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CTLA-4 is an inhibitory immune checkpoint receptor and a negative regulator of anti-tumor T-cell function. This study is aimed for a
comparative analysis of CTLA-4+ cells between different tumor entities. To quantify CTLA-4+ cells, 4582 tumor samples from 90
different tumor entities as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry in a
tissue microarray format. Two different antibody clones (MSVA-152R and CAL49) were validated and quantified using a deep
learning framework for automated exclusion of unspecific immunostaining. Comparing both CTLA-4 antibodies revealed a clone
dependent unspecific staining pattern in adrenal cortical adenoma (63%) for MSVA-152R and in pheochromocytoma (67%) as well
as hepatocellular carcinoma (36%) for CAL49. After automated exclusion of non-specific staining reaction (3.6%), a strong
correlation was observed for the densities of CTLA-4+ lymphocytes obtained by both antibodies (r= 0.87; p < 0.0001). A high CTLA-
4+ cell density was linked to low pT category (p < 0.0001), absent lymph node metastases (p= 0.0354), and PD-L1 expression in
tumor cells or inflammatory cells (p < 0.0001 each). A high CTLA-4/CD3-ratio was linked to absent lymph node metastases (p=
0.0295) and to PD-L1 positivity on immune cells (p= 0.0026). Marked differences exist in the number of CTLA-4+ lymphocytes
between tumors. Analyzing two independent antibodies by a deep learning framework can facilitate automated quantification of
immunohistochemically analyzed target proteins such as CTLA-4.
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INTRODUCTION
CTLA-4 (cytotoxic T-lymphocyte-associated protein 4, CD152) is an
important inhibitory immune checkpoint receptor. It is expressed
on various subtypes of T-lymphocytes including CD4+ and CD8+

T-cells as well as regulatory T-cells1. CTLA-4 can compete with its
stimulating counterpart CD28 for ligand binding to CD80 and
CD862,3. CD28 co-stimulation is required for T-cell activation,
whereas CTLA-4 inhibits T-cell response by opposing the actions
of CD28-mediated co-stimulation2,3. Even though CTLA-4 is also
expressed on activated CD8+ cytotoxic T-cells, the major
physiologic role of CTLA-4 appears to be through down-
modulation of non-regulatory T-cell activity and supportively
enhancement of regulatory T-cell suppressive activity1,4–6. The
CTLA-4 pathway is a commonly targeted pathway in cancer
immunotherapy. For example, the CTLA-4 inhibitor Ipilimumab
alone or in combined therapy has been approved for the
treatment of advanced malignant melanoma, renal cell and
microsatellite instability-high colorectal cancer by the Food and
Drug Administration (FDA)7.

Given the pivotal role of CTLA-4 as a successfully used drug
target, the prevalence and topographic distribution of CTLA-4+

lymphocytes and lymphocyte subclasses is of interest. Most
studies analyzing CTLA-4 in cancer have employed flow cytometry
or RNA based methods1,8. Because these techniques are best
applicable to unfixed tissues which is unavailable from most
tumors in routine praxis, studies on CTLA-4 in cancer mostly
involved limited numbers of samples from frequently occurring
tumor entities such as malignant melanoma (n= 56–470)8,9,
breast (n= 928–1217)10, colorectal (n= 439–1003)10–12 and renal
cell cancers (n= 813–928)10,12,13. Studies on less common tumor
entities and larger patient cohorts require the use of routinely
processed formalin fixed tissues but were so far hindered by a
relative lack of CTLA-4 antibodies suitable for immunohistochem-
istry (IHC). Antibodies with documented specificity on unpro-
cessed native target protein often show disappointing results on
formalin fixed tissues14–16. Potential shortcomings include a lack
of target protein staining, an unfavorable signal-to-noise ratio
resulting in non-specific background staining, and antibody cross-
reactivity resulting in a distinct staining of structures not contain-
ing the target protein14,15.
In order to determine the prevalence of CTLA-4+ lymphocytes

in a broad range of different tumor entities, a set of preexisting
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tissue microarrays (TMAs) was analyzed that included >4000
tumor samples from 90 types and subtypes as well as 76 different
normal tissue categories. To compensate for possible short-
comings of CTLA-4 immunohistochemistry, two different CTLA-4
antibodies were used in combination with an artificial intelligence
approach for automated discrimination of true from aberrant
antibody staining.

MATERIALS AND METHODS
Tissue microarrays (TMAs)
Our normal tissue TMA was composed of 8 samples from 8 different
donors for each of 76 different normal tissue types (608 samples on one
slide). The cancer TMAs contained a total of 5706 primary tumors from 134
tumor types and subtypes. Detailed histopathological data such as grade,
pT or pN information were available for >2600 cancers (Table 2). Data on
the PD-L1 status of tumor-/inflammatory cells17 and the density of CD3+

T-cells17 were obtained in a previous study. The composition of normal and
cancer TMAs is described in the results section. All samples were selected
from the archives of the Institutes of Pathology, University Hospital of
Hamburg, Germany, the Institute of Pathology, Clinical Center Osnabrueck,
Germany, and Department of Pathology, Academic Hospital Fuerth,
Germany. Tissues were fixed in 4% buffered formalin and then embedded
in paraffin. The TMA manufacturing process was described earlier in
detail18,19. In brief, one tissue spot (diameter: 0.6 mm) was transmitted
from a cancer containing donor block to an empty recipient paraffin block.
The use of archived remnants of diagnostic tissues for TMA manufacturing,
their analysis for research purposes, and patient data were according to
local laws (HmbKHG, §12) and analysis had been approved by the local
ethics committee (Ethics commission Hamburg, WF-049/09). All work has
been carried out in compliance with the Helsinki Declaration.

Immunohistochemistry (IHC)
Freshly cut 4-µm TMA sections were immunostained on one day and in
one experiment. Slides were deparaffinized and exposed to heat-induced

antigen retrieval for 5 min in an autoclave at 121 °C in a pH 7.8 buffer.
Primary antibody specific for CTLA-4 (rabbit recombinant, clone MSVA-
152R, Cat#: 3451–152 R, MS Validated Antibodies GmbH, Hamburg,
Germany, 1:50 and rabbit recombinant, clone CAL49, Cat#: ab237712,
Abcam, Cambridge, USA, 1:100) were applied at 37 °C for 60min. Bound
antibody was then visualized using the EnVision Kit (Agilent DAKO, Santa
Clara, USA) according to the manufacturer’s directions.
For multiplex fluorescence IHC a freshly cut 4-µm healthy human tonsil

was used. The experimental procedure was performed according to the
manufacturer’s instructions (AKOYA). Slides were initially boiled in an
autoclave (30min at 100–120 °C in pH9 buffer) for antigen retrieval. The
antibody panel consisted of a CD3 antibody for T-cell detection (rabbit
polyclonal, Cat#: IR503, Agilent DAKO, Santa Clara, USA, undiluted), MSVA-
152R, and CAL49 for CTLA-4 detection. The OPAL dye kit (Cat# NEL811001KT,
AKOYA Biosciences, Menlo Park, California, United States) was used to detect
the primary antibodies CD3 (OPAL 520), MSVA-152R (OPAL 570), and CAL49
(OPAL 690). These were combined with diamidino-2-phenylindole (DAPI)
staining. One cycle of antibody staining included peroxidase blocking,
application of the primary antibody, detection with a secondary HRP-
conjugated antibody, fluorescence dye detection, and removal of the bound
antibodies by microwave treatment (5min at 100 °C and 5min at a mean
temperature of 93 °C). This cycle was repeated two times for the remaining
antibodies. Slides were subsequently counterstained with DAPI and mounted
in an antifade solution. To measure the co-expression of both CTLA-4
antibody clones in human tonsil (Fig. S1A, B) the CTLA-4 density and
expression level were analyzed: Correlation analysis of the CTLA-4 expression
level confirmed a high degree of co-expression (r= 0.81, p< 0.0001; Fig. 1C).
In addition, the density of CTLA-4+ cells of both clones was highly
concordant in 35 representative areas (r= 0.85, p< 0.0001, Fig. S1C).

Deep learning-based image analysis
The slides were scanned using Leica’s Aperio AT2 slide scanner. The digital
images were analyzed using a two-stage approach combining a
convolutional neural network (U-Net) for automated quantification of
CTLA-4+ cells (1) and a deep neural network (DeepLab3+) for the detection
of non-specific (2) CTLA-4 staining (Fig. S2).

Fig. 1 Fraction of non-specific staining detect by an AI framework trained for non-specific staining. The mean fraction of non-specific
stained cells is shown for both CTLA-4 antibody clones MSVA-152R (black) and CAL49 (grey). Error bars indicate standard deviations.
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1. The U-Net deep learning system for cell identification was trained
and validated as described earlier20. In brief, thresholding was used
to label cell nuclei and the background of the first 500 patients. After
manual correction of this training set the U-Net was trained for
300,000 iterations (∼30 epochs). The trained U-Net was used to
analyze/label further 500 patients, which were also manually
corrected. A new U-Net was trained based on these two training
sets to label the next 500 patients. The process was used to
continuously increased the training set until 3306 (75%) TMA spots
(from 90 different tumor entities), were successfully labeled,
manually corrected, and used for the training of the final U-Net
for cell segmentation. Of note, to avoid introducing potential bias by

selective manually correction two trained pathologist were relabel-
ing and manually correcting the labels. The threshold for CTLA-4
positivity was visually investigated. The area in square millimeter of
each spots was calculated by a pretrained U-Net algorithm21.

2. The DeepLab3+ deep learning system for detecting aberrant
antibody staining was trained on 75% of cases for every tumor
entity to assure a balanced training input. A pathologist identified
regions and TMA cores showing non-specific staining so that
thresholding could be used to label regions of non-specific staining
as well as background. Comparison of the staining pattern from
both CTLA-4 clones for the same consecutive TMA spot enabled the
identification of false positive antibody staining. Specific CTLA-4

Fig. 2 CTLA-4 immunostaining of normal tissues. The panels show
for the antibody MSVA-152R a strong membranous positivity of a
subset of lymphocytes in the tonsil (A), a strong cytoplasmatic
staining of the adrenal cortex (B) and a cytoplasmic granular
staining in a fraction of superficial epithelial cells of the stomach (C)
and of renal tubuli (D). For the antibody CAL49, a strong
membranous positivity of the same subset of lymphocytes in the
tonsil (E), a weak cytoplasmatic staining of the adrenal medulla (F), a
strong cytoplasmic staining superficial epithelial cells of the
stomach (G), and an apical membranous staining of renal tubuli
(H) is seen. The images (A–D) and (E–H) are from consecutive tissue
sections and taken at 20x magnification.

Fig. 3 Distinct target staining and non-overlapping cross-reactiv-
ities of two CTLA-4 antibodies. The panels show for the antibody
MSVA-152R a strong staining of a subset of lymphocytes in a
Hodgkin’s lymphoma (A), a strong cytoplasmatic staining of an
adrenocortical adenoma (B) absence of staining in a pheochromo-
cytoma (C), and a staining of few lymphocytes in a hepatocellular
carcinoma (D). For the antibody CAL49, an equally strong staining of
the identical subset of lymphocytes in a Hodgkin’s lymphoma is
seen (E), while staining is lacking in an adrenocortical adenoma (F),
and a cytoplasmic staining occurs in a pheochromocytoma (G) and a
hepatocellular carcinoma (H). The images (A–D) and (E–H) are from
consecutive tissue sections and taken at 20x magnification.
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staining was labeled as background. The mean fraction of non-
specific stained cells per tumor entity is shown in Fig. 1. Tumor
samples with 5% or more cells with non-specific staining were
identified as a case driven by false positive staining and excluded
from further analysis (Fig. S3). Thus, the mean CTLA-4 density (cells/
mm2) of both antibodies was based on TMA cores showing 4% or
less non-specific CTLA-4 staining. The performance of both deep
learning systems was evaluated by calculating the area under (AUC)
receiver operating characteristics (ROC) using the remaining (25%)
of patients as a validation set (Fig. S3). Python version 3.822 and the
Visiopharm software package (Hoersholm, Denmark) were used to
label, train, and validate the deep learning systems.

Statistical analysis
Statistical calculations were performed with R version 3.6.1 (The R
foundation)23,24 and JMP Pro 15 software package (SAS Institute Inc., NC,
USA)25. Contingency tables and the Chi-square test were used to search for
associations between the density of CTLA-4 and tumor phenotype. All p
values were two-sided, and p < 0.05 were considered as significant.

RESULTS
CTLA-4 in normal tissues
Using both antibodies, a strong and distinct, predominantly
membranous CTLA-4 immunostaining was seen in a subset of
T-lymphocytes. Both antibodies also stained thyroidal colloid. In
addition, for MSVA-152R, an intense granular cytoplasmic staining
could be seen in adrenocortical cells and decidua cells while a less
conspicuous granular staining could be observed in the apical
cytoplasm of tall columnar cells of the epididymis, pancreatic
acinar cells, hepatocytes, and gastrointestinal surface epithelium
cells. For CAL49 a strong cytoplasmic staining was seen in gastric
surface epithelial cells and sebaceous glands while a weak
cytoplasmic staining was seen in medullary cells of the thyroid
and a weak to moderate staining of apical membranes in selected
renal tubuli. All these stainings which were distinct when applying

one antibody but absent for the other antibody were considered
antibody-specific cross-reactivities. Although thyroidal colloid was
stained by both antibodies, this staining was also rather
considered cross-reactive because the function of CTLA-4 is not
consistent with a role as a thyroidal colloid component.
Representative images are shown in Fig. 2.

CTLA-4 antibody validation in tumor tissues
A total of 9405 images from 90 different tumor entities were used
to train and validate a deep learning-based approach for detecting
non-specific staining (Fig. S2). Our approach identified a high
fraction of non-specific staining for MSVA-152R in adrenal cortical
adenoma (58%) and for CAL49 in pheochromocytoma (66%) as
well as hepatocellular carcinoma (35%, Fig. 1). Non-specific
staining for both antibodies was found in 1% to 8% of cells in
malignant melanomas, adrenocortical carcinomas, renal and
thyroidal tumors. Representative tumor images are shown in
Fig. 3. After automated exclusion of perceived non-specific
staining reaction in 126 cases (2.7%) of the 4723 cases stained
with MSVA-152R and in 213 (4.5%) of the 4682 cases stained with
CAL49, a strong correlation was observed for the densities of
CTLA-4+ cells obtained by our two antibodies (r= 0.93; p < 0.0001;
Fig. S4). For all further analyses, the average densities of CTLA-4+

cells obtained by both antibodies were used for each patient
except for tumor samples with >5% of non-specific staining. In
these cases, only the data from the antibody with specific staining
was utilized.

CTLA-4 in tumor tissues
A total of 4582 different patients from 90 different tumor entities
—after exclusion of 339 (3.6%) of 9405 cases—were analyzed in
this study. The mean density of CTLA-4+ cells was 674 ± 1482
cells/mm2 and ranged from 71 ± 175 cells/mm2 in leiomyoma to
5916 ± 3826 cells/mm2 in Hodgkin’s lymphoma (Fig. 4; Table S1). A
comparison of the densities of CTLA-4+ cells in different tumor

Fig. 4 CTLA-4 density in human neoplasms. Distribution of the CTLA-4+ cell density (cell/mm2) across 90 different human tumor entities. In
total 4582 tumor samples, represented by gray dots, were analyzed. The vertical bars indicate the mean density per entity.
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categories identified highest values in lymphomas (3642 ± 3207
cells/mm2), biphasic (609 ± 1057 cells/mm2) as well as germ cell
tumors (401 ± 468 cells/mm2) and the lowest in mesothelial (281
± 319 cells/mm2) as well as mesenchymal neoplasms (145 ± 268
cells/mm2; Table 1). Within epithelial tumors, the density of CTLA-
4+ cells was higher in squamous cell (421 ± 469 cells/mm2) and
urothelial carcinomas (418 ± 347 cells/mm2) than in adenocarci-
nomas (268 ± 375 cells/mm2) and renal cell neoplasms (256 ± 269
cells/mm2; Table 1). A comparison with histologic parameters and
PD-L1 status revealed significantly higher rates of CTLA-4+ cells in
tumors with low pT category (p < 0.0001), absent lymph node
metastases (p= 0.0031), and PD-L1 expression in tumor cells or
inflammatory cells (p < 0.0001 each; Table 2). Similar associations
were also seen within the more homogeneous subgroups of
adenocarcinomas and squamous cell carcinomas (data not
shown). Across 908 squamous cell carcinomas, a high density of
CTLA-4+ cells was linked to a positive HPV status (p= 0.0130;
Table 2). Unequivocal CTLA-4 immunostaining of tumor cells was
not seen in our patients.

CTLA-4/CD3 in tumor tissues
An elevated CTLA-4 density was linked to a high CD3+ T-cell
density (r= 0.69, p < 0.0001, Fig. S5). If the ratio of the CTLA-4+ cell
density and the CD3+ T-cell density was used as an analyte, most

associations seen for the CTLA-4 density were no longer found.
There was, however, a significant association between a high
CTLA-4/CD3-ratio and absence of nodal metastases in 1756 cancer
samples (p= 0.0354, Table 2). A high CTLA-4/CD3-ratio was linked
to PD-L1 positivity on immune cells (p= 0.0026, Table 2). The
CTLA-4/CD3-ratio also showed differences between different
tumor categories: Lowest values were found in lymphomas (5 ±
7) and germ cell tumors (8 ± 24) while highest values were seen in
melanocytic (25 ± 43) as well as epithelial tumors (18 ± 48, p <
0.0001, Table 1). Even though, the CTLA-4 density was highly
variable in epithelial tumors (ranging from 256 to 421 cells/mm2;
p < 0.0001) the CTLA-4/CD3-ratio was similar in different origins of
epithelial tumors (ranging from 15 to 20; p= 0.2193; Table 2).

DISCUSSION
The data from this study demonstrate the feasibility of a reliable
and precise high-throughput quantification of lymphocyte sub-
populations by employing an AI supported multiple antibody
approach.
Two different CTLA-4 antibodies were used for this study

because the use of multiple independent antibodies is the only
practically feasible approach for validating lymphocyte marker
antibodies for immunohistochemistry on formalin fixed tissues.

Table 1. CTLA-4+ cell densities (cells/mm2) and CTLA-4/CD3-ratio in different tumor categories.

Characteristic Patient
number (%)

Mean density of both
CTLA4-Ab

p value Patient
number (%)

CTLA4/CD3-ratio p value

Total 4582 673 (±1482) median: 214 4292 17 (±52)
median: 2

Benign/malignant <0.0001 0.3442

Malignant 3470 (75.7%) 734 (±1621) 3259 (75.9%) 15 (±40)

Benign 432 (9.4%) 395 (±663) 452 (10.5%) 18 (±65)

Origin <0.0001 <0.0001

Lymphoma 424 (9.3%) 3642 (±3207) 297 (6.9%) 5 (±7)

Biphasic 133 (2.9%) 609 (±1057) 128 (3.0%) 11 (±29)

Germ cell tumor 127 (2.8%) 401 (±468) 144 (3.4%) 8 (±24)

Epithelial 2954 (64.5%) 335 (±471) 2855 (66.5%) 18 (±48)

Melanocytic 64 (1.4%) 307 (±340) 70 (1.6%) 25 (±43)

Mesothelial 34 (0.7%) 281 (±320) 35 (0.8%) 15 (±31)

Mesenchymal 235 (5.1%) 145 (±268) 255 (5.9%) 9 (±31)

Lymphoma <0.0001 0.0873

Hodgkin’s lymphoma 96 (2.1%) 5916 (±3826) 50 (1.2%) 3 (±2)

NHL B-cell 305 (6.7%) 2997 (±2710) 236 (5.5%) 5 (±8)

NHL T-cell 23 (0.5%) 2701 (±1949) 11 (0.3%) 6 (±7)

Epithelial tumors <0.0001 0.2193

Squamous 908 (19.8%) 421 (±469) 861 (20.1%) 20 (±45)

Urothelial 33 (0.7%) 418 (±347) 37 (0.8%) 15 (±46)

Adeno 1477 (32.2%) 268 (±375) 1419 (33.1%) 16 (±43)

Renal 113 (2.5%) 256 (±269) 120 (2.8%) 17 (±34)

Adenocarcinomas <0.0001 0.1630

Lower GI 89 (1.9%) 448 (±343) 78 (1.8%) 20 (±33)

Breast 245 (5.4%) 411 (±505) 220 (5.1%) 18 (±52)

Thyroid gland 248 (5.4%) 300 (±452) 93 (2.2%) 23 (±49)

Hep/Biliary/Pancreas 211 (4.6%) 258 (±432) 207 (4.8%) 17 (±45)

Gyn 345 (7.5%) 256 (±336) 332 (7.7%) 15 (±40)

Upper GI 240 (5.2%) 249 (±295) 221 (5.1%) 17 (±54)

Adrenal cortical 21 (0.5%) 221 (±324) 25 (0.6%) 14 (±28)

Prostate 78 (1.7%) 110 (±124) 242 (5.6%) 8 (±23)
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Although the International Working Group for Antibody Validation
(IWGAV) has proposed that antibody validation for immunohis-
tochemistry could alternatively include a comparison of the IHC
findings with expression data obtained by another independent
method26, this approach is not practical for immune cell markers
due to the widespread distribution of immune cells across virtually
all tissues. That both applied antibodies identified almost identical
subsets of lymphocytes in multicolor analyses demonstrates,
provides strong evidence for both antibodies recognizing CTLA-4
in formalin fixed tissues. The comprehensive screening of 76
different normal tissue categories also indeed identified multiple
tissue structures that were significantly stained by one antibody
but not by the other. While a staining of the target protein can be
expected to occur with every suitable antibody it is likely that
cross-reactivities are more antibody specific and therefore will
involve non-overlapping tissues and cell types. The CAL49 staining
observed in stomach and kidney epithelium as well as the MSVA-
152R staining in adrenal gland, decidua cells and other epithelial
cells are thus considered antibody cross-reactivities. Cross-
reactivities of diagnostically used antibodies are not uncommonly
found if an extensive normal tissue screening is executed. For
example, we had recently observed non-specific staining of
smooth-muscle for the PLAP antibody clone 8A927, spermatocytes
of the testis for the DOG1 clone SP3128, and of corpus luteum of
the ovary, adrenal cortical cells, decidua cells for the SATB2 clone
384R-1829.
Antibody cross-reactivity does not necessarily represent a

significant limitation to the utility of an antibody and can even
be considered advantageous. Cross-reactive binding of Melan A
clone A103 to adrenocortical cells is for example used as a
diagnostic feature for distinguishing adrenocortical tissue from
clear cell renal cell carcinoma30. The thorough analysis of >4582
tumors from 90 different tumor types demonstrated in this study,
that the cross-reactivities detected for our two CTLA-4 antibodies
hindered the quantitation of CTLA-4+ lymphocytes in only few

tumor entities. Because the artefact prone tumor entities were
antibody-specific and did not overlap for our antibodies, the use
of just two antibodies enabled a successful analysis of the entire
tumor set although a few individual tumors such as heavily
pigmented melanoma cases remained uninformative for both
antibodies. It is of note, that several earlier IHC studies had
described CTLA-4 to occur in tumor cells of malignant mela-
noma31, breast cancer32, and esophageal carcinomas33. Given the
complete lack of confirmed tumor cell staining in the 4582 cancers
of our study, it appears possible that these earlier reports were
based on non-specific antibody binding to tumor cells.
The fact that the analysis of more than 4000 tumor samples

from 90 different tumor entities was executed using the same
deep-learning algorithm for both antibodies was a major
strongpoint of this study and enabled a fully reproduceable
evaluation of non-specific staining for multiple antibodies. Thus,
the Artificial Intelligence (AI) framework for the detection of non-
specific staining reaction was trained on immunostaining of both
antibodies—in an equal proportion—to ensure a good perfor-
mance for both antibody clones. To cover such a wide range of
different staining patterns of multiple antibodies across various
tumor entities, the AI framework was based on an AI for cell
segmentation and the pivotal AI for detecting non-specific
antibody staining. However, a major hurdle in developing an AI
specific for non-specific staining was to achieve a great diversity of
non-specific staining patterns as well as specific lymphocytic
staining patterns in the training set. Here, we took advantage of
the fact that in most tumor entities the staining quality of both
antibodies was complementary to each other (i.e., at least one of
the antibody clones showed a specific immunostaining), which
dramatically increased the accuracy of our AI. In addition, another
advantage of CTLA-4 was the fundamental differences in the
shape of CTLA-4+ lymphocytes and non-specific staining. There-
fore, the AI approach described in this study can be particularly
effective in case of lymphocyte markers. For the future, the

Table 2. Association between the CTLA-4+ cell density (cells/mm2) as well as the CTLA4/CD3-ratio and clinicopathological parameters.

Characteristic Patient number (%) CTLA4+ cell density p value Patient number (%) CTLA4/CD3-ratio p value

Total 4582 673 (±1482) median: 214 4292 17 (±52) median: 2

Pathological tumor stage <0.0001 0.1846

pT1 763 (16.7%) 410 (±570) 740 (17.2%) 20 (±56)

pT2 746 (16.3%) 350 (±467) 714 (16.6%) 18 (±46)

pT3 839 (18.3%) 273 (±364) 710 (16.5%) 16 (±39)

pT4 341 (7.4%) 306 (±345) 328 (7.6%) 15 (±30)

Missing data 1893 (41.3%) - 1800 (41.9%) -

Pathological nodal stage 0.0031 0.0354

pN− 839 (18.3%) 373 (±491) 794 (18.5%) 21 (±55)

pN+ 1003 (21.9%) 312 (±398) 962 (22.4%) 16 (±37)

Missing data 2740 (59.8%) - 2536 (59.1%) -

PD-L1 on tumor cells <0.0001 0.0026

Negative 2583 (56.4%) 628 (±1382) 2498 (58.2%) 16 (±49)

Positive 662 (14.4%) 920 (±1744) 605 (14.1%) 23 (±64)

Missing data 1337 (29.2%) - 1189 (27.7%) -

PD-L1 on immune cells <0.0001 0.1010

Negative 2063 (45.0%) 310 (±534) 2068 (48.2%) 19 (±59)

Positive 1371 (29.9%) 1233 (±2059) 1231 (28.7%) 16 (±45)

Missing data 1148 (25.1%) - 993 (23.1%) -

HPV 0.0130 0.9020

Negative 326 (7.1%) 393 (±392) 291 (6.8%) 25 (±56)

Positive 243 (5.3%) 489 (±524) 221 (5.2%) 25 (±40)

Missing data 4013 (87.6%) - 3780 (88.0%) -
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purpose of this AI approach is—similar to other AI based decision
support systems in pathology34—to assist the pathologist by
excluding >90% of unimportant tumor samples and pointing out
the TMA cores of interest (i.e., with potential non-specific staining).
Taken together, integrating an AI framework in the process of
antibody validation might result in an efficient semi-automated
workflow for quality assessment of new antibody clones.
Several data generated from our tumor cohort suggest a

possible biological relevance of CTLA-4+ lymphocytes. Although
the prognostic role of CTLA-4 has been reported contradictory35,
the fact that the density of CTLA-4+ lymphocytes varied between
tumor types as well as between individual tumors and that the
CTLA-4 density was lower in tumors of advanced clinicopatholo-
gical parameters was expected because similar findings had been
observed for an inflamed immune phenotype36–38, CD3+39,
CD8+36, and CD4+40, lymphocytes as well as for PD-L1+ immune
cells41 or CD112R+ lymphocyte subsets21. For the same reason,
the significant link between a high number of CTLA-4+ cells and
PD-L1 expression in tumor cells or tumor associated inflammatory
cells is also consistent with the literature42. Despite the expected
general link between high absolute numbers of CTLA-4+ cells and
favorable tumor features, there were also some associations
between a high CTLA-4/CD3-ratio and favorable tumor features.
The latter finding would clearly fit with the concept that immune
checkpoint receptors—such as CTLA-4—are upregulated in T-cell
accumulations in the tumor micro-environment, so that a high
immune checkpoint expression functions as a surrogate for a high
number of T-cell accumulations (i.e., a high T-cell density, an
inflamed immune phenotype)21,43–45. Given that the CD3 density
was quantified in an earlier study on non-consecutive slides, it is
possible that some associations with clinicopathological para-
meters might be underrated in this study. Several other studies
have also suggested that a high expression of CTLA-4+ on T-cells
is linked to a favorable disease outcome or tumor features in
289 squamous cell lung cancer46, 162 testicular germ cell
tumors47, 130 breast cancers32, 45 mesothelioma patients48, and
39 B-cell chronic lymphocytic leukemia49.
In summary, CTLA-4+ cells could be rapidly and precisely

quantitated in this study despite inherent limitations of available
CTLA-4 antibodies. The use of two independent antibodies
enabled our AI to automatically distinguish “true” from “false”
immunostaining and enabled the identification of potentially
relevant biologically data such as a link between a low ratio of
CTLA-4/CD3 and pN as well as PD-L1+ immune cells. Further
investigations on the role of CTLA-4+ lymphocyte subsets by
multiplex fluorescence IHC will most likely benefit from using
similar approaches as described here.
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