Ex3-Ex7) transcripts. CreA12-1 and CreD10-4 are subclones of CreA12 and CreD10. E. qRT-
PCR analysis of Tcf3 expression. F. After 9 days monolayer differentiation multiple ES cell colonies formed from Tcf3 homozygote P1-2, but not from
parental NN97-5 or revertant CreA12 or CreD10 cells.
doi:10.1371/journal.pone.0018189.g004
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pluripotent transcription factor network [17,18]. Isolation from a

stringent genetic screen independently establishes the importance

of Tcf3 for ES cell differentiation. The more homogenous

expression of Nanog in Tcf3 mutants indicates that repression by

Tcf3 contributes significantly to the heterogeneous and fluctuating

pattern observed in serum [24,26]. This effect is rather subtle in

terms of quantitative gene expression at the population level, but is

likely to be biologically significant at the single cell level. With Tcf3

deleted, Nanog is maintained more evenly in all cells and the

population is therefore more resistant to inductive cues for

commitment. In a separate study we present evidence that the

potent impact of glycogen synthase kinase-3 inhibition on ES cell

self-renewal is in large part mediated by Tcf3 derepression [29].

Genome location studies suggest that Tcf3 may directly repress

multiple components of the pluripotent circuitry [18,19]. We

hypothesise that the strong phenotype of Tcf3 deletion reflects

cumulative impact of general derepression of the pluripotency

network rather than dramatic up-regulation of specific targets.

In summary, this study demonstrates the feasibility of recessive

genetic screening for pluripotency regulators using a PB-based

gene trap in Blm-deficient ES cells configured for Rex1 selection.

This screen could readily be scaled up and applied in different

culture conditions. Ideally, ES cells with inducible deletion of Blm

would be used to minimise the incidence of background mutations

[30]. Importantly, revertible insertional mutagenesis is a more

robust screening methodology than RNAi based approaches,

which although flexible inevitably suffer from variable penetrance

and off-target effects.

Methods

ES cell culture and differentiation
Mouse ES cells were routinely maintained on gelatin coated

tissue culture plates in medium containing serum and LIF as

described [31]. The monolayer neural differentiation protocol is

detailed in full elsewhere [8]. In brief, cells were dissociated with

trypsin and washed once in PBS to remove residual FCS, and then

plated in N2B27 medium at a density of 26104 cells/cm2.

Medium was changed every second day. For non-neural

differentiation, cells were plated at similar density with either

recombinant BMP-4 (10 ng/ml, R&D systems) or 10% FCS. For

colony assays 600 fully dissociated ES cells were plated per 90 mm

tissue culture plate. Colonies were stained for alkaline phosphatase

(Sigma Aldrich, cat number 86R1KT). Colonies were scored

based on alkaline phosphase staining as pure ES cells, mixed or

completely differentiated.

Rex1 knock-in
The Rex1 coding region in AB2.2 BAC clone (bMQ-381F12,

provided by Wellcome Trust Sanger Institute), was first replaced

with eGFPIrespuro using bacterial recombineering [32]. To generate

the Rex1 targeting vector the 59 homology arm and the 39

homology arms including the eGFPIrespuro cassette were amplified

by PCR and cloned into pBluescript by three-way ligation. The

targeting vector was transfected into Blm mutant or E14Tg2aIVC

ES cells by electroporation. Following 7 days puromycin (1 mM)

selection ES cell colonies were picked and expanded. Genomic

Figure 5. Tcf3 deficiency suppresses serum-induced differentiation. A. Parental NN97-5 cells differentiate after 4 days in serum without LIF
while Tcf3 gene trap mutant P1-2 cells remain undifferentiated and retain uniform Oct4 expression in serum. B. Flow cytometry analysis for Rex1-
EGFP positive cells during monolayer differentiation in serum. P1-2, Tcf3 gene trap mutant; CreA12, heterozygous Tcf3 Cre-revertant; CreD10,
homozygous Tcf3 Cre-revertant. Graph shown is a representative of two independent experiments. C. Tcf3 mutant (P1-2) and the Tcf3 reverted cells
were plated at single cell density in serum with or without LIF for colony forming assay. Colonies were stained after 9 days for alkaline phosphatase
(AP) activity and colony numbers were quantified manually. Undifferentiated colonies are showing in red in figure and partially differentiated
showing in green and differentiated showing in yellow. D. Images show typical AP positive morphologically undifferentiated ES cell colonies
generated by P1-2 cells in serum with or without LIF. The experiment has been repeated once.
doi:10.1371/journal.pone.0018189.g005
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Figure 6. siRNA knockdown of Tcf3 in Blm wild type cells. A. qRT-PCR analysis of Tcf3 knockdown in Tcf3 siRNA treated ES cells and control
siRNA treated cells. B. Graph shows population of Rex1-EGFP positive cells in Tcf3 siRNA and control siRNA treated cells after 2 days in monolayer
differentiation with or without serum. C. qRT-PCR analysis of Rex1 expression in Tcf3 siRNA or control siRNA treated cells in monolayer differentiation
with or without serum. D. Images showing a typical AP positive ES cell colony formed in Tcf3 siRNA treated cells after 5 days in serum while only
differentiated colonies formed from control siRNA treated cells. Error bar represents standard deviation from three individual plating.
doi:10.1371/journal.pone.0018189.g006
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PCR was used to identify targeted clones. RT-PCR confirmed that

only targeted clones expressed the fused transcript including first

exon of Rex 1 and the eGFP-IresPuro knock-in cassette.

PB gene trap system
PB 59TR and PB 39TR with LoxP sites were amplified by PCR

from plasmid PB-SB-PGK-Neo-bPA [4] and ligated to pBluescript to

generate pGG81. An oligo linker was inserted to pGG81 to generate

pGG83 containing multiple cloning sites. The SAIRESbgeo cassette

was generated by four-way ligation of IRES fragment from pCA1

[33], the PCR amplified splice acceptor (SA) fragment and the

LacZ/Neo/bPA fragment from RGTV-1 [2] into pBlueScript.

SAIRESbgeo was then inserted to the pGG83 to generate the PB

based gene trap vector, pGG85. Splinkerette PCR was performed

as described [34]. In brief, genomic DNA was digested with BstYI

and then ligated with Splinkerette oligo adapter. The genome and

PB insertion junction was amplified with HMSP-1/PB-SP1

primers and then nested PCR using HMSP-2/PB-SP2 primers.

PCR reaction was treated with Exonuclease I (New England

Biolabs) to degrade single strand oligonucleotides, followed by

ethanol precipitation for sequencing with SP3 primers.

Luciferase assay
Cells were co-transfected with TOPFlash and Renilla plasmids

using LipofectamineTM 2000 (Invitrogen). Luciferase assay was

performed using Dual Luciferase Reporter Assay System (Pro-

mega). Recombinant mouse Wnt-3A was purchased from R&D

Systems.

siRNA knock down
Tcf3 siRNA (ON-TARGETplus SMARTpool L-04861-01-

0005) and the control siRNA (ON-TARGETplus Non-targeting

pool D-001810-10-05) were purchased from Dharmacon. 10 nM

siRNA or control was used for each transfection with Lipofecta-

mineTM RNAiMAX (Invitrogen).

Quantitative RT-PCR
Total RNA was prepared using RNeasy mini Kit (Qiagen). First

strand cDNA was synthesised using SuperscriptTM III reverse

transcriptase (Invitrogen) and Oligo-dT priming. Real time PCR

was performed using Taqman probes (Applied Biosystems) or the

universal probe library (Roche). Relative expression was deter-

mined using the delta Ct method. Standard deviation was

calculated on three PCR triplicates.

Flow cytometry analysis
For live cell analysis, ES cells were collected in PBS with 3%

FCS. ToPro-3 (Invitrogen) was added to cells at a final

concentration of 0.05 nM for staining of dead cells. Analyses

were performed using a CyAn flow cytometer (DakoCytomation).

Immunoflurescence
Cells were fixed with 4% PFA at room temperature for 15

minutes and then permeabilised with PBST (0.3% Triton x-100 in

PBS). Cells were then blocked and antibody stained in PBST

containing 3% donkey serum. For Nanog mosaic expression

analysis, 5000 cells were seeded on gelatin coated glass slides and

cultured for three days to form small cell patches for antibody

staining. Random fields were imaged under constant conditions

using a DMI4000B microscope (Leica micosystems) using a 606
objective. Images were analysed using Cell Profiler [27] to identify

DAPI labelled nuclei by Otsu thresholding, and measure the

intensity of OCT4 and NANOG immunolabelling in the detected

areas. Data are presented as a scatter plot of OCT4 vs NANOG

intensities. Oct4 antibody is from Santa Cruz Biotechnology (sc-

5249, 1:200) and Nanog antibody is from eBioscience (14-5761-80,

1:200). Secondary antibody for OCT4 in this assay is goat anti-

mouse IgG Alex 647 and secondary for Nanog is goat anti-rat IgG

Alex 488.

PCR primers and qPCR probe details are provided in

supplementary information.
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