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Abstract

Background: Campylobacteriosis is a major cause of gastroenteritis in the UK, and

although 70% of cases are associated with food sources, the remainder are probably

associated with wider environmental exposure.

Methods: In order to investigate wider environmental transmission, we conducted a spatio-

temporal analysis of the association of human cases of Campylobacter in the Tyne catchment

with weather, climate, hydrology and land use. A hydrological model was used to predict surface-

water flow in the Tyne catchment over 5 years. We analysed associations between population-

adjusted Campylobacter case rate and environmental factors hypothesized to be important in

disease using a two-stage modelling framework. First, we investigated associations between tem-

poral variation in case rate in relation to surface-water flow, temperature, evapotranspiration and

rainfall, using linear mixed-effects models. Second, we used the random effects for the first model

to quantify how spatial variation in static landscape features of soil and land use impacted on the

likely differences between subcatchment associations of case rate with the temporal variables.

Results: Population-adjusted Campylobacter case rates were associated with periods

of high predicted surface-water flow, and during above average temperatures.

Subcatchments with cattle on stagnogley soils, and to a lesser extent sheep plus cattle

grazing, had higher Campylobacter case rates.

Conclusions: Areas of stagnogley soils with mixed livestock grazing may be more vulner-

able to both Campylobacter spread and exposure during periods of high rainfall, with

resultant increased risk of human cases of the disease.
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Introduction

In the UK, Campylobacter is a major cause of gastroenter-

itis, and is thought to result in approximately 700 000

cases per annum, leading to health-associated costs in

2009 of over £50 million.1 The number of human cases of

disease is strongly seasonal, with peaks in early summer

(June) that vary regionally.2 Infection is mainly caused by

consumption of contaminated chicken and beef, and

chicken has been identified as a particular problem3 with

the majority of samples bought at UK supermarkets found

to be contaminated by Campylobacter.4 Although the ma-

jority of human Campylobacter cases can be linked to food

consumption, between 30% and 50% of cases may be a re-

sult of infection from the wider environment.5 The survival

and distribution of Campylobacter in the environment

change with both space and time, and this will interact

with how humans are exposed to the organism. However,

given that the numbers of reported Campylobacter cases

are dominated by infection through food, and eating be-

haviour changes seasonally6, this makes it harder to detect

cases of infection from the wider environment. Seasonal

variation in the prevalence of Campylobacter has not been

detected in poultry7 or sheep,8 but the amounts of

Campylobacter being shed by dairy cattle does change

seasonally.9 To understand the epidemiology of Campylo-

bacter therefore requires analyses that include spatial-

temporal patterns, livestock management, meteorology

and environmental conditions.

Molecular epidemiological investigations suggest that

the spring\early summer peak of Campylobacter infections

may be largely due to environmental exposure.2 Complex

pathways of primary and secondary interactions occur be-

tween Campylobacter reservoirs in soil, water, wild animals

and livestock in the countryside,10,11 and whereas there is

evidence for a wide distribution of Campylobacter in the

environment, the health risks posed for humans remain

unclear. Sequence type (ST) analyses of Campylobacter in

Cheshire in North West England12 have indicated the par-

ticular importance of dairy cattle, and cattle-derived strains

were most often isolated in humans (particularly the ST-61

complex). Cattle appear to have generally higher infection

levels than sheep, at about 90% for herds and 55% for

flocks.3,13 Campylobacter deposited in faeces from individ-

ual sheep and cattle has been estimated at 102 to 107

colony-forming units/g,9 although this may be focused on a

small number of ‘high-shedding’ animals within a herd.3

Campylobacter survival at any point location will de-

pend on both local soil type and local weather conditions.

Soil type is of particular importance14,15 as it affects soil

moisture, chemistry and infiltration within the soil;16,17

some studies have indicated that Campylobacter is twice

as common in clay compared with non-clay soils.18

Campylobacter is microaerophilic and is extremely sensitive

to desiccation in warm dry weather and UV radiation,19

and it survives better in the environment at temperatures

less than 10�C compared with over 25�C 18,20 Some

Campylobacter populations, however, also appear to have

adaptive tolerance in the field to some environmental

stresses.20 Wet conditions (due to soil type and/or weather)

will therefore aid not only Campylobacter survival, but also

increase its risk of being spread further during subsequent

surface-water flow events. Human Campylobacter infection

from environmental sources will be the product of two proc-

esses,: the presence of the pathogen and the mechanisms

leading to human exposure. There remains considerable un-

certainty about the role of different environmental factors in

determining Campylobacter survival in the landscape, trans-

mission between hosts and infection in humans. The patho-

gen is likely to be distributed in large quantities across the

landscape through manure spreading, grazing livestock and

transmission between domesticated animals and wildlife

such as badgers, rabbits and wild birds.21,22

Key Messages

• Campylobacter is a major cause of gastroenteritis in the UK, with approximately 30% of cases associated with

environmental contamination.

• We used hydrological and meteorological data in a temporal model, and livestock and soil maps in a spatial model,

to assess potential environmental factors affecting human campylobacteriosis.

• Warm wet weather, during periods of high surface-water overland flow, combined with cattle grazing on stagnohumic

gley soils, were associated with increased Campylobacter case rates.

• To understand Campylobacter case rates it is essential to measure the role of environmental factors such as meteor-

ology, hydrology, livestock grazing and soil type.

• More information is needed on human behaviours, especially where and when visits are made to the countryside,

that may affect the risk of exposure to Campylobacter.
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Campylobacter shed by livestock can be transported by

surface and subsurface-water flows,23 and there is a large lit-

erature on predicting hydrological flows in landscapes and

attempts to link this research with the distribution of patho-

gens.24–26 Most catchment-level landscape models of bacter-

ial movement have focused on overland flow,26 although

there have been recent attempts to produce models for small

catchments which couple both surface and subsurface move-

ment of bacterial pathogens.25,27 Quantifying the links

between human disease and water flow is difficult because of

differences in spatial and temporal scales: the cases of disease

are comparatively infrequent, with delays between infection

and reporting, and high-precision predictions of hydrological

flow generally work best for small catchments.28 For large

catchments such as that of the River Tyne, where spatio-

temporal patterns in Campylobacter cases become more ob-

vious, modelling surface flows becomes challenging, and the

problems of integrating disease and environmental models

operating at very different spatial and temporal scales in-

crease.29 Storm events are likely to increase the amount of

overland flow30,31 and are known to be important in the

movement of other bacteria such as Escherichia coli.30 The

frequency and intensity of these events are likely to increase

with climate change, but their impacts on potential spread of

Campylobacter are unclear.32

It is clear that any approach to investigate possible

environmental factors associated with increased Campylo-

bacter cases must incorporate the spatio-temporal dynamics

of factors that might affect exposure, including weather

conditions, catchment hydrology (especially surface-water

flows that distribute the pathogen), soil types and livestock

grazing patterns, while allowing for the vastly different

scales of each process. The primary aim of this study was to

improve our understanding of the impact and transmission

pathways of environmentally acquired Campylobacter

cases in the catchment of the River Tyne, and livestock land

use, hydrology, soil conditions and meteorology, using a

combined spatio-temporal statistical modelling approach.

We hypothesize that the numbers of human cases of

Campylobacter will be related to temporal variation in

weather and hydrology (rainfall, run-off and temperature)

which will impact on the distribution of Campylobacter in

the environment, and that this will be moderated by spatial

variation in livestock production, soil type and meteor-

ology. The research had the following specific objectives:

i. to quantify the association between occurrences of

human cases of Campylobacter and temperature, rain-

fall and hydrological responses of the study catchment.

We refer to this as our temporal model;

ii. and to investigate the association between the occur-

rence of Campylobacter cases and land use and soil

after adjusting for the temporal variation in weather

and hydrology. We refer to this as our spatial model.

The Topmodel hydrological model33 was initially run

for the study catchment and its predictions used as inputs

into the temporal model. It investigates Campylobacter

case rates in relation to short-term variation in the weather

and hydrology across the range of subcatchments. The spa-

tial model quantifies the effects of spatial variation in the

underlying landscape (soil and livestock) of these subcatch-

ments with case rates, having already been adjusted for

temporal variation in weather and hydrology. The overall

structure of the hydrological, temporal and spatial models

is summarised in Figure 1.

Methods

Analyses were undertaken using a combination of Unix

shell-scripting to interface with the GRASS geographical in-

formation system,34 the Topmodel hydrological model28,35

and the R statistical package.36 One advantage of GRASS,

as the geographical information system (GIS) for this type

of analysis, is that it integrates well with R.37

Hydrological model

Study area and division into subcatchments

The Tyne catchment is approximately 2944 km2 in North

East England (Figure 2). The landscape is highly diverse,

ranging from semi-natural wild moorland habitats dominated

by upland plant species and sheep grazing (c 1000 km2)

through lowland arable (c 275 km2) to the urban sprawl of

Tyneside (c 220 km2). Kielder Valley, in the north-west of the

catchment, contains Kielder Water, the largest reservoir in

the UK at over 10 km2, and part of Kielder Forest (c 380 km2

coniferous plantation within the catchment). The catchment

has an altitude range of 0 to 900 m, with average annual

rainfall ranging from 630 mm to 1670 mm.

The Topmodel hydrological model33 was used to pre-

dict surface-water overland flow in the Tyne catchment

from 1 January 2004 to 31 March 2009, using landscape

topology and weather data as inputs. Topmodel breaks

down a catchment into a series of subcatchments which

are relatively homogeneous hydrologically (it is sometimes

described as a ‘semi-distributed’ model). The subcatch-

ments used to divide the main Tyne catchment were

derived from the Ordnance Survey 50 -m raster38 map; the

number of subcatchments to use is somewhat subjective,

but has implications for subsequent analyses. If a large

number of small subcatchments is created, there may be

insufficient meteorological data within each subcatchment

at sufficiently fine resolution to provide inputs for the
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hydrological models and subsequent analyses. In addition,

there may be too few cases of human campylobacteriosis

to analyse within small subcatchments. Conversely, if a

small number of large subcatchments is created, the hydro-

logical models will become more accurate, but there may

be an inadequate number of subcatchments to provide suf-

ficient statistical power to investigate spatial variation in

soil type or livestock management effects. We created

maps with 20, 30 and 40 subcatchments using the GRASS

‘r.watershed’ command, and undertook identical sets of

Figure 1. Flowchart to summarize procedures used to construct the Topmodel hydrological model, the temporal model of Campylobacter cases and

spatial model to relate to soil type, sheep and cattle grazing. (Qt, total flow; qo, overland flow; Ep, evapotranspiration).
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analyses in each set. In practice, the results of the models

were similar for all three sets of subcatchments; for brevity,

we only report results from 30 subcatchments in detail in

this paper.

Topmodel hydrological model

The Topmodel rainfall-runoff model33 was used to predict

surface-water overland flow at a daily time-step within

each subcatchment. The two main assumptions which

Topmodel uses to relate downslope flow from a point to

discharge at the catchment outlet are that:

i. the dynamics of the saturated zone are approximated

by successive steady-state representations;

ii. and the hydraulic gradient of the saturated zone is

approximated by the local surface topographic slope.

The model uses a relatively simple relationship between

catchment storage and local water table depth, which can

be related by the topographic index:39

topidx ¼ ln
a

tan ðbÞ

� �
(1)

where a ¼ upslope contributing drainage area above a

point and b ¼ local slope angle. High values of topidx gen-

erally have large upstream contributing areas and\or shal-

low slopes such as at the base of hillsides or near streams;

low values have small upslope-contributing areas and\or

steep slopes.

A Linux bash script was stepped through for each sub-

catchment, using the appropriate digital elevation maps

(DEM) and meteorological data. We used this DEM to de-

rive stream networks in each subcatchment, rather than al-

ready published stream networks, to ensure maximal

agreement between different inputs into Topmodel,

especially measures of longest flow path and topidx values

(see below). There were a few problems in accurately

defining some stream networks, particularly on lowland

or relatively flat areas towards the east of the Tyne

Figure 2. (a) Location of the Tyne catchment within the UK, with 100-km GB National Grid; and (b) division into 30 subcatchments, with 10-km grid,

for use in the analyses.
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catchment, or due to minor errors in the DEM, and these

were resolved by running the relevant GRASS commands

at a coarser 100 -m grid resolution. Daily meteorological

data, provided by the UK Meteorological Office, were ob-

tained for the study area from the British Atmospheric

Data Centre (BADC) Meteorological Office Integrated

Data Service (MIDAS) website, for the period 1 January

2004 to 31 March 2009.40,41 These data are provided in

the form of -km grid resolution raster data. We calculated

longest flowpath of a stream network within each sub-

catchment using the GRASS GIS ‘r.stream’ modules, in

particular ‘r.stream.distance’ and ‘r.lfp’. The latter calcu-

lates the longest flowpath plus the cumulative drainage

area upstream at points along the longest flowpath.35

Topmodel also requires input of the potential evapotrans-

piration (Ep), which we calculated based on daily tempera-

ture, rainfall and latitude for each subcatchment using the

method of Xu and Singh.42

Topmodel was run via GRASS ‘r.topmodel’ using the

default parameter sets, as the model primarily responds to

topography and meteorology and is less sensitive to the

exact parameter values used.28,43 Topmodel as imple-

mented in GRASS ‘r.topmodel’ required three main inputs:

first, a parameter file, which contained the default param-

eter sets, plus the distance along the longest flowpath and

cumulative upstream area ratios in each subcatchment;

second, the map in the subcatchment of topographic

index values, topidx, calculated according to Eqn. 1;

and third, a file containing rainfall and potential evapo-

transpiration over time. Our aim was to compare satur-

ation overland flow (qo) predicted by Topmodel across

different subcatchments, rather than predict exact overland

flow values in any one subcatchment. Output files from

the separate Topmodel runs in each subcatchment

were automatically concatenated into a single file by the

Unix bash script, for ease of use in subsequent analyses

in R.

Topmodel outputs were compared with daily flow re-

cords from the UK National River Flow Archive (NRFA).

The NRFA data do not contain overland flow values, so

the most suitable comparison variable is total flow (Qt)

which is also output from Topmodel. Nine NRFA gauging

stations were operational in the Tyne catchment through-

out the study period. Water flow in these generally encom-

passed flows from multiple upstream subcatchments used

in our Topmodel runs (Table 1); therefore daily Qt

values for upstream subcatchments were aggregated to co-

incide with the relevant NRFA areas. Strong annual pat-

terns in both Qt and NRFA flow data were observed;

therefore to avoid spurious correlation, each set of data

was de-seasonalized using a standard sine-cosine harmonic

model:

y ¼ aþ b sin ð2ptÞ þ c cos ð2ptÞ þ e (2)

where y ¼ NRFA flow data or Qt Topmodel predictions,

a, b, c ¼ estimated model coefficients, t ¼ day of year/

365.25 and e ¼ residual error.

Two separate de-seasonalized models were created (one

with NRFA flow data as the response, the other Qt

Topmodel predictions). Cross-correlation functions

(CCF)44 between the residual errors of these two models

were then calculated for a range of lag-distances (days) to

determine the overall correlation between the observations

and predictions, and any time lag that might have occurred

as a result of landscape characteristics.

Table 1. Summary of major soil types in Tyne catchment according to the Soil Survey of England and Wales (SSEW) classifica-

tion (excluding urban areas)

Description SSEW soil ID code Area (ha) Comments

Lithomorphic rankers 3.1 173 Shallow soils over bedrock

Brown calcareous earths 5.1 157 Agricultural soils, <300 m alt.

Brown earths 5.4 19325 Agricultural soils, <300 m alt.

Brown sands 5.5 1248 Agricultural soils, <300 m alt.

Brown alluvial soils 5.6 4872 Agricultural soils, <300 m alt.

Podzols 6.3 557 Well-drained, acidic soils

Stagnopodzols 6.5 9427 Upland, wet, peaty topsoil

Stagnogley soils 7.1 99096 Seasonally waterlogged, lowland

Stagnohumic gley soils 7.2 81467 Seasonally waterlogged, upland

Alluvial gley soils 8.1 582 Riverine-derived gley

Cambic gley soils 8.3 2300 Subsoil not clay-enriched

Disturbed soils 9.2 1514 Deep cultivation/mining/quarries

Raw peat soils 10.1 43987 Undrained, organic, acidic

Alt, altitude.
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Temporal model of effects of overland flow,

temperature, rainfall and evapotranspiration on

Campylobacter cases in subcatchments

The aim of the temporal model was to investigate the tem-

poral variation in the population-adjusted Campylobacter

case rate in relation to monthly changes in environmental

variables associated with weather and hydrology. This was

achieved through linear mixed-effects models (LMMs) with

population-adjusted Campylobacter case rate as the re-

sponse, weather and hydrology as fixed effects and subcatch-

ment as the random effect, using the R package ‘nlme’45

which can also account for temporal autocorrelation.

The number of reported cases of Campylobacter per

month in each subcatchment was obtained from the Health

Protection Agency in 2010 (now Public Health England);

they were available for 63 months, from January 2004 to

March 2009. The HPA data provide the six-figure UK resi-

dential postcode for each Campylobacter case, and these

were converted into Ordnance Survey GB National Grid

eastings and northings and imported into the GIS. Cases

were then overlaid onto the map of the subcatchments. The

Campylobacter case data were log-transformed (corrected

by log-transformed population size in each sub-catchment),

to create a ‘population-adjusted Campylobacter case rate’

in each subcatchment per month. Topmodel outputs were

daily; therefore the mean monthly temperature, rainfall,

potential evapotranspiration (Ep) and saturated overland

flow (qo) were calculated before comparison with the

Campylobacter case data.

A standard mixed-effects model45 can be expressed in

matrix formulation as:

yi ¼ Xibþ Zibi þ 2i (3)

bi � Nqð0;WÞ (4)

ei � Nnið0;r2KiÞ (5)

where yi ¼ ni x 1 vector of observations in i’th group, Xi ¼
ni x 1 model matrix of fixed-effects regressors for observa-

tions in group I, b ¼ p x 1 vector of fixed-effects coefficients,

Zi ¼ ni x q matrix of regressors for random effects for obser-

vations in group I, bi ¼ p x 1 vector of random effects for

group I, ei ¼ ni x 1 vector of errors for observations in each

group, W ¼ q x q covariance matrix for random effects and

r2K ¼ ni x ni covariance matrix for errors in group i.

This formulation gives considerable flexibility in the

structure of mixed-effects models. In our study, we used

subcatchment as the grouping variable (hence index i var-

ied from 1 to 30). We did not detect evidence of long-term

increases or decreases in the population-adjusted

Campylobacter case rate during the study period; therefore

a random-intercepts, fixed-slopes model was fitted.

Initially overland flow, temperature, evapotranspiration

and rain were used as predictors, plus all interaction terms,

to account for potential collinearity between predictor

variables. Non-significant interaction terms were sequen-

tially removed, and where necessary main effects, and each

simplified model compared with the previous one. Non-

significant main effects were retained in the final model if

they were included in a significant interaction term. Model

fitting was done via maximum likelihood (ML) rather

than the default restricted maximum likelihood (REML),

because the fixed effects changed with each model.46

When comparing models, those with a lower Bayesian

Information Criterion (BIC) were selected.

After identifying the best linear mixed-effects model,

autocorrelation function (ACF) plots were constructed to

check for evidence of temporal autocorrelation in the re-

siduals. Initial modelling efforts were focused on identifica-

tion of the best predictors (i.e. the fixed effects), and then

improving these models to account for any temporal auto-

correlation.47,48 Autoregressive (AR) moving average

(MA) correlation terms were added, testing over a range

daily lags for p (autoregressive) and q (moving average)

between 0 and 3 to find the optimum values to correct for

temporal autocorrelation.49,50 This approach has the ad-

vantage of exploring all correction options from pure

autoregressive (p>0 and q ¼ 0), pure moving average

(p ¼ 0 and q>0) or joint autoregressive moving-average

(ARMA; p>0 and q> 0), until the optimal correction is

identified, by altering the structure of Ki in the covariance

matrix in Eqn. 5 above.

After identification of an appropriate AR, MA or

ARMA correlation function (and confirmation of improve-

ment in model fit via BIC and the ACF plots), the random

effects (i.e. for each subcatchment) from this model were

used as the response variable in the subcatchment analyses

as described below.

Spatial model of soil type, sheep and cattle

stocking rates on Campylobacter cases

The random effects from the best temporal model quantify

differences between the subcatchments in population-

adjusted Campylobacter case rates which are not explained

by the hydrology, temperature, evapotranspiration or rain-

fall. These spatial differences between the subcatchments

might be due to other environmental factors, in particular

soil type and livestock grazing.

Soil data from the Soil Survey of England and Wales

(SSEW) maps for northern England51 at 100 -m grid reso-

lution were analysed at the level of the soil group in the

SSEW classification. Different soil groups show strong col-

linearity, and it was not practical to include all the soil

groups (plus interactions with livestock) as explanatory
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variables in the subcatchment models. Therefore, to iden-

tify the main patterns of variation in the composition of

SSEW soil groups across the subcatchments, the matrix of

subcatchments by soil groups was initially analysed using

principal components analysis (PCA). The subcatchments

by soil groups matrix was Hellinger-transformed52 before

the PCA analysis, as the total areas of each soil group

within a subcatchment were non-independent. The soil

type(s) with the highest correlations with PC1 (and if ne-

cessary PC2) were used as predictors in the linear models.

Data on the numbers of livestock derived from the

Defra Agricultural Census (2010); these were obtained at

2-km grid resolution.53,54 Total numbers of sheep/km-2

and cattle/km-2 were calculated within GRASS for each

subcatchment. There is evidence that sheep and cattle may

play slightly different roles in the transmission of

Campylobacter to humans;3 therefore they were used as

separate predictor variables in the subcatchment analyses.

The linear models used the random effects from the

temporal analyses as the response, with explanatory vari-

ables of sheep/km-2, cattle/km-2, and the soil type(s) most

characteristic of variation between the subcatchments. All

main effects and higher-level interactions were initially fit-

ted to the full linear model, which was simplified until a

minimal model with lowest BIC was identified.

Results

Hydrological model

Characteristics of subcatchments

The distributions of the 30 subcatchments are summarized

in Figure 2b. The geographical extent of some subcatch-

ments was unchanged irrespective of the number of sub-

catchments used to subdivide the whole Tyne catchment.

These were generally subcatchments in the upland reaches

of the Tyne catchment, where the topography was such

that there was considerable difference in elevation from

river valley to mountain tops, with the result that subcatch-

ments could be clearly defined hydrologically, e.g. the

Rede Valley, West and East Allendales: subcatchments 2,

26 and 27, respectively. In contrast, where the topography

was flatter, there was more variation in subcatchment area

and shape depending on whether 20, 30 or 40 subcatch-

ments were used, e.g. subcatchments 14, 18, 19 and 22

around Tyneside. Highest Campylobacter case rates per

head of population were in the Allendales and east of the

catchment near Tyneside (Figure 3a). Irrespective of the

number of subcatchments used, those in the north-west

and south-west of the Tyne catchment were predominantly

upland, with higher livestock numbers, compared with the

lowland and urbanized eastern end of the catchment

(Figure 3b). Soils in the Tyne catchment as a whole are

dominated by gley soils with a high clay content, raw peats

in the uplands and brown earths on some of the better low-

altitude agricultural land (Table 1).

Topmodel hydrological model

Temperature and rainfall showed strong cyclical patterns

on an annual basis, as might be expected, with knock-on

effects on predicted evapotranspiration across the whole

Tyne region. The saturated overland flow, qo, was less pre-

dictable, with large overland flow predicted by Topmodel

during the winter of 2006–07. This was associated with a

period of intense rainfall, but there were considerable vari-

ations between subcatchments in predicted overland flow

as a result of between-subcatchment variation in tempera-

ture, rainfall and topography. For example, peak overland

flow was very high in the south-west of the Tyne catch-

ment in winter 2006–07, particularly around the River

West Allen and East Allen, and River South Tyne near

Figure 3. (a) Total number of Campylobacter cases per 1000 population in each subcatchment over whole study period; (b) elevation above sea level

in metres.
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Featherstone (subcatchments 26, 27 and 28, respectively,

in Figure 2b). In contrast, there was less evidence of any

major change in overland flow in the north-west of the

catchment during this period, even though this area also

experienced higher rainfall. These are subcatchments 1 to

6, around the River Rede, Kielder Valley (including

Kielder Water reservoir) and Tarset Burn. Although the

north-west is also upland, it has fewer steep-sided valleys

than the south-west, which accounts for the lower over-

land flow. Figure 4 shows more detailed Topmodel outputs

for subcatchment 26 (River West Allen): the predicted

stream network (Figure 4a); the topidx index, showing

higher values near streams (Figure 4b); and the longest

flowpath and cumulative drainage basins (Figure 4c).

De-seasonalized NRFA flow data were significantly

positively cross-correlated with predicted Topmodel Qt es-

timates at all nine NRFA gauging stations (Table 1), the

majority with a CCF of greater than 0.40 and median max-

imum CCF at a lag of 4 days. CCF values were lowest for

the River Derwent (NRFA station 23007) and Team

Valley (NRFA station 23017), both of which are lowland

catchments that only partially encompass some of the sub-

catchments we defined for use in Topmodel and include

relatively large urban areas. The highest time lag was 7

days recorded for the North Tyne (NRFA station 23022),

but the NRFA warn that flow records from this gauging

station are strongly affected by Kielder Reservoir, which is

important for human-induced water discharge.

Temporal model of effects of overland flow,

temperature, rainfall and evapotranspiration on

Campylobacter cases

The population-adjusted case rate was most strongly asso-

ciated with overland surface-water flow, temperature and

the interactions between overland flow and temperature,

and between evapotranspiration and rain (Table 3), with

case rates predicted to be higher with increased overland

flow and in warm weather conditions. There was a spring

peak in Campylobacter cases every year in the most

densely populated subcatchments around Newcastle and

Tynemouth (numbers 14, 17, 18, 19 and 22; Figure 2), but

seasonal patterns were less consistent across all years of

the study in the other subcatchments.

The minimal linear mixed-effects model showed strong

residual autocorrelation, evident at lags 2 and 3 in particu-

lar, with an optimum ARMA model at lag p ¼ 3 and

moving average q ¼ 2. The need for ARMA models

could simply reflect time delays between Campylobacter

infection and sample date, since the onset of disease post-

exposure is variable (see Discussion). Examination of re-

siduals indicated that the model fitted best to the

catchments in the north-west of the Tyne catchment, and

most poorly in the south and east of the catchment, espe-

cially some of the flatter, lowland urban areas, where it is

possible that subcatchment area and extents were less ac-

curately defined, or where the epidemiology of the disease

was different.

Spatial model of soil type, sheep and cattle

stocking rates on Campylobacter cases

Over 60% of the variation in the composition of SSEW

soil groups within each subcatchment was explained by the

first PCA axis, which represented a trend from stagnohu-

mic gleys and raw peats through to brown earths and stag-

nogleys. PCA axis 1 was most strongly positively

correlated with the stagnogleys (r ¼ 0.906, P< 0.0001);

therefore the area of stagnogley in each subcatchment was

used as an explanatory variable in subsequent analyses. In

contrast, PCA axis 2 only explained 15% of the variation

in SSEW soil composition, was not clearly associated with

Figure 4. Example Topmodel outputs for River West Allen, subcatchment 26. (a) Elevation (metres) and predicted stream network; (b) topographic

index scores topidx; (c) longest flow path (solid continuous line) and cumulative drainage basins (drained areas upstream km2).
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major soil types and was therefore omitted from subse-

quent analyses.

We assumed that the random effects from the best tem-

poral model described above quantified the unexplained

spatial variation across different subcatchments in the

population-adjusted Campylobacter case rate. The sub-

catchment (linear) models used these random effects as re-

sponse variables, to determine which environmental

variables at the subcatchment level were most associated

with deviations from the ‘average’ effect explained by the

fixed effects of the temporal model. The amount of stag-

nogley, cattle density and interactions between the stag-

nogleys x cattle and sheep x cattle, were found to be the

most important environmental variables of the random

intercepts in the best subcatchment model (F5,24 ¼ 17.39,

Adj-R2 ¼ 0.739, P< 0.0001; Table 4). The signs on the

estimated coefficient values in Table 4 indicate that devi-

ations from the predicted case rate from the temporal

model were negative for individual subcatchments with

larger areas of stagnogley (Figure 6b) and areas of higher

numbers of cattle (mid-altitude: Figure 5b). However, the

positive cattle x stagnogley interaction (Table 4; t ¼ 2.334,

P ¼ 0.0283) suggests that in those subcatchments that con-

tained large cattle numbers grazing stagnogley soils, the

temporal model under-predicted Campylobacter case rate.

Sheep grazing without cattle was mainly associated with

the uplands (excluding the north-west around Kielder

Forest), but the positive cattle x sheep interaction (Table 4;

t ¼ 2.958, P ¼ 0.0069) suggests higher Campylobacter

case rates in those (predominantly lower altitude) sub-

catchments which contained both sheep and cattle grazing.

Discussion

This study has identified associations between population-

adjusted Campylobacter cases rates and landscape hydrol-

ogy, land use and meteorology. Meteorological conditions

were important over the 63-month study period, with

higher Campylobacter case rates associated with higher

temperatures periods of high surface-water overland flow.

Subcatchment hydrology was affected by both the weather

conditions and topology of each subcatchment. Periods of

high surface-water overland flow, in those subcatchments

where the topography resulted in increased flow rates,

Figure 5. (a) Sheep and (b) cattle grazing in the Tyne catchment based on the DEFRA June 2010 Agricultural Census at 2-km raster scale; units are

animals km2.

Figure 6. Soil Survey of England and Wales maps of: (a) raw peat soils and (b) stagnogley soils.
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were also associated with higher population-adjusted

Campylobacter case rates. Within each subcatchment,

stagnogley soils were associated with lower risks of

Campylobacter, except in those areas where overall live-

stock density was high on stagnogleys, when the converse

was true. When farm animal grazing type was broken

down separately for sheep and cattle; the density of cows

grazing on stagnogley soils was an important risk factor, as

were larger densities of both sheep and cattle within a

subcatchment.

The temporal model indicates that Campylobacter cases

were higher during periods of high overland flow. Storm

events are known to result in more rapid surface-water

transport of bacterial pathogens,55,56 particularly when

soils are already saturated. The amount of transport from

livestock sources onto adjacent fields, paths and roads will

depend partly on the land management, drainage ditches,

small scale topography etc. Mole drains will increase the

amount of subsurface transport.23 Runoff is generally

lower on soils with a large soil pore structure, such as

peats\stagnohumic gleys than more compacted clay soils,

such as stagnogleys. Our use of Topmodel does not expli-

citly attempt to model the effects of soil type, land manage-

ment or livestock management, but our results nevertheless

indicate that over the 63-month study period, high over-

land flow was associated with increased Campylobacter

cases. Note that the accuracy of the Topmodel predictions

when compared with the NRFA data was unaffected by

the predominant soil type in the relevant subcatchments

(Table 2); predictions were least accurate in urbanized or

flat lowland subcatchments.

Campylobacter does not survive well with drying, and

we originally assumed that there would be a negative effect

of temperature on Campylobacter case rates; in practice

the reverse was found (Table 3), with temperature and the

temperature x evapotranspiration interaction associated

with higher number of cases. There are several possible ex-

planations for this apparent anomaly. First, some strains of

C. jejuni are more resistant to oxidative stresses associated

with drought and higher temperatures.57 The markers that

encode for the genes thought to be associated with oxida-

tive stress resistance are more common in strains from

grazing livestock5 and have been detected at higher fre-

quencies in grazed areas. Second, increased human

Campylobacter case rates during the summer may simply

reflect greater outdoor activity and exposure of local resi-

dents, transmission by wildlife and use of barbeques with a

knock-on increased risk of consumption of partially

cooked meat (although widespread barbeque use in re-

mote, sheep-rearing, high rainfall areas in the south-west

of the Tyne catchment where cases were highest, seems

Table 2. Comparison of National Rivers Authority (NRFA) daily flow rates and predicted Topmodel Qt (saturated and overland

flow). Cross-correlation functions were calculated on the residuals from the annually de-seasonalized models for NRFA and Qt

estimates described in Eqn. 1. The table indicates the maximum CCF values calculated, and the lag (in days) for this maximum.

NRFA gauging stations usually measured rivers that encompassed multiple upstream Topmodel subcatchments, and data from

the latter were aggregated before comparison

NRFA station name NRFA code Max. CCF Lag (days) Upstream Topmodel subcatchments

River Tyne, Benwell 23001 0.528 4 1–13, 15, 20, 21, 24–30

North Tyne, Reaverhill 23003 0.522 4 1–8

South Tyne, Haydon Bridge 23004 0.463 4 9, 12, 21, 24, 25, 26–30

South Tyne, Featherstone 23006 0.353 4 25, 28–30

River Derwent 23007 0.184 4 23

River Rede 23008 0.429 2 2

Kielder Burn 23011 0.409 3 1

Team Valley 23017 0.177 1 14, 19, 22

North Tyne, Uglydubb 23022 0.365 7 1, 4, 5

Table 3. Summary of results of best temporal linear mixed-

effects model, with population-adjusted Campylobacter case

rates per month as the response, and subcatchment number

as the random effect. qo is saturated surface-water overland

flow from Topmodel; Ep is potential evapotranspiration.

Standard deviation of residual random effects ¼ 0.3104;

log-likelihood ¼ �496.95; BIC ¼ 1099.51

Coefficient Value SE t-value P-value

Intercept �6.7822 0.3669 �18.484 <0.0001

qo 0.0802 0.0308 2.609 0.0092

Temperature 0.0702 0.0223 3.151 0.0017

Ep 0.0105 0.0217 0.484 0.6283

Rain 0.0102 0.0095 1.077 0.2819

qo x temperature 0.0776 0.0294 2.638 0.0084

Ep x rain �0.0204 0.0091 �2.239 0.0253

SE, standard error.
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unlikely!). A spring peak in Campylobacter cases was

observed across all years in the urban conurbation to the

east of the catchment, and to a lesser extent in some, but

not all, years in the more rural parts of the west and south-

west of the catchment. Again, human behaviour may play

a role in this peak, with larger number of visits to the coun-

tryside in the spring.

The subcatchment analyses provide insights into spatial,

i.e. subcatchment-level, processes that affect Campylobacter

case rates, after having adjusted for the weather-related tem-

poral changes over the study period. Stagnogleys are clay

soils which have a relatively impervious subsurface horizon

and a distinct topsoil, and are prone to waterlogging during

periods of heavy rain.58 The negative main-effect coefficient

for stagnogleys (Table 4; coefficient ¼ -7.3675; P< 0.0001)

indicates that Campylobacter cases were generally lower in

those subcatchments, but only if the effects of livestock

grazing are ignored (see later). Conversely, raw peats and

stagnohumic gley were strongly negatively correlated with

soil PCA Axis 1; if either are used instead of stagnogley as

the soil predictor in the subcatchment analyses, they are

associated with increased Campylobacter cases. Soil-borne

pathogens survive better in a more open soil matrix that

allows increased penetration into the soil and that contains

more organic matter, with reduced desiccation during dry

weather,15 such as raw peats and stagnohumic gley.

Whereas published data on Campylobacter survival in stag-

nogleys are not available, survival would be expected to be

lower due to the greater tendency of stagnogleys to surface

desiccation in dry weather and the lower organic matter

content. Stagnogleys are also more productive than stagno-

humic gley and peat soils, and probably not subject to

human access as frequently because they are more inten-

sively managed.

Subcatchments with high numbers of cattle were associ-

ated with decreased Campylobacter case rates, in contrast

to the findings of most previous studies 3. Most cattle graz-

ing in the Tyne catchment occurs in lowland areas immedi-

ately to the west of the main Newcastle\Gateshead

conurbation (Figure 5b; subcatchments 10, 11, 13, 15, 16,

17 and 23). The decrease in Campylobacter case rates with

cattle may result from people being less likely to cross

fields stocked by cattle, or avoidance of slurry-treated

areas and dung-pats. In addition, the risk of human infec-

tion within cattle-grazed fields may depend on the number

of ‘high-shedding’ animals within the herd, rather than the

average proportion of individual cows infected.3

Stagnogley soils are vulnerable to poaching by livestock,

especially in wet weather,59 and this can be exacerbated by

spatial clustering of livestock within fields, especially

around water troughs, feeding areas etc. Poaching will lead

to reduced infiltration of water into the soil, but will lead to

increased surface-water flow.60 Higher rates of

Campylobacter contamination have been recorded on clay

soils such as stagnogleys.18 Our results accord with these

earlier studies,59,60 with cattle grazing on stagnogley soils

being associated with higher Campylobacter case rates

(Table 4; stagnogley by cattle interaction). Higher

Campylobacter case rates also occurred in subcatchments

with both sheep and cattle (Table 4; sheep x cattle inter-

action). Whereas both sheep and cattle are known to be

excretors of Campylobacter,61 our results suggest that cattle

are more important (Table 4). Run-off water from sheep

and cattle-grazed agricultural land, eventually entering the

groundwater drinking supply, has also been identified as a

source of human Campylobacter infections in France.62

There have been few attempts to investigate pathogen

spread at the catchment scale, with some of the most de-

tailed single studies being undertaken in Australia and

New Zealand25,27 under different climatic and agricultural

systems from those in the UK. We have used a standard

hydrological model that is not excessive in either its input

data requirements or CPU run time, to understand tem-

poral changes in meteorological conditions, in combin-

ation with surface-water flow predicted from the

hydrological model, to understand the changes in

Campylobacter cases between 2004 and 2009. Although

we did not have sufficient data to undertake more

advanced fully integrated spatio-temporal analyses,63 the

use of outputs from separate temporal analyses as inputs

Table 4. Summary of results of best spatial (subcatchment) model of the effects of soil type and livestock management, using

the random effects from the best linear mixed-effects model as the response. F5,24 ¼ 17.39; P< 0.0001; Adj-R2 ¼ 0.739

Coefficient Value SE t-value P-value

Intercept 4.7730 0.6876 6.942 <0.0001

Stagnogley �7.3675 1.0718 �6.874 <0.0001

Sheep km�2 �0.0014 0.0023 �0.619 0.5416

Cows km�2 �0.2618 0.0794 �3.299 0.0030

Stagnogley x cows km�2 0.2089 0.0895 2.334 0.0283

Sheep km�2 x cows km�2 0.0004 0.0001 2.958 0.0069

SE, standard error.
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into subcatchment analyses has allowed us to investigate

the relationships between livestock management, soil type

and human Campylobacter cases. It is nevertheless clear

that the environment has a major role, but the main limita-

tion of this study was that it was not possible to quantify

the relative importance of environmental versus food-

borne sources of infection. Another challenge is the delay

between infection and reporting of cases, which may partly

explain the need to use ARMA models; delays from onset

of infection to receipt of specimen are on average 5 days in

England and Wales6 but is typically 16 days in Scotland,6

based on data collected from 1989 to 1999. Nevertheless,

our calculated lag times are slightly less than might be ex-

pected a priori. In Campylobacter the incubation period is

usually 2–5 days before symptoms arise; and in our data

where a doctor could provide an onset date, the median

was 4 days, giving an overall delay between infection and

specimen of 6 to 9 days. This compares lags of to 2 to 3

days for our ARMA model. The types of analyses we de-

scribe would become much more powerful, and useful for

public health, if we had had data on the strain types (ST)

of the individual human Campylobacter infections, plus

samples of Campylobacter taken from the countryside and

livestock. Powerful Bayesian methods have recently been

developed to source-attribute models, using ST data.64

This would permit a formal link of source to humans, par-

ticularly as our results suggest the infection sources change

over time and that the risks to human health also de-

pend on human behaviour and activity in the wider

countryside.
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