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Towards a widespread adoption of metabolic modeling tools in
biopharmaceutical industry: a process systems biology
engineering perspective
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In biotechnology, the emergence of high-throughput technologies challenges the interpretation of large datasets. One way to
identify meaningful outcomes impacting process and product attributes from large datasets is using systems biology tools such as
metabolic models. However, these tools are still not fully exploited for this purpose in industrial context due to gaps in our
knowledge and technical limitations. In this paper, key aspects restraining the routine implementation of these tools are
highlighted in three research fields: monitoring, network science and hybrid modeling. Advances in these fields could expand the
current state of systems biology applications in biopharmaceutical industry to address existing challenges in bioprocess
development and improvement.
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INTRODUCTION
The emergence of high-throughput technologies is elevating the
biotechnology field to the era of big data1. This shifting paradigm
created considerable challenges for the interpretation of large
datasets and the generation of meaningful outcomes impacting
process and product attributes. Among the numerous computa-
tional methods developed in this context, metabolic modeling
tools allowed the coherent organization of large datasets into
biological networks providing nonintuitive insights on biological
systems that in vivo experiments alone cannot provide2. These
model-based approaches have been proven to be invaluable at
the level of preclinical research. For example, these approaches
have been used for the design of new drugs by informing target
selection and for the engineering of cells by rewiring metabolism
towards the production of a product of interest3,4.
Pharmaceutical companies are already investing substantially in

computational approaches to guide drug discovery and cell
design. While these important applications are out of the scope of
this paper, we refer the interested readers to detailed reviews on
the usage of metabolic engineering and synthetic biology in
industrial context5–8. However, model-based methods can be used
for much more than this. For instance, these methods could also
be applied at the industrial level in the field of process design,
monitoring and control to lower the experimental effort and
increase the process robustness. Indeed, model-based methods
would allow a more rational design of bioprocesses but also the
objective identification of the variables to monitor and control.
Therefore, the routine implementation of these methods can be
expected to greatly facilitate the implementation of regulatory
requirements related to the Quality by Design paradigm (i.e.,
systematic approach to development that begins with predefined
objectives and emphasizes product and process understanding
and process control) and Process Analytical Technologies initiative
(mechanism to design, analyze and control manufacturing
processes through the measurement of Critical Process Para-
meters that affect Critical Quality Attributes9). Numerous modeling

methods exist to describe and quantify the reactions occurring in
a cell under specific environments, from deterministic kinetic
models to stochastic and statistical models. While kinetic
modeling has been widely used for small-scale metabolic models,
these mechanistic models are for the moment not scalable and
suitable for genome-wide approaches due to challenges in
acquiring the required kinetic parameters (i.e., rate constants,
enzymes and intracellular metabolite concentrations) and com-
putational problems associated with such complex parametric
systems (i.e., model nonlinearity, parameter identifiability, and
computational tractability)10. On the other hand, while statistical
modeling is very useful for the manipulation of large complex
datasets, these black-box approaches have limited capacity to
generate biologically relevant information for bioprocess improve-
ment. Therefore, the lack of clear workflows to set up specific
process models based on genome-wide information have limited
the potential scope of computational biology applications in
industry.
However, the systems biology field is in continuous develop-

ment and genome-scale metabolic networks are now available for
most of the industrially relevant organisms. Therefore, we should
be able to systematically predict cell metabolic behavior under
different specific complex media compositions and process
conditions. These types of predictions should be used to
objectively determine the optimal operating conditions with
respect to the desired cell phenotype and related production
criteria. Unfortunately, while numerous studies have successfully
used genome-scale models to rationally guide the culture process
design11–13, their practical implementation in biopharmaceutical
research and development facilities still seems in its infancy.
Actually, bioprocess improvement performance is still mainly
achieved by semi-empirical media and bioprocess optimization
(i.e., screening different media and process conditions and analysis
using statistical design-of-experiment strategies)14. In this paper,
gaps in current knowledge and technical limitations restraining
the widespread usage of metabolic modeling tools for process
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development (i.e., design, optimization and control) in biophar-
maceutical industry are highlighted. Specifically, research topics in
three fields (real-time monitoring, biological network science and
hybrid modeling) are identified as key drivers for evolving the
current state of some systems biology tools in industrial process
engineering applications. Advances in these fields will be
invaluable to address existing challenges in bioprocess develop-
ment and improvement.

REAL-TIME BIOPROCESS MONITORING: TRACK TO BETTER
CONTROL
Real-time monitoring is a key issue for effective bioprocess
operation. Indeed, one needs first to recognize and analyze
cellular physiological state in function of environmental conditions
to be further able to adequately manipulate operating conditions.
Therefore, real-time monitoring technologies development is a
critical aspect of the bioprocess automatization. Previously, only a
small number of so-called “process variables” were commonly
measured online in bioreactors (e.g., pH, temperature, OD,
stirring). The scope of available real-time probes has now been
significantly expanded thanks to the recent advances in analytical
technologies and the adoption of Process Analytical Technologies
initiative15,16.
In the context of bioprocesses, real-time measurements of the

metabolites and cell concentrations in the cell culture medium are
key elements to enable the prediction of cell phenotype with
respect to operating conditions (e.g., by using constraint-based
modeling approaches)17. Unfortunately, some of these experi-
mental measurements cannot currently be achieved online in situ
and, doing so, limit our capacity to have a live snapshot of the cell
metabolism during the culture process. However, continuous
improvements in analytical technologies and the emergence of
the single-cell experiments open new perspectives for gaining
insights into cell metabolism.
Spectroscopic methods (e.g., NIR, FTIR, mid-IR, Raman, Fluores-

cence) have attracted an increasing interest for their potential
capacity of simultaneous in situ measurement of nutrients,
metabolites and cell concentrations. These techniques have been
successfully integrated into real-time pharmaceutical manufactur-
ing to provide a “molecular fingerprint” of samples enabling in-
process correction needed to ensure the acquisition of a specific
quality product18,19. However, the capacity to systematically
extract accurate quantitative data is, for the moment, limited to
a handful number of metabolites (typically, glucose, lactate,
glutamine, glutamate, and ammonium). We refer the reader to the
publications of Li et al.20 and Ryder21 for detailed comparison of
the performance and limitations of existing spectroscopic
methods. In this context, chemometric modeling has been a
state-of-art technique to effectively extract the maximum of
information from spectroscopic spectra. It is worth to highlight
that spectroscopic sensors can in this sense be embedded in the
concept of soft sensor22 as they are used to compensate the lack
of specific measurement by reconstructing the missing signals
based on available measurements using data analysis models23.
This type of hybrid approach will therefore continue to greatly
benefit from the flourishing evolution of artificial intelligence tools
and certainly allows to overcome the current limitations of
spectroscopic monitoring methods24.
Parallelly, the rise of online single‐cell probing opens the door

for the specific investigation of cell metabolism and bioenergetics
at a definition level never captured before25. These “single-cell
approaches” in combination with adequate analytical methods
could help unravel the impact of operating conditions on the
cellular physiology. Specifically, the new generation of high-
throughput-omics technologies allow to envision in a close future
a near real-time measurements of cell transcriptome and
proteome26–28. Interestingly, very few examples of interfacing

flow cytometry with a bioreactor and its use for effective
bioreactor control can be found in the literature29.

COMPLEXITY OF METABOLIC NETWORKS: REDUCE TO BETTER
PREDICT
A genome-scale metabolic model is a network connecting all
metabolic reactions that can occur in a specific organism with
their associated metabolites, proteins and genes. While these
models have been proven to be powerful tools for in silico
simulation of cell metabolism12, the complexity of these large
networks also hinders their utility in various practical applications.
Actually, metabolic networks involving, most of the time, more
reactions than metabolites, the associated system presents,
generally, a multitude of solutions (i.e., underdetermined system).
Therefore, metabolic network structures are also too complex to
be handled for the development of utilitarian tools (e.g.,
optimization and control of a bioprocess based on cell phenotype
prediction).
Different approaches have been proposed for tailoring these

metabolic networks based on a priori knowledge and/or available
experimental data. For example, algorithms like the one presented
in Erdrich et al.30 or Ataman et al.31 allow an easy-to-implement
systematic reduction of genome-scale networks into core models.
However, these methods rely on the definition by the user of the
part of the model that should be “protected” during the reduction
(i.e., specific metabolites, reactions, phenotypes that need to be
conserved) which is far from easy task. On the other hand,
numerous algorithms have been developed to tailor genome-
scale metabolic networks by integrating diverse types of -omics
data, including transcriptomics, proteomics and metabolomics32–35.
Actually, genome-scale models are used to link genes, enzymes,
and metabolism through the use of gene-protein-reactions (GPR).
Therefore, the knowledge of GPR is used by researchers to explain
the metabolic state of a cell, based on the expression of metabolic
genes and/or specific proteins36,37. The most common “integration
algorithms” use gene expression data to recapitulate the
metabolism of an organism under a specific condition (e.g.,
specific cell-line or operating conditions) by only extracting the
subset of active reactions from the genome-scale model. These
methods have been proven to be valuable for enhancing the
accuracy of model-predicted growth rates and gene essentiality37.
However, since currently no quantitative description of the GPR
relationship exists in genome-scale metabolic models, the
integration of gene expression data requires the use of strong
assumptions to link the GPR expression and the metabolic
reaction activity, which could lead to an oversimplification of
the complex relation existing between fluxes, enzymes and
genes36,38.
Finally, it is important to highlight that these “network tailoring”

approaches generally do not completely leverage the problem of
system underdetermination related to network complexity. There-
fore, the choice of adequate strategy to solve the system (e.g.,
linear optimization techniques such as Flux Balance Analysis39) will
always be required to achieve an instantaneous picture of the flux
distributions in the cell. A recent research in this field presented a
new approach using biochemical thermodynamic constraints (i.e.,
Gibbs energy) to shape the solution space of potential flux
distributions40. The promising results obtained in this study pave a
new way towards the understanding of the mechanisms that
governs the definition of metabolic pathway usage across
organisms and conditions. Further development of these compu-
tational methods will be crucial to obtain a holistic and integrated
picture of the cell metabolism in function of specific environ-
mental conditions while considering uncertainty associated with
experiments, measurements and modeling.
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MODELING WITH HYBRID APPROACHES: COMBINE TO
EFFECTIVELY IMPLEMENT
The application of artificial intelligence and machine learning in
bioprocess engineering and systems biology has seen a significant
increase in the last years thanks to the research advances in these
fields41–43 and their successful applications for e.g. in tumor
detection44. In particular, advances in image recognition enable
the automation of so far manual tasks, such as the possibility to
automate the counting of cell colonies grown on petri-dishes,
using digital imaging45. Surprisingly, the practical implementation
of these hybrid approaches combining machine learning and the
extended knowledge available about biological systems is still in
its infancy in bioindustries.
Considering the availability of this prior knowledge, hybrid

modeling and artificial intelligence approaches have the potential
to significantly reduce the amount of experiments that need to be
executed, while potentially increasing the region in which the
model can reliably generate predictions. Actually, hybrid models
seek to complement what is mechanistically known (e.g., about
the metabolism and kinetics) with data-driven methods to
describe the unknown parts. This type of models provides an
attractive method for modeling biochemical processes as much of
the underlying complexity can be lumped in the data-driven part.

Therefore, these approaches can be used to effectively establish
the link between metabolism and operating conditions in a way
that can be used to implement control and optimization
strategies.
Despite their benefits and their first applications stemming from

199246, the first application of hybrid modeling in systems biology
only arose in 201047 and few have been reported ever since48–53.
One reason might be the absence of dedicated software that
would allow for a straightforward development of these type of
models. Another reason might be the broad interdisciplinarity of
competences required to implement these approaches (i.e.,
knowledge from engineering fields and data sciences that need
ideally to be complemented with a biological background). Finally,
there is still several major open questions that need to be
investigated to allow a better combined usage of hybrid modeling
and metabolic modeling tools54. From the effective generation of
sufficiently informative experimental data to the joint parameter
identification of the mechanistic and data-driven parts of the
model, the assessment of these gaps will be critical for the
development of a systematic workflow for integrating knowledge
from systems biology into model structures enabling a next-
generation technology for the life-sciences and biotechnology
sectors, besides others (Fig. 1).

Proteome

Metabolome

Transcriptome

AI & ML
tools

Genome scale
metabolic network

Reduced
metabolic network

Tailoring networksTailoring networks
based on databased on data

Real-time Real-time 
monitoringmonitoring

Hybrid modelingHybrid modeling

Fig. 1 From experimental data to bioprocess improvement. Systematic workflow using data extracted from real-time monitoring to tailor
genome-scale biological networks to core metabolic models that can be combined with artificial intelligence and machine learning tools for
an effective implementation of control and optimization strategies.
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BRIDGING THE GAPS TOWARDS EFFECTIVE CONTINUOUS
PROCESSING
Process intensification through continuous processing has been
adopted for decades in industries such as chemical and
petrochemical. In the context of biopharmaceutical production,
the move from batch to continuous or semi-continuous mode of
production has been slowed down mainly due to the more
conservative approach of this industry resulting from the stringent
quality/regulatory requirements. Therefore, innovation in biotech-
nology has become more product- than process-centered55. While
these old drivers of bioprocess development are still valid, new
emerging challenges are forcing the change towards extended
manufacturing flexibility and transferability. The commitment to
deliver on them includes process development timeline decrease,
productivity increase and product quality modulation (e.g., for
biosimilarity).
The proper implementation of continuous manufacturing

requires a thorough understanding of the process to achieve
and maintain steady-state conditions (i.e., the causalities between
physiological state, bioprocess parameters, productivity and
product quality attributes). Furthermore, the in-process quality
should be evaluated and ensured by the real-time analysis of
process data. To this end, in-line process monitoring system linked
to robust model-based control will be crucial technologies to
support this real-time release testing56,57.
Despite their advantages, the potential of metabolic modeling

tools is still not fully exploited to address these challenges in
bioprocess development and improvement. This is mainly due to
the upfront time and effort investment required to implement
these approaches and gain in process understanding as critical
gaps remain to set these methods up in clear workflows. Empirical
process development techniques will continue to play an
important role in addressing these challenges. However, systems
biology-driven approaches are likely to be more impactful to
provide insights into the cellular responses to process conditions
changes2,14.
Finally, the research topics, highlighted in this review, in the

field of monitoring, network science and hybrid modeling, will
also be cutting-edge technologies to improve new emergent
biopharmaceutical production platforms such as cell-free systems.
Actually, cell-free protein synthesis has been emerging as a
flexible and powerful platform to address challenges in biomanu-
facturing by overcoming inherent limitations related to the use of
living cells. Cell-free systems offer the ability to design metabolic
pathways towards the production of desired products but also to
synthesize complex proteins with unnatural amino acids and to
buildup artificial cells. Despite these promising features, chal-
lenges remain such as the proper control of post-translational
modifications and the expansion of the genetic code for unnatural
amino acids incorporation. To address these challenges, targeted
gene editing and addition of adequate exogenous substances to
control reaction conditions will be needed to optimally regulate
the transcription and translation58,59. In this context, computa-
tional tools will be invaluable to systematically identify system
limitations and areas of improvement for production efficiency, as
demonstrated in the work of Vilkhovoy et al.60.

DISCUSSION
We highlighted gaps in our knowledge and technical limitations
restraining the effective application of metabolic modeling tools
throughout the lifecycle of a biopharmaceutical process. Specifi-
cally, advances in real-time monitoring of bioprocesses, biological
network modeling and their combination with data-driven
approaches will be the key drivers to lower the time and cost
associated with the development of new drugs4. Taken together,
these technologies could facilitate the switch to continuous

processing in biopharmaceutical industry but also foresee needs
for improvements in emergent biomanufacturing platforms such
as cell-free systems.

Received: 10 October 2019; Accepted: 12 February 2020;

REFERENCES
1. Sadowski, M. I., Grant, C. & Fell, T. S. Harnessing QbD, programming languages,

and automation for reproducible biology. Trends Biotechnol. 34, 214–227 (2016).
2. Chen, C., Le, H. & Goudar, C. T. Integration of systems biology in cell line and

process development for biopharmaceutical manufacturing. Biochem. Eng. J. 107,
11–17 (2016).

3. Kubinyi, H. In Computer Applications in Pharmaceutical Research and Development
(eds Wang, B. & Ekins, S.) 377–424 (John Wiley & Sons, 2006).

4. Schmidt, B. J., Papin, J. A. & Musante, C. J. Mechanistic systems modeling to guide
drug discovery and development. Drug Discov. Today 18, 116–127 (2013).

5. Choi, K. R. et al. Systems metabolic engineering strategies: integrating systems
and synthetic biology with metabolic engineering. Trends Biotechnol. 37, 817–837
(2019).

6. Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197
(2016).

7. Jain, K. K. Synthetic biology and personalized medicine. Med. Princ. Pract. 22,
209–219 (2013).

8. Trosset, J.-Y. & Carbonell, P. Synthetic biology for pharmaceutical drug discovery.
Drug Des. Devel. Ther. 9, 6285–6302 (2015).

9. Rathore, A. S. & Winkle, H. Quality by design for biopharmaceuticals. Nat. Bio-
technol. 27, 26–34 (2009).

10. Penas, D. R., González, P., Egea, J. A., Doallo, R. & Banga, J. R. Parameter estimation
in large-scale systems biology models: a parallel and self-adaptive cooperative
strategy. BMC Bioinforma. 18, 52 (2017).

11. Burgard, A. P., Vaidyaraman, S. & Maranas, C. D. Minimal reaction sets for
Escherichia coli metabolism under different growth requirements and uptake.
Environments 17, 791–797 (2001).

12. Selvarasu, S. et al. Combined in silico modeling and metabolomics analysis to
characterize fed-batch CHO cell culture. Biotechnol. Bioeng. 109, 1415–1429 (2012).

13. Zhang, C. & Hua, Q. Applications of genome-scale metabolic models in bio-
technology and systems medicine. Front. Physiol. https://doi.org/10.3389/
fphys.2015.00413 (2016).

14. Kroll, P., Hofer, A., Ulonska, S., Kager, J. & Herwig, C. J. P. R. Model-based methods
in the biopharmaceutical process lifecycle. Farm Res. 34, 2596–2613 (2017).

15. Gernaey, K. V. et al. Monitoring and control of microbioreactors: an expert opi-
nion on development needs. Biotechnol. J. 7, 1308–1314 (2012).

16. Guerra, A., von Stosch, M. & Glassey, J. Toward biotherapeutic product real-time
quality monitoring. Crit. Rev. Biotechnol. 39, 289–305 (2019).

17. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models
predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120
(2014).

18. Baradez, M.-O., Biziato, D., Hassan, E. & Marshall, D. Application of Raman spec-
troscopy and univariate modelling as a process analytical technology for cell
therapy bioprocessing. Front. Med. (Lausanne) 5, 47–47 (2018).

19. Buckley, K. & Ryder, A. G. Applications of Raman spectroscopy in biopharma-
ceutical manufacturing: a short review. Appl. Spectrosc. 71, 1085–1116 (2017).

20. Li, M., Ebel, B., Chauchard, F., Guédon, E. & Marc, A. Parallel comparison of in situ
Raman and NIR spectroscopies to simultaneously measure multiple variables
toward real-time monitoring of CHO cell bioreactor cultures. Biochem. Eng. J. 137,
205–213 (2018).

21. Ryder, A. G. Cell culture media analysis using rapid spectroscopic methods. Curr.
Opin. Chem. Eng. 22, 11–17 (2018).

22. Luttmann, R. et al. Soft sensors in bioprocessing: a status report and recom-
mendations. Biotechnol. J. 7, 1040–1048 (2012).

23. Esmonde-White, K. A. et al. Raman spectroscopy as a process analytical tech-
nology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal.
Chem. 409, 637–649 (2017).

24. Storey, E. E. & Helmy, A. S. Optimized preprocessing and machine learning
quantitative Raman spectroscopy in biology. J. Raman spectrosc. 50, 958–968
(2019).

25. Vasdekis, A. E. & Stephanopoulos, G. Review of methods to probe single cell
metabolism and bioenergetics. Metab. Eng. 27, 115–135 (2015).

26. Erickson, B. K. et al. Active instrument engagement combined with a real-time
database search for improved performance of sample multiplexing workflows. J.
Proteome Res. 18, 1299–1306 (2019).

A. Richelle et al.

4

npj Systems Biology and Applications (2020)     6 Published in partnership with the Systems Biology Institute

https://doi.org/10.3389/fphys.2015.00413
https://doi.org/10.3389/fphys.2015.00413


27. Doerr, A. Single-cell proteomics. Nat. Methods 16, 20–20 (2019).
28. Rhoads, A. & Au, K. F. PacBio Sequencing and its applications. Genom. Proteom.

Bioinforma. 13, 278–289 (2015).
29. Delvigne, F. & Goffin, P. Microbial heterogeneity affects bioprocess robustness:

dynamic single-cell analysis contributes to understanding of microbial popula-
tions. Biotechnol. J. 9, 61–72 (2014).

30. Erdrich, P., Steuer, R. & Klamt, S. An algorithm for the reduction of genome-scale
metabolic network models to meaningful core models. BMC Syst. Biol. 9, 48
(2015).

31. Ataman, M., Hernandez Gardiol, D. F., Fengos, G. & Hatzimanikatis, V. redGEM:
systematic reduction and analysis of genome-scale metabolic reconstructions for
development of consistent core metabolic models. PLoS Comput. Biol. 13,
e1005444 (2017).

32. Aurich, M. K., Fleming, R. M. T. & Thiele, I. MetaboTools: a comprehensive toolbox
for analysis of genome-scale metabolic models. Front. Physiol. 7, 327–327 (2016).

33. Berger, B., Peng, J. & Singh, M. Computational solutions for omics data. Nat. Rev.
Genet. 14, 333–346 (2013).

34. Bersanelli, M. et al. Methods for the integration of multi-omics data: mathematical
aspects. BMC Bioinforma. 17, S15 (2016).

35. García Martín, H. et al. A method to constrain genome-scale models with 13C
labeling data. PLoS Comput. Biol. 11, e1004363 (2015).

36. Machado, D. & Herrgård, M. Systematic evaluation of methods for integration of
transcriptomic data into constraint-based models of metabolism. PLoS Comput.
Biol. 10, e1003580 (2014).

37. Opdam, S. et al. A systematic evaluation of methods for tailoring genome-scale
metabolic models. Cell Syst. 4, 318–329.e316 (2017).

38. Richelle, A., Joshi, C. & Lewis, N. E. Assessing key decisions for transcriptomic data
integration in biochemical networks. PLoS Comput. Biol. 15, e1007185 (2019).

39. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol.
28, 245–248 (2010).

40. Niebel, B., Leupold, S. & Heinemann, M. An upper limit on Gibbs energy dis-
sipation governs cellular metabolism. Nat. Metab. 1, 125–132 (2019).

41. Angermueller, C., Pärnamaa, T., Parts, L. & Stegle, O. Deep learning for compu-
tational biology. Mol. Syst. Biol. 12, 878 (2016).

42. Miotto, R., Wang, F., Wang, S., Jiang, X. & Dudley, J. T. Deep learning for healthcare:
review, opportunities and challenges. Brief. Bioinforma. 19, 1236–1246 (2018).

43. Oyetunde, T., Bao, F. S., Chen, J.-W., Martin, H. G. & Tang, Y. J. Leveraging
knowledge engineering and machine learning for microbial bio-manufacturing.
Biotechnol. Adv. 36, 1308–1315 (2018).

44. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542, 115–118 (2017).

45. Ferrari, A., Lombardi, S. & Signoroni, A. Bacterial colony counting with convolu-
tional neural networks in digital microbiology imaging. Pattern Recogn. 61,
629–640 (2017).

46. Psichogios, D. C. & Ungar, L. H. A hybrid neural network-first principles approach
to process modeling. AIChE J. 38, 1499–1511 (1992).

47. von Stosch, M., Peres, J., de Azevedo, S. F. & Oliveira, R. Modelling biochemical
networks with intrinsic time delays: a hybrid semi-parametric approach. BMC Syst.
Biol. 4, 131 (2010).

48. Carinhas, N. et al. Hybrid metabolic flux analysis: combining stoichiometric and
statistical constraints to model the formation of complex recombinant products.
BMC Syst. Biol. 5, 34–34 (2011).

49. Ferreira, A. R. et al. Projection to latent pathways (PLP): a constrained projection
to latent variables (PLS) method for elementary flux modes discrimination. BMC
Syst. Biol. 5, 181–181 (2011).

50. Hamilton, F., Lloyd, A. L. & Flores, K. B. Hybrid modeling and prediction of
dynamical systems. PLoS Comput. Biol. 13, e1005655 (2017).

51. Isidro, I. A. et al. Hybrid metabolic flux analysis and recombinant protein pre-
diction in Pichia pastoris X-33 cultures expressing a single-chain antibody frag-
ment. Bioprocess. Biosyst. Eng. 39, 1351–1363 (2016).

52. Teixeira, A. P. et al. Cell functional enviromics: unravelling the function of
environmental factors. BMC Syst. Biol. 5, 92 (2011).

53. von Stosch, M., Carinhas, N. & Oliveira, R. In Large-Scale Networks in Engineering
and Life Sciences (eds Benner, P. et al.) 367−388 (Springer International Pub-
lishing, 2014).

54. von Stosch, M., Oliveira, R., Peres, J. & Feyo de Azevedo, S. Hybrid semi-parametric
modeling in process systems engineering: past, present and future. Computers
Chem. Eng. 60, 86–101 (2014).

55. Warikoo, V. et al. Integrated continuous production of recombinant therapeutic
proteins. Biotechnol. Bioeng. 109, 3018–3029 (2012).

56. Chaudary, R. S., Pazhayattil, A. & Spes, J. Continuous manufacturing: a generic
industry perspective. Pharmaceut. Technol. http://www.pharmtech.com/
continuous-manufacturing-generic-industry-perspective (2017).

57. Hernandez, R. Continuous manufacturing: a changing processing paradigm. Bio-
Pharm. Int. 28. http://www.biopharminternational.com/continuous-manufacturing-
changing-processing-paradigm (2015).

58. Jiang, L., Zhao, J., Lian, J. & Xu, Z. Cell-free protein synthesis enabled rapid pro-
totyping for metabolic engineering and synthetic biology. Synth. Syst. Biotechnol.
3, 90–96 (2018).

59. Lu, Y. Cell-free synthetic biology: engineering in an open world. Synth. Syst.
Biotechnol. 2, 23–27 (2017).

60. Vilkhovoy, M. et al. Sequence specific modeling of E. coli cell-free protein
synthesis. ACS Synth. Biol. 7, 1844–1857 (2018).

ACKNOWLEDGEMENTS
The development of this article was sponsored by GlaxoSmithKline Biologicals SA. All
authors were employees of the GSK group of companies at the time of the
development of this article.

AUTHOR CONTRIBUTIONS
A.R. and M.v.S. wrote and edited the manuscript. All authors were involved in drafting
the content and structure of the manuscript and approved the final version.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41540-020-0127-y.

Correspondence and requests for materials should be addressed to A.R. or M.v.S.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

A. Richelle et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)     6 

http://www.pharmtech.com/continuous-manufacturing-generic-industry-perspective
http://www.pharmtech.com/continuous-manufacturing-generic-industry-perspective
http://www.biopharminternational.com/continuous-manufacturing-changing-processing-paradigm
http://www.biopharminternational.com/continuous-manufacturing-changing-processing-paradigm
https://doi.org/10.1038/s41540-020-0127-y
https://doi.org/10.1038/s41540-020-0127-y
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Towards a widespread adoption of metabolic modeling tools in biopharmaceutical industry: a process systems biology engineering perspective
	Introduction
	Real-time bioprocess monitoring: track to better control
	Complexity of metabolic networks: reduce to better predict
	Modeling with hybrid approaches: combine to effectively implement
	Bridging the gaps towards effective continuous processing
	Discussion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




